JPH0342774B2 - - Google Patents

Info

Publication number
JPH0342774B2
JPH0342774B2 JP21899984A JP21899984A JPH0342774B2 JP H0342774 B2 JPH0342774 B2 JP H0342774B2 JP 21899984 A JP21899984 A JP 21899984A JP 21899984 A JP21899984 A JP 21899984A JP H0342774 B2 JPH0342774 B2 JP H0342774B2
Authority
JP
Japan
Prior art keywords
plate
light receiving
receiving section
light
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21899984A
Other languages
Japanese (ja)
Other versions
JPS6196409A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP21899984A priority Critical patent/JPS6196409A/en
Publication of JPS6196409A publication Critical patent/JPS6196409A/en
Publication of JPH0342774B2 publication Critical patent/JPH0342774B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/344Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using polarisation
    • G01D5/345Polarising encoders

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、回動軸の角変位の検出器に関するも
のであり、例えば、ロボツトアームの支承軸、あ
るいはエンジン、モータ等の原動機の回転軸に結
合されてその回動角度の検出に供され、この検出
された信号は前記検出対象の回動角度や速度の制
御系における帰還信号あるいはその回動角度の表
示に用いられる。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a detector for the angular displacement of a rotating shaft, for example, a detector coupled to a supporting shaft of a robot arm or a rotating shaft of a prime mover such as an engine or a motor. The rotation angle is detected, and the detected signal is used as a feedback signal in a control system for the rotation angle and speed of the object to be detected, or as a display of the rotation angle.

従来の技術 この種の検出器には、例えば米国特許第
3306156号に開示されたものがある。これは偏光
板を軸に固着して回転偏光板とし、それに対し
て、相互に透過軸を45度づつずらした第1〜第4
の偏光板を配設し、第1〜第4の偏光板のそれぞ
れと前記回転偏光板を挟んで直流点灯光源と第1
〜第4の受光部を対向させたものである。
Prior Art This type of detector includes, for example, US Pat.
There is one disclosed in No. 3306156. This is a rotating polarizing plate by fixing the polarizing plate to the axis, and the first to fourth polarizing plates whose transmission axes are shifted by 45 degrees from each other.
polarizing plates are disposed, and a direct current lighting light source and a first
-The fourth light receiving section is placed opposite to each other.

これにおいては、回転偏光板が角度θだけ回動
すると、その透過軸と各第1〜第4の偏光板の透
過軸との交わり角がθ、(45゜+θ)、(90゜+θ)、
(135゜+θ)となり、それにより光の透過率が変
化することになる。この透過率の変化は、Mulas
の法則として公知であり、それぞれ所定の透過率
と前記交わり角の倍角のコサイン関数として変化
する透過率の和がその角度での透過率となる。す
なわち、それぞれの透過率をα1〜α4とおくと、次
のように表される。
In this case, when the rotating polarizing plate rotates by an angle θ, the intersection angle between its transmission axis and the transmission axis of each of the first to fourth polarizing plates becomes θ, (45° + θ), (90° + θ),
(135°+θ), and the light transmittance changes accordingly. This change in transmittance is determined by Mulas
The sum of a predetermined transmittance and a transmittance that changes as a cosine function of a double angle of the intersection angle is the transmittance at that angle. That is, when the respective transmittances are set as α 1 to α 4 , it is expressed as follows.

α1=(H0-H90)cos2θ+H90 =K1cos2θ+K2 α2=(H0-H90)cos2(θ+45゜)+H90 =−K1sin2θ+K2 α3=(H0−H90)cos2(θ+90゜)+H90 =−K1cos2θ+K2 α4=(H0−H90)cos2(θ+135゜)+H90 =K1sin2θ+K2 ここに、H0:平行位透過率 H90:直交位透過率 K1=(1/2)(H0−H90) K2=(1/2)(H0+H90) したがつて、第1〜第4の受光部には、それぞ
れ前記α1〜α4に比例した次のような電気信号e1
e4が発生することになる。
α 1 =(H 0 -H 90 )cos 2 θ+H 90 =K 1 cos2θ+K 2 α 2 =(H 0 -H 90 )cos 2 (θ+45°)+H 90 =−K 1 sin2θ+K 2 α 3 = (H 0 −H 90 ) cos 2 (θ + 90°) + H 90 = −K 1 cos2θ + K 2 α 4 = (H 0 − H 90 ) cos 2 (θ + 135°) + H 90 = K 1 sin2θ + K 2 where, H 0 : parallel position Transmittance H90 : Orthogonal transmittance K1 = (1/2) ( H0 - H90 ) K2 = (1/2) ( H0 + H90 ) Therefore, the first to fourth light receiving sections , the following electric signals e 1 to α 4 are proportional to α 1 to α 4 , respectively.
e 4 will occur.

e1=K3cos2θ+K4 e2=−K3sin2θ+K4 e3=−K3cos2θ+K4 e4=−K3sin ここに、K3、K4は定数 この第1〜第4の受光部出力e1〜eは、次に演
算回路に導入され、それぞれに90度づつ位相のず
れたキヤリアsinωt、cosωt、−sinωt、−cosωtが
乗じられた後加算され、次のような回動角度θに
対応した位相を有する位相信号eに変換される。
e 1 = K 3 cos2θ + K 4 e 2 = -K 3 sin2θ + K 4 e 3 = -K 3 cos2θ + K 4 e 4 = -K 3 sin Here, K 3 and K 4 are constants These first to fourth light receiving section outputs e 1 to e are then introduced into an arithmetic circuit, multiplied by carriers sinωt, cosωt, −sinωt, and −cosωt, each with a phase shift of 90 degrees, and then added, resulting in the rotation angle θ as shown below. It is converted into a phase signal e having a corresponding phase.

e=K3(2cos2θsinωt-2sin2θcosωt) =2K3sin(ωt−2θ) 尚、前記従来技術は、光源を直流点灯光源と
し、受光部出力にキヤリアを乗じるものである
が、これとは逆に各受光部と対向させる光源から
の発光量を90度づつ位相のずれたキヤリアにより
制御し、その受光部出力を加減算しても同様であ
る。
e=K 3 (2cos2θsinωt-2sin2θcosωt) = 2K3sin (ωt−2θ) The above-mentioned conventional technology uses a DC lighting light source as the light source and multiplies the output of the light receiving section by a carrier. The same effect can be obtained by controlling the amount of light emitted from a light source facing the light receiving section using carriers whose phases are shifted by 90 degrees, and adding and subtracting the output from the light receiving section.

発明が解決しようとする課題 しかしながら、この種の従来技術においては、
第1〜第4の偏光板を、その透過軸が相互に45度
づつ正確にずれた状態に配置することが必要にな
るが、その配置には熟練を要し、結局、3回の透
過軸の角度調整が必要とされるので、多大の作業
時間を要することも避けられない。
Problems to be Solved by the Invention However, in this type of conventional technology,
It is necessary to arrange the first to fourth polarizing plates so that their transmission axes are accurately shifted from each other by 45 degrees, but this arrangement requires skill, and in the end, the transmission axes are shifted three times. Since the angle adjustment is required, it is inevitable that a large amount of work time is required.

本発明は、偏光板を配置するに際して多数の偏
光板に対しての位置決め調整を必要とする問題点
を解決しようとするものである。
The present invention is intended to solve the problem of requiring positioning adjustment for a large number of polarizing plates when arranging the polarizing plates.

課題を解決するための手段 本発明は、前記課題を解決するために、偏光板
の透過軸の位置調整を1ケ所だけに減少させたも
のであり、互いに半径方向の異なる部分に非偏光
部分を設けた2枚の偏光板が、透過軸を45度ずら
して重ね合わされ、互いの偏光部分が重合する第
1の部分および各々の偏光部が他方とは非重合と
なる第2、第3の部分とが形成された第1の板体
と、その第2、第3の部分と対向して配設された
偏光板よりなる第2の板体と、前記第1または第
2の板体が固着される回転軸と、前記第1の板体
の第1の部分を挟んで対向して配設された第1の
直流点灯光源および受光部と、前記第1の板体の
第2、第3の部分と第2の板体を挟んでそれぞれ
対向して配設された第2、第3の直流点灯光源お
よび受光部と、前記第1、第2、第3の受光部出
力e10、e11、e12を入力し、(e11−e10)sinωt、
(e12−e10)cosωtの演算を行う加減算回路および
乗算回路を備えた演算回路とからなる。
Means for Solving the Problems In order to solve the above problems, the present invention reduces the positional adjustment of the transmission axis of the polarizing plate to only one location, and provides non-polarizing portions in different radial directions. Two polarizing plates provided are overlapped with their transmission axes shifted by 45 degrees, and a first part where the polarized parts of each other overlap, and second and third parts where each polarized part is not overlapped with the other. and a second plate formed of a polarizing plate disposed opposite to the second and third portions thereof, and the first or second plate are fixed to each other. a first direct current lighting light source and a light receiving section disposed opposite to each other across a first portion of the first plate; and second and third light receiving parts of the first plate. second and third direct current lighting light sources and light receiving sections, which are arranged to face each other with a second plate in between, and outputs e 10 , e of the first, second and third light receiving sections. 11 , e 12 , (e 11 −e 10 ) sinωt,
It consists of an arithmetic circuit including an addition/subtraction circuit and a multiplication circuit for calculating (e 12 −e 10 )cosωt.

以上は、光源を直流点灯させ、受光部出力にキ
ヤリアを乗じるようにしたものであるが、逆に光
源の発光量自体をキヤリアにより制御させても同
様である。第2の発明は、光源の発光量を変化さ
せるようにしたものであり、互いに半径方向の異
なる部分に非偏光部分を設けた2枚の偏光板が、
透過軸を45度ずらして重ね合わされ、互いの偏光
部分が重合する第1の部分および各々の偏光部が
他方とは非重合となる第2、第3の部分とが形成
された第1の板体と、その第2、第3の部分と対
向して配設された偏光板よりなる第2の板体と、
前記第1または第2の板体が固着される回転軸
と、前記第1の板体の第1の部分を挟んで対向し
て配設され、90度位相の異なるキヤリアの和
(sinωt+cosωt)により発光量が制御される第1
の光源および受光部と、前記第1の板体の第2の
部分と第2の板体を挟んで対向して配設され、キ
ヤリアsinωtにより発光量が制御される第2の光
源および受光部と、前記第3の部分と第2の板体
を挟んで対向して配設され、キヤリアcosωtによ
り発光量が制御される第3の光源および受光部
と、前記第1、第2の受光部出力と第3の受光部
出力の差を算出する演算回路とからなる。
In the above description, the light source is turned on with direct current and the output of the light receiving section is multiplied by a carrier, but the same effect can be achieved even if the amount of light emitted from the light source itself is controlled by a carrier. The second invention is such that the amount of light emitted by the light source is changed, and two polarizing plates each having non-polarized portions in different radial directions,
A first plate that is overlaid with its transmission axis shifted by 45 degrees, and has a first portion in which the polarized portions of each other overlap, and second and third portions in which each polarized portion is non-polymerized with the other. a second plate body made of a polarizing plate disposed opposite the body and the second and third parts thereof;
The rotary shaft to which the first or second plate is fixed, and the sum of carriers (sinωt+cosωt) that are disposed opposite to each other across the first portion of the first plate and have a phase difference of 90 degrees, The first light emitting amount is controlled.
a second light source and a light receiving section, and a second light source and a light receiving section, which are arranged opposite to each other with the second portion of the first plate and the second plate interposed therebetween, and whose amount of light emission is controlled by a carrier sinωt. a third light source and a light receiving section, which are disposed opposite to each other with the third portion and the second plate interposed therebetween, and whose amount of light emission is controlled by a carrier cosωt; and the first and second light receiving sections. It consists of an arithmetic circuit that calculates the difference between the output and the third light receiving section output.

作 用 第1、第2の板体が相対的に回動変位θを生じ
ると、第1の板体の第1の部分、すなわち重合し
た部分の透過率α10は次のようにθと無関係に一
定であり、 α10=(H0−H90)cos245゜+H90=K2 第2、第3の部分と第2の板体間の透過率α11
a12が前記式のそれぞれα1、α2と同様に変化す
る。すなわち、 α11=α1=K1cos2θ+K2 α12=α2=−K1sin2θ+K2 ′ この結果これら第1〜第3の部分を通過する光
源からの光は、それぞれα10、α11、a12倍されて
受光量に対応した電気信号e10、e11、e12に変換さ
れる。すなわち、 e10=K4 e11=K3cos2θ+K4 e12=−K3sin2θ+K4 続いて、この各出力e10〜e12は演算回路に導入
されて移相信号e0への変換が行なわれる。すなわ
ち、 e0=(e11-e10)sinωt+(e12-e10)cosωt =K3sin(ωt-2θ) 以上は、受光部出力をキヤリアにより変調させ
る場合であるが、第2発明は、光源の発光量をキ
ヤリアにより制御するようにしたものであり、キ
ヤリアによる変調を後で行つた、先に行うかの違
いだけで結果は全く同じである。
Effect When the first and second plates produce a relative rotational displacement θ, the transmittance α 10 of the first portion of the first plate, that is, the overlapped portion, is independent of θ as follows. α 10 = (H 0 − H 90 ) cos 2 45° + H 90 = K 2 Transmittance between the second and third parts and the second plate α 11 ,
a 12 changes in the same manner as α 1 and α 2 in the above formula, respectively. That is, α 11 = α 1 = K 1 cos2θ + K 2 α 12 = α 2 = −K 1 sin2θ + K 2 ' As a result, the light from the light source that passes through these first to third parts is α 10 , α 11 , a is multiplied by 12 and converted into electrical signals e 10 , e 11 , and e 12 corresponding to the amount of received light. That is, e 10 = K 4 e 11 = K 3 cos2θ + K 4 e 12 = −K 3 sin2θ + K 4Next , each output e 10 to e 12 is introduced into an arithmetic circuit and converted into a phase-shifted signal e 0 . It will be done. That is, e 0 =(e 11 -e 10 )sinωt+(e 12 -e 10 )cosωt =K 3 sin(ωt-2θ) The above is a case where the output of the light receiving section is modulated by a carrier, but the second invention , the amount of light emitted by the light source is controlled by a carrier, and the result is exactly the same, the only difference being whether modulation by the carrier is performed later or first.

すなわち、第2発明においては、第1、第2、
第3の光源の発光量が、それぞれ(sinωt+
cosωt)、sinωt、cosωtに対応して変化させられ、
その発光量がそれぞれ各対応する第1、第2、第
3の部分の透過率、α10、α11、α12倍されて、第
1、第2、第3の受光部に達する。したがつて、
その受光部出力e′10、e′11、e′12は、前記第1発明
の各受光部出力e10、e11、e12に、それぞれ
(sinωt+cosωt)、sinωt、cosωtしたものと同じ
となり、演算回路で算出されるe′11とe′12の和か
らe10を差し引いた値は、前記式の結果、すな
わち第1発明の値と同一のものとなる。
That is, in the second invention, the first, second,
The amount of light emitted from the third light source is (sinωt+
cosωt), sinωt, and cosωt,
The amount of light emitted is multiplied by the transmittance of the corresponding first, second, and third portions, α 10 , α 11 , and α 12 , respectively, and reaches the first, second, and third light receiving portions. Therefore,
The light-receiving section outputs e' 10 , e' 11 , e' 12 are the same as the respective light-receiving section outputs e 10 , e 11 , e 12 of the first invention multiplied by (sinωt+cosωt), sinωt, and cosωt, The value obtained by subtracting e 10 from the sum of e' 11 and e' 12 calculated by the arithmetic circuit is the same as the result of the above equation, that is, the value of the first invention.

実施例 第1図において、10は第1の板体であり、回
動軸1に固着された透明材よりなる補強円板1
1、その円板11の右側面に固着されたドーナツ
状の第1の偏光板12、その第1の偏光板12の
内外径のほぼ中間径を有し、前記の円板11の左
側面に第1の偏光板12と透過軸を45度ずらして
固着した第2の偏光板13とからなる。これによ
り第1の板体10の中間近くは第1、第2の偏光
板12,13が透過軸の交わり角45度にて重合し
た部分(以下、これを第1の部分という)とな
り、その重合部分の外側は第1の偏光板12のみ
の非重合部分(以下、これを第2の部分という)
となり、重合部分の内側は第2の偏光板13のみ
の非重合部分(以下、これを第3の部分という)
となる。
Embodiment In FIG. 1, reference numeral 10 denotes a first plate, which is a reinforcing disk 1 made of a transparent material and fixed to a rotation shaft 1.
1. A donut-shaped first polarizing plate 12 fixed to the right side of the disk 11, having a diameter approximately halfway between the inner and outer diameters of the first polarizing plate 12, and having a diameter approximately halfway between the inner and outer diameters of the first polarizing plate 12, and It consists of a first polarizing plate 12 and a second polarizing plate 13 fixed to each other with their transmission axes shifted by 45 degrees. As a result, near the middle of the first plate 10 becomes a part where the first and second polarizing plates 12 and 13 overlap at an intersection angle of 45 degrees (hereinafter, this is referred to as the first part). Outside the overlapping portion is a non-overlapping portion of only the first polarizing plate 12 (hereinafter referred to as the second portion)
The inside of the overlapping portion is the non-overlapping portion of only the second polarizing plate 13 (hereinafter referred to as the third portion).
becomes.

次に、20は第2の板体であり、前記第1の板
体10と対向状態に配設された矩形状の補強板2
1、その板21の右側面に固着され、前記第1の
板体10の第1の部分(重合部分)と対向する部
分の偏光部が除去された偏光板22とからなる。
したがつて、第2の板体20の偏光板22の偏光
部は第1の板体10の非重合の第2、第3の部分
と対向し、中空部が重合の第1の部分と対向する
ことになる。
Next, 20 is a second plate, and a rectangular reinforcing plate 2 disposed opposite to the first plate 10.
1. A polarizing plate 22 is fixed to the right side of the plate 21, and the polarizing portion of the portion facing the first portion (overlapping portion) of the first plate body 10 has been removed.
Therefore, the polarizing part of the polarizing plate 22 of the second plate body 20 faces the non-polymerized second and third parts of the first plate body 10, and the hollow part faces the polymerized first part. I will do it.

そして、第1の板体10の第1の部分を挟んで
対向状態に第1の光源31と受光部41が配設さ
れ、同様に第1の板体10の非重合の第2、第3
の部分と第2の板体20の偏光板22をそれぞれ
挟んで対向状態に第2の光源32と受光部42、
第3の光源33と受光部43が配設されている。
The first light source 31 and the light receiving section 41 are arranged to face each other with the first portion of the first plate 10 interposed therebetween, and similarly, the first light source 31 and the light receiving section 41 are arranged opposite to each other with the first portion of the first plate 10 interposed therebetween.
A second light source 32 and a light receiving section 42 are placed facing each other with the polarizing plate 22 of the second plate body 20 in between.
A third light source 33 and a light receiving section 43 are provided.

次に、第2図は前記受光部41〜43の出力を
導入して移相信号を形成する演算回路の実施例で
ある。前記第2、第3の受光部42,43の出力
e11、e12はそれぞれ減算器51,52に入力さ
れ、別に入力される受光部41の出力e10との差
(e11−e10)、(e12−e10)が演算される。続いて、
その各出力(e11−e10)、(e12−e10)はそれぞれ
乗算器53,54に入力され、キヤリア発振器5
5から送出される90度位相差のキヤリアsinωt、
cosωtと乗算され、その両乗算出力は加算器56
により加算されるようにしてある。
Next, FIG. 2 shows an embodiment of an arithmetic circuit that introduces the outputs of the light receiving sections 41 to 43 to form a phase shift signal. Outputs of the second and third light receiving sections 42 and 43
e 11 and e 12 are input to subtracters 51 and 52, respectively, and the differences (e 11 −e 10 ) and (e 12 −e 10 ) from the separately input output e 10 of the light receiving section 41 are calculated. continue,
The respective outputs (e 11 −e 10 ) and (e 12 −e 10 ) are input to multipliers 53 and 54, respectively, and are input to the carrier oscillator 5.
90 degree phase difference carrier sinωt sent from 5,
multiplied by cosωt, and the output of the double product is output from the adder 56
It is arranged so that it is added by.

以上のものにおいては、軸1が角度θだけ回動
すると、第1の板体10も一体的にθだけ回動
し、第1の板体10における非重合の第2、第3
の部分と第2の板体20の偏光板との透過軸がそ
れぞれθ、(θ+45゜)となり、それぞれの透過率
α11、α12が前記式′のようになる。これにより
光源32,33から放射され、各対応する受光部
42,43に到達する光量は、透過率α11、α12
対応して変化し、第2、第3の受光部42,43
には前記式に示す出力e11、e12が発生する。他
方、第1の板体10の第1の部分(重合部分)の
透過率α10は、第1の板体10の回動角θとは無
関係に一定のK2(式参照)であり、第1の受光
部41の出力e10も一定のK4(式参照)となる。
そして、これら出力e10、〜e12は前記の演算回路
に入力され、前記式に基づく演算により角度θ
に対応した、すなわち角度θの倍角の位相をもつ
移相信号に変換される。
In the above structure, when the shaft 1 rotates by an angle θ, the first plate 10 also integrally rotates by θ, and the non-overlapping second and third plates in the first plate 10 rotate.
The transmission axes of the portion and the polarizing plate of the second plate body 20 are θ and (θ+45°), respectively, and the respective transmittances α 11 and α 12 are as shown in the above formula'. As a result, the amount of light emitted from the light sources 32, 33 and reaching the corresponding light receiving sections 42, 43 changes in accordance with the transmittances α 11 and α 12 .
The outputs e 11 and e 12 shown in the above equation are generated. On the other hand, the transmittance α 10 of the first portion (overlapping portion) of the first plate 10 is a constant K 2 (see formula) regardless of the rotation angle θ of the first plate 10, The output e 10 of the first light receiving section 41 is also constant K 4 (see formula).
These outputs e 10 and ~e 12 are input to the arithmetic circuit described above, and the angle θ is determined by calculation based on the above formula.
is converted into a phase-shifted signal having a phase corresponding to the angle θ, that is, a phase that is double the angle θ.

尚、上記実施例において、光源を第1〜第3の
光源と表現したが、これは第1の板体10の第1
〜第3の部分に対して光を供給するものを意味し
たものであり、例えば、共用の光源あるいは共用
の光源からオプテイカルフアイバーを介して第1
〜第3の部分に光を供給するものも第1〜第3の
光源と表し、同様に、第1〜第3の受光部との表
現も第1の板体10の第1〜第3の部分を通過し
た光を受けて電気信号に変換するものを意味した
ものであり、後記するように例えば第2、第3の
光源が発光量を90度位相の異なるキヤリアにより
制御されるものとし、直接第2、第3の受光部出
力の加算が行なえるものにおいて、第2、第3の
部分の両方と直接あるいはオプテイカルフアイバ
ーを介して対向する共用の受光部も第2、第3の
受光部と分けて表している。
In addition, in the above embodiment, the light sources were expressed as the first to third light sources, but this means that the light sources are the first to third light sources of the first plate 10.
- It means something that supplies light to the third part, for example, a shared light source or a shared light source that supplies light to the first part through an optical fiber.
-Those that supply light to the third portion are also expressed as the first to third light sources, and similarly, the expressions as the first to third light receiving portions also refer to the first to third light receiving portions of the first plate 10. It means something that receives light that has passed through a part and converts it into an electrical signal, and as described later, for example, the amount of light emitted by the second and third light sources is controlled by carriers with a 90 degree phase difference, In devices that can directly add the outputs of the second and third light receiving sections, a shared light receiving section that faces both the second and third parts either directly or via an optical fiber may also be added to the second and third light receiving parts. It is shown separately.

また、上記実施例においては、第1の板体10
を円板状として軸1に固着し、第2の板体20を
矩形状として静止させた場合を例示したが、逆
に、第3図に示すように第2の板体20′を円板
状にして軸1に固着し、第1の板体10′を円板
状あるいは矩形状として静止させても同様であ
る。また、上記実施例においては、演算回路を減
算器51,52、乗算器53,54、キヤリア発
振器55、加算器56により構成した場合を例示
したが、上記式の演算を実行する回路であれ
ば、上記演算順序に限らず変更してよい。
Further, in the above embodiment, the first plate body 10
In the above example, the second plate body 20 is fixed to the shaft 1 in the shape of a disk and the second plate body 20 is in the shape of a rectangle, but conversely, as shown in FIG. The same effect can be obtained even if the first plate body 10' is shaped like a disk and fixed to the shaft 1, and the first plate body 10' is made into a disk shape or a rectangular shape and left stationary. Further, in the above embodiment, the case where the arithmetic circuit is constituted by the subtracters 51, 52, the multipliers 53, 54, the carrier oscillator 55, and the adder 56 is illustrated, but if the circuit executes the arithmetic operation of the above formula, , the order of calculations is not limited to the above and may be changed.

また、上記実施例は光源に直流点灯するものを
用いた場合であるが、第2、第3の光源は90度位
相の異なるキヤリアsinωt、cosωtによりその発
光量が制御されるものとし、第1の光源は90度位
相のキヤリアの和sinωt+cosωtにより発光量が
制御されるものとし、演算回路では第1、第3の
受光部出力と第1の受光部出力との差 e′11+e′12−e10[=e11sinωt+e12cosωt−e
10(sinωt+cosωt)=e0……式] を算出することにより移相信号を形成してもよ
い。
In addition, although the above embodiment uses a direct current lighting source as the light source, the amount of light emitted by the second and third light sources is controlled by carriers sinωt and cosωt having a phase difference of 90 degrees. The amount of light emitted from the light source is controlled by the sum of carriers sinωt + cosωt at 90 degrees phase, and the arithmetic circuit calculates the difference between the outputs of the first and third light receivers and the outputs of the first light receiver e′ 11 +e′ 12 − e 10 [=e 11 sinωt+e 12 cosωt−e
10 (sinωt+cosωt)=e 0 ...Formula] The phase shift signal may be formed by calculating the following.

また、上記実施例において、第1の受光部41
の出力を設定値と比較し、その偏差に応じて第1
〜第3の光源41〜43の発光量を制御する補正
回路を付加し、常時光源からの発光量を所定値に
保ち、安定性を向上させてもよい。
Further, in the above embodiment, the first light receiving section 41
Compare the output of
- A correction circuit that controls the amount of light emitted from the third light sources 41 to 43 may be added to constantly maintain the amount of light emitted from the light source at a predetermined value to improve stability.

発明の効果 本発明は、第1の板体において2枚の偏光板を
透過軸の交わり角45度をもつて重合させるに際
し、互いの偏光板が非重合となる部分を形成し、
その2つの非重合部分と第2の板体の偏光板およ
び重合部分の透過光量を利用して移相信号を形成
するものであり、偏光板の透過軸の角度調整は1
ケ所のみとなり、作業性が大幅に向上する。
Effects of the Invention The present invention provides that when two polarizing plates are superposed in a first plate body with their transmission axes intersecting at an angle of 45 degrees, a portion is formed where the mutual polarizing plates are non-polymerized,
A phase shift signal is formed by using the amount of transmitted light of the two non-overlapping parts, the polarizing plate of the second plate, and the overlapping part, and the angle adjustment of the transmission axis of the polarizing plate is 1.
This greatly improves work efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1,3図は本発明の実施例を示す一部断面を
有する正面図、第2図は本発明における演算回路
の一例を示すブロツク線図である。 10,20,10′:板体、12,13,22,
12′,13′,22′:偏光板、31〜33:光
源、41〜43:受光部。
1 and 3 are partially sectional front views showing embodiments of the present invention, and FIG. 2 is a block diagram showing an example of an arithmetic circuit according to the present invention. 10, 20, 10': plate, 12, 13, 22,
12', 13', 22': polarizing plate, 31-33: light source, 41-43: light receiving section.

Claims (1)

【特許請求の範囲】 1 互いに半径方向の異なる部分に非偏光部分を
設けた2枚の偏光板が、透過軸を45度ずらして重
ね合わされ、互いの偏光部分が重合する第1の部
分および各々の偏光部が他方とは非重合となる第
2、第3の部分とが形成された第1の板体と、そ
の第2、第3の部分と対向して配設された偏光板
よりなる第2の板体と、前記第1または第2の板
体が固着される回転軸と、前記第1の板体の第1
の部分を挟んで対向して配設された第1の直流点
灯光源および受光部と、前記第1の板体の第2、
第3の部分と第2の板体を挟んでそれぞれ対向し
て配設された第2、第3の直流点灯光源および受
光部と、前記第1、第2、第3の受光部出力e10
e11、e12を入力し、(e11−e10)sinωt、(e12−e10
cosωtの演算を行う加減算回路および乗算回路を
備えた演算回路とからなる光電式角度検出器。 2 互いに半径方向の異なる部分に非偏光部分を
設けた2枚の偏光板が、透過軸を45度ずらして重
ね合わされ、互いの偏光部分が重合する第1の部
分および各々の偏光部が他方とは非重合となる第
2、第3の部分とが形成された第1の板体と、そ
の第2、第3の部分と対向して配設された偏光板
よりなる第2の板体と、前記第1または第2の板
体が固着される回転軸と、前記第1の板体の第1
の部分を挟んで対向して配設され、90度位相の異
なるキヤリアの和(sinωt+cosωt)により発光
量が制御される第1の光源および受光部と、前記
第1の板体の第2の部分と第2の板体を挟んで対
向して配設され、キヤリアsinωtにより発光量が
制御される第2の光源および受光部と、前記第3
の部分と第2の板体を挟んで対向して配設され、
キヤリアcosωtにより発光量が制御される第3の
光源および受光部と、前記第1、第2の受光部出
力と第3の受光部出力の差を算出する演算回路と
からなる光電式角度検出器。
[Scope of Claims] 1. Two polarizing plates each having non-polarized portions in different radial directions are stacked with their transmission axes shifted by 45 degrees, and a first portion where the polarized portions of each other overlap, and consisting of a first plate body on which second and third parts are formed, the polarizing part of which is non-polymerized with the other part, and a polarizing plate disposed opposite to the second and third parts. a second plate, a rotating shaft to which the first or second plate is fixed, and a first plate of the first plate.
a first direct current lighting light source and a light receiving section disposed opposite to each other with a portion in between;
A second and third DC lighting light source and a light receiving section are arranged to face each other with the third portion and the second plate interposed therebetween, and the first, second and third light receiving section output e 10 ,
Input e 11 , e 12 , (e 11 −e 10 ) sinωt, (e 12 −e 10 )
A photoelectric angle detector consisting of an arithmetic circuit equipped with an addition/subtraction circuit and a multiplication circuit for calculating cosωt. 2. Two polarizing plates with non-polarized parts in different radial directions are stacked with their transmission axes shifted by 45 degrees, and the first part where the polarized parts overlap and each polarized part overlap with the other. A first plate member having second and third portions that are non-polymerized, and a second plate member comprising a polarizing plate disposed opposite to the second and third portions. , a rotation shaft to which the first or second plate is fixed, and a first rotation shaft of the first plate.
a first light source and a light receiving section, which are arranged to face each other with a portion in between, and whose light emission amount is controlled by the sum of carriers having a phase difference of 90 degrees (sinωt+cosωt); and a second portion of the first plate body. a second light source and a light receiving section, which are arranged to face each other with a second plate in between, and whose light emission amount is controlled by a carrier sinωt;
are arranged opposite to each other across the second plate body,
A photoelectric angle detector comprising a third light source and a light receiving section whose light emission amount is controlled by a carrier cosωt, and an arithmetic circuit that calculates the difference between the outputs of the first and second light receiving sections and the output of the third light receiving section. .
JP21899984A 1984-10-18 1984-10-18 Photoelectric type angle detector Granted JPS6196409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21899984A JPS6196409A (en) 1984-10-18 1984-10-18 Photoelectric type angle detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21899984A JPS6196409A (en) 1984-10-18 1984-10-18 Photoelectric type angle detector

Publications (2)

Publication Number Publication Date
JPS6196409A JPS6196409A (en) 1986-05-15
JPH0342774B2 true JPH0342774B2 (en) 1991-06-28

Family

ID=16728677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21899984A Granted JPS6196409A (en) 1984-10-18 1984-10-18 Photoelectric type angle detector

Country Status (1)

Country Link
JP (1) JPS6196409A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241453A (en) * 2007-03-27 2008-10-09 Nidec Copal Corp Optical encoder
DE102015107908A1 (en) * 2015-02-25 2016-08-25 Günter Grau Device for measuring rotary angles in counters and multistage encoders and associated sensors
KR102019684B1 (en) 2019-04-10 2019-09-09 주식회사 하이드텍 Method of reusing for cutting oil
KR102019681B1 (en) 2019-04-10 2019-09-09 주식회사 하이드텍 cutting oil complex coolant system
CN112325802B (en) * 2020-10-23 2022-06-21 北京交通大学 Two-dimensional small-angle laser measurement method and device based on common-path difference and self-zero calibration

Also Published As

Publication number Publication date
JPS6196409A (en) 1986-05-15

Similar Documents

Publication Publication Date Title
US8723511B2 (en) Absolute encoder
US3474255A (en) Means to detect amount and direction of shaft rotation
US3306159A (en) Angle transducer employing polarized light
US4650996A (en) Angle transducer employing polarized light
JPH0342774B2 (en)
JPH0249542Y2 (en)
JPH0249543Y2 (en)
JPS6157810A (en) Photoelectric displacement detector
JPH0263168B2 (en)
US3360655A (en) Angular motion sensor
JPS59226806A (en) Absolute position detector
JPH0263170B2 (en)
JPH0263169B2 (en)
US2157094A (en) System for the electrical transfer of rotary motion
JPS585365B2 (en) Rotation speed measuring device
JPH0210214A (en) Signal processing method and device
JPS61246620A (en) Detecting apparatus of rotational angle
JPS5882117A (en) Optical encoder
JPH06235646A (en) Rotary angle detector
GB2137755A (en) Position Encoder System having Quadrature Outputs
JPH0546510B2 (en)
JPS6038617A (en) Photoelectric type angle measuring apparatus
US4672205A (en) Method of processing the output signals of an optical earth-horizon sensor
SU119566A1 (en) Synchronous tracking system
JPH0558486B2 (en)