JPS5881995A - Formation of metal oxide film - Google Patents

Formation of metal oxide film

Info

Publication number
JPS5881995A
JPS5881995A JP17830181A JP17830181A JPS5881995A JP S5881995 A JPS5881995 A JP S5881995A JP 17830181 A JP17830181 A JP 17830181A JP 17830181 A JP17830181 A JP 17830181A JP S5881995 A JPS5881995 A JP S5881995A
Authority
JP
Japan
Prior art keywords
metal oxide
fine particles
conductive substance
less
aqueous dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17830181A
Other languages
Japanese (ja)
Other versions
JPH0146599B2 (en
Inventor
Hiroshi Ozawa
小沢 宏
Kazusane Tanaka
和実 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP17830181A priority Critical patent/JPS5881995A/en
Publication of JPS5881995A publication Critical patent/JPS5881995A/en
Publication of JPH0146599B2 publication Critical patent/JPH0146599B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To form a metal oxide film having insulating property and corrosion resistance on a conductive substance, by a method wherein the conductive substance is immersed in an aqueous dispersion of metal oxide fine particles with specific particle sizes or less to precipitate said metal oxide fine particles thereon by electrophoresis and the resulting fine particle deposited conductive substance is baked. CONSTITUTION:An aqueous dispersion of metal oxide with a particle size of 0.5mum or less (especially, 0.1mum or less), for example, alumina, magnesium oxide, silica, barium oxide or titanium oxide is prepared. When a conductive substance is immersed in this aqueous dispersion and used as an electrode to pass current therethrough, metal oxide fine particles having positive charge are electrophoretically moved to a cathode and the metal oxide fine particles having negative charge are electrophoretically moved to an anode to be precipitated and deposited on the surfaces of the conductive substance. When this metal oxide deposited substance is introduced into an electric furnace to be sintered, a metal oxide film is formed on the conductive substance.

Description

【発明の詳細な説明】 本発明は、金属酸化物特にセラミックの膜の新規な形成
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel method for forming metal oxide, particularly ceramic, films.

セラミックは、耐熱性、耐蝕性、絶縁性等にすぐれ、又
、近年すぐれた誘電特性、圧電、焦電特性からもますま
す利用範囲は拡大しつつある。
Ceramics have excellent heat resistance, corrosion resistance, insulation properties, etc., and in recent years, their use has been expanding more and more due to their excellent dielectric, piezoelectric, and pyroelectric properties.

しかしながら、セラミックの成型には種々の制約があり
、特に0.1 m以下の薄膜の成型には困難性があり又
焼結温度が高いこと、複雑な形状の成型やライニングが
困難であること等の欠点によってその適用分野の拡張の
障害となっている。
However, there are various restrictions in molding ceramics, including difficulty in molding thin films of 0.1 m or less, high sintering temperatures, and difficulty in molding and lining complex shapes. Its shortcomings are an obstacle to the expansion of its application field.

本発明は、上記の従来のセラミック成型の欠点を克服す
る方法であって、より低温で焼結が可能であると共に、
薄膜の形成が容易であり、又、複雑な形状へも対応しう
る新規な金属酸化物膜の形成方法であり、回路基板、コ
ンデンサーを始めとする各種電気電子部品や耐熱、耐蝕
性にすぐれたライニング材等の多角的用途への対応を可
能にするものである。
The present invention is a method that overcomes the above-mentioned drawbacks of conventional ceramic molding, which allows sintering at lower temperatures, and
This is a new method for forming metal oxide films that is easy to form thin films and can be applied to complex shapes. This enables it to be used in multiple applications such as lining materials.

すなわち、本発明は、粒径05μ以下の金属酸化物微粒
子の水分散液中に浸漬された導電性物質上に、金属酸化
物微粒子を電気泳動で析出せしめた後、焼結を行って導
電性物質上に金属酸化物膜を形成することを特徴とする
金属酸化物膜の形成方法である。
That is, in the present invention, metal oxide fine particles are precipitated by electrophoresis on a conductive material immersed in an aqueous dispersion of metal oxide fine particles having a particle size of 05 μm or less, and then sintered to make the conductive material. This is a method for forming a metal oxide film, which is characterized by forming a metal oxide film on a substance.

本発明に用いる金属酸化物としては、例えば、アルミナ
、酸化マグネシウム、シリカ、酸化バリウム、酸化チタ
ン、酸化鉛、酸化ハフニウム、酸化トリウム、酸化ジル
コニウム、酸化イツトリウム、酸化ストロンチウム等が
あり、又複酸化物として例えば、アルミナシリカ複酸化
物、チタン酸バリウム、チタン酸ストロンチウム、チタ
ン酸鉛、ジルコン酸ストロンチウム等、各種の複酸化物
があり、水層中で非電離性の酸化物であるが、粒子表面
に一部珪酸、アルミン酸の如き電離性の構造をもってい
ても差し支えない。
Examples of metal oxides used in the present invention include alumina, magnesium oxide, silica, barium oxide, titanium oxide, lead oxide, hafnium oxide, thorium oxide, zirconium oxide, yttrium oxide, strontium oxide, etc. For example, there are various types of double oxides such as alumina-silica double oxide, barium titanate, strontium titanate, lead titanate, and strontium zirconate. There is no problem even if a part of the material has an ionizable structure such as silicic acid or aluminic acid.

本発明に用いる粒径0.5μ以下の金属酸化物粒子は、
通常上記金属のアルコラードを水で加水分解して得られ
、粒径0.5μ以下の水相において安定なゾルとして用
いられるが、水相において安定なゾルとなりうるもので
あれば、他の金属酸化物の製法であっても差波えない。
The metal oxide particles with a particle size of 0.5μ or less used in the present invention are
It is usually obtained by hydrolyzing alcoholade of the above metals with water and is used as a sol that is stable in the aqueous phase with a particle size of 0.5μ or less. There is no difference in the manufacturing method.

本発明の金属酸化物の粒径は、05μを超えると水層に
おけるゾルが不安定であると共に膜形成時の焼結温度が
高(なり不適当であって、好ましくは0.1μ以下、最
も好ましくは0.002〜0.05μの粒径な有するこ
とが望ましい。
If the particle size of the metal oxide of the present invention exceeds 0.5 μm, the sol in the aqueous layer will become unstable and the sintering temperature during film formation will be high (which is unsuitable). Preferably, the particle size is 0.002 to 0.05 μ.

金属酸化物微粒子は、その種類に応じて水層中でプラス
又はマイナスの表面電位を有するので、導電性物質を電
極として通電すれば、プラス電荷を有する金属酸化物微
粒子は陰極に、又マイナス電荷を有す金属酸化物微粒子
は陰極に電気泳動し導電性物質表面上に析出して表面電
荷を失い堆積する。
Metal oxide fine particles have a positive or negative surface potential in the water layer depending on their type, so if electricity is applied using a conductive substance as an electrode, metal oxide fine particles with a positive charge will become a cathode or a negative charge. The metal oxide fine particles having the above electrophoresis migrate to the cathode, are deposited on the surface of the conductive material, lose their surface charge, and are deposited.

すなわち、金属酸化物の析出基材となる導電性物質は、
原則として金属微粒子がプラス電荷の場合には陰極とし
、又マイナス電荷の場合には陽極として直流電′源に接
続される。
In other words, the conductive substance that serves as the base material for metal oxide precipitation is
In principle, if the metal fine particles have a positive charge, they serve as a cathode, and if they have a negative charge, they serve as an anode and are connected to a DC power source.

又、上記の金属酸化物微粒子の水分散液である電気泳動
浴中に、水溶性高分子樹脂を加え、電気泳動速度の調整
や、電極に析出した金属酸化物の脱落防止を図ることも
可能であり、水溶性高分子樹脂としては、例えばポリビ
ニルアルコール、ポリアクリルアミド、ポリビニルピロ
リドン、ヒドロキシエチルセルロース、でん粉、エチル
セルロースの如きノニオン系水溶性高分子、例えばポリ
アクリル酸塩、カルボキシメチルセルロース、マレイン
酸樹脂等のアニオン系水溶性高分子、ポリアミン樹脂、
カチオン化ポリアクリルアミド、カチオン化澱粉、ポリ
エチレンイミン等のカチオン系水溶性高分子等、各種の
水溶性材料を金属酸化物微粒子の種類に応じ使いわける
ことができる。上記の水溶性高分子は通常金属酸化物微
粒子の析出と同時に電極となる導電性物質上に堆積する
が2、焼結時に分解し揮散する。従って水溶性高分子を
併用する場合には、焼結時の酸化物密度に影響するので
金属酸化物に対して20重量係以下であることが好まし
く、特に5チ以下であることが好ましい。
It is also possible to add a water-soluble polymer resin to the electrophoresis bath, which is an aqueous dispersion of the metal oxide fine particles mentioned above, to adjust the electrophoresis speed and prevent metal oxides deposited on the electrodes from falling off. Examples of water-soluble polymer resins include nonionic water-soluble polymers such as polyvinyl alcohol, polyacrylamide, polyvinylpyrrolidone, hydroxyethyl cellulose, starch, and ethyl cellulose, and polyacrylates, carboxymethyl cellulose, maleic acid resins, and the like. Anionic water-soluble polymer, polyamine resin,
Various water-soluble materials can be used depending on the type of metal oxide fine particles, such as cationic water-soluble polymers such as cationized polyacrylamide, cationized starch, and polyethyleneimine. The above-mentioned water-soluble polymer is usually deposited on the conductive material that will become the electrode at the same time as the metal oxide fine particles are precipitated2, but it decomposes and volatilizes during sintering. Therefore, when a water-soluble polymer is used in combination, the weight ratio of the water-soluble polymer to the metal oxide is preferably 20 or less, particularly preferably 5 or less, since it affects the oxide density during sintering.

この他、上記電気泳動浴中に、アルコール類等の水可溶
な溶媒や消泡剤等の添加剤を共存させてもよい。又無機
繊維等を併用することも可能である。
In addition, water-soluble solvents such as alcohols and additives such as antifoaming agents may be present in the electrophoresis bath. It is also possible to use inorganic fibers etc. in combination.

本発明の電極に用いる導電性物質としては、例えば鉄、
アルミニウム、銅、銀等の各種金属類や成型されたカー
ボン、酸化錫や酸化インジウムの如き導電性酸化物等が
用いられるが、導電性がある材料は何であってもよく、
又任意の形状のものを用いることが出来る。
Examples of the conductive material used in the electrode of the present invention include iron,
Various metals such as aluminum, copper, and silver, molded carbon, and conductive oxides such as tin oxide and indium oxide are used, but any conductive material may be used.
Also, any shape can be used.

電気泳動は、通常10〜250ボルトの直流電源を用い
て、所望の析出量に応じた時間、通常10〜120秒通
電して行う。
Electrophoresis is carried out using a direct current power source of usually 10 to 250 volts, and the current is applied for a period of time depending on the desired amount of precipitation, usually 10 to 120 seconds.

電気泳動終了後、必要に応じて水洗等を行い、つづいて
電気炉等で焼結を行う。一般的には水分が十分揮発する
200°C以下の温度で予備加熱を行い、金属酸化物層
に応じ、微粒子同志が十分焼結しうる温度で焼成を行い
、導電性物質上に金属酸化物膜を形成する。水溶性高分
子併用のものは、該高分子の揮散条件も考慮して焼成を
行う。
After electrophoresis is completed, washing with water or the like is performed as necessary, followed by sintering in an electric furnace or the like. In general, preheating is performed at a temperature of 200°C or lower, at which moisture is sufficiently volatilized, and firing is performed at a temperature that allows sufficient sintering of the fine particles, depending on the metal oxide layer. Forms a film. If a water-soluble polymer is used in combination, firing is performed with consideration to the conditions for volatilization of the polymer.

上記の如くして金属等の導電性物質上に、絶縁、耐蝕等
の各種機能を有する、金属酸化物層を形成することが出
来、例えばメタルコアーセラミック電子回路基板や、エ
ンジン部品や化学プラント部品等のセラミックライニン
グ部品等が容易にえられる。
As described above, a metal oxide layer having various functions such as insulation and corrosion resistance can be formed on a conductive substance such as a metal, for example, a metal core ceramic electronic circuit board, engine parts, and chemical plant parts. Ceramic lining parts such as can be easily obtained.

又、片面に有機物等で絶縁処理した銅、アルミニウム等
の金属箔等を導電材料とし、上記の工程によって片面に
金属酸化物膜を形成させた後、金属箔をエツチング等で
全面又は一部で除去して金属酸化物膜を得たり、セラミ
ック基板回路を得ることも可能である。
Alternatively, a metal foil such as copper or aluminum that has been insulated with an organic substance on one side is used as a conductive material, and after forming a metal oxide film on one side through the above process, the metal foil is etched on the entire surface or in part. It is also possible to obtain a metal oxide film or a ceramic substrate circuit by removing it.

本発明の方法による金属酸化物膜の形成は、従来の金属
酸化物粉末粒子の焼結による方法に比しより低温での焼
結が可能であるとともに、50μ以下の薄い膜の形成が
容易に行える。
Formation of a metal oxide film by the method of the present invention enables sintering at a lower temperature than the conventional method of sintering metal oxide powder particles, and also facilitates the formation of a thin film of 50μ or less. I can do it.

以下、実施例を示し、本発明を具体的に説明する。なお
、チは特記なければ重量基準である。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples. Note that unless otherwise specified, the values are based on weight.

実施例1 アルミニウアルコラートを加水分解して得られたアルミ
ナ(平均粒径0,01μ)の水分散液(濃度5%。、系
内にポリビニルア゛ルコール0.2チ及びイソプロピル
アルコール2チ含有)1000mA’をスティンレス製
ビーカーに入れ、アルミニウム板(100酩×50朋×
0.2關)を浸漬し、アルミニウム板を陰極、スティン
レス製ビーカーを陽極となるように直流電源に接続し、
50ボルトの電圧で通電し、30秒間浸漬してからアル
ミニウム板をとりだし、100°0で5分間乾燥した後
550゜Cで1時間電気炉で焼結を行った。アルミナは
、均質な被膜を形成し、アルミナ膜の厚みは35μであ
った。
Example 1 Aqueous dispersion of alumina (average particle size 0.01μ) obtained by hydrolyzing aluminum alcoholate (concentration 5%, system containing 0.2 parts polyvinyl alcohol and 2 parts isopropyl alcohol) Put 1000mA' into a stainless steel beaker and place it on an aluminum plate (100mA x 50mA).
0.2 times), connect it to a DC power source so that the aluminum plate serves as the cathode and the stainless steel beaker serves as the anode.
A voltage of 50 volts was applied, the aluminum plate was immersed for 30 seconds, and then the aluminum plate was taken out, dried at 100°C for 5 minutes, and then sintered in an electric furnace at 550°C for 1 hour. The alumina formed a homogeneous film, and the thickness of the alumina film was 35μ.

実施例2 20%水溶液(カタロイド8−20L  触媒化成工業
株製商品)250gとアクリル酸エチルアクリル酸ソー
ダ(モル比90/10)共重合体10チ水溶液20gと
イオン交換水730gを混合して、電気泳動浴を調整し
スティンレス製ビーカーに入れ、冷延鋼板(100as
X 50m5X 0.2s!s )を浸漬し、冷延鋼板
を陽極、スティンレス製ビーカーを陰極となるように直
流電源に接続し、50ボルトの電圧で通電し60秒間浸
漬した後、冷延鋼板をとりだし、100°Cで5分間乾
燥した後5OO0Cで1時間電気炉で焼結を行った。シ
リ′力は、均質な被膜を形成し、シリカ膜の厚みは28
μであった。
Example 2 250 g of a 20% aqueous solution (Cataroid 8-20L, Catalysts Kasei Kogyo Co., Ltd. product), 20 g of an ethyl acrylate sodium acrylate (molar ratio 90/10) copolymer 10% aqueous solution, and 730 g of ion-exchanged water were mixed. Adjust the electrophoresis bath, place it in a stainless steel beaker, and place it in a cold-rolled steel plate (100as
X 50m5X 0.2s! s), connected to a DC power source so that the cold rolled steel plate serves as the anode and the stainless steel beaker as the cathode, energizes with a voltage of 50 volts and immerses for 60 seconds, then takes out the cold rolled steel plate and heats it to 100°C. After drying for 5 minutes at 500C, sintering was performed in an electric furnace at 500C for 1 hour. The silica film forms a homogeneous film, and the thickness of the silica film is 28 cm.
It was μ.

実施例3 チタニウムアルコラ−トドバリウムアルコラードを混合
し、加水分解して得られたチタン酸バリウム(平均粒径
0.006μ)の水分散液(濃度3チ、系内にポリビニ
ルアルコール0.2%、酢e005%及びイソプロピル
アルコール2チ含有)1000−をスティンレス製ビー
カーに入れ、アルミニウム箔(100闘×50闘XO,
[]5惰惰)を浸漬し、アルミニウム箔を陰極、スティ
ンレス製ビーカーを陽極となるように直流電源に接続し
、80ボルトの電圧で通電し、50秒間浸漬した後、6
00゜Cで1時間電気炉で焼結を行った。
Example 3 An aqueous dispersion of barium titanate (average particle size 0.006μ) obtained by mixing and hydrolyzing titanium alcoholate and barium alcoholade (concentration 3T, polyvinyl alcohol 0.2% in the system) %, vinegar e005% and isopropyl alcohol 2 g) in a stainless steel beaker, and aluminum foil (100 x 50 x O,
[]5 Inertia), connected to a DC power source with the aluminum foil as the cathode and the stainless steel beaker as the anode, energized with a voltage of 80 volts, and immersed for 50 seconds.
Sintering was performed in an electric furnace at 00°C for 1 hour.

チタン酸バリウムは均質な被膜を形成し、チタン酸バリ
ウム膜の厚みは22μであった。
The barium titanate formed a homogeneous film, and the thickness of the barium titanate film was 22μ.

比較例 各々の実施例に対応して、従来通常用いられているアル
ミナ粉末、シリカ粉末及びチタン酸ノくリウム粉末10
0gをポリビニルアルコール5φ水溶液80gとねりあ
わせ、水蒸発させて得た粉末を100#/crlのプレ
スでシート状にプレスし、各々550°0,800°C
及び600°Cで1時間電気炉で焼結したが、結果は不
完全で粒子同志の融着は出来なかった。
Comparative Examples Corresponding to each example, conventionally commonly used alumina powder, silica powder, and notrium titanate powder 10
0g was kneaded with 80g of polyvinyl alcohol 5φ aqueous solution, and the water was evaporated. The powder obtained was pressed into a sheet shape using a 100#/crl press, and each was heated at 550°0,800°C.
The particles were then sintered in an electric furnace at 600°C for 1 hour, but the results were incomplete and the particles could not be fused together.

Claims (1)

【特許請求の範囲】[Claims] (1)粒径0,5μ以下の金属酸化物微粒子の水分散液
中に浸漬された導電性物質上に、金属酸化物微粒子を電
気泳動で析出せしめた後、焼結を行って導電性物質上に
金属酸化物膜を形成することを特徴とする金属酸化物膜
の形成方法。
(1) Metal oxide fine particles are electrophoretically deposited on a conductive material immersed in an aqueous dispersion of metal oxide fine particles with a particle size of 0.5μ or less, and then sintered to form a conductive material. A method for forming a metal oxide film, comprising forming a metal oxide film thereon.
JP17830181A 1981-11-09 1981-11-09 Formation of metal oxide film Granted JPS5881995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17830181A JPS5881995A (en) 1981-11-09 1981-11-09 Formation of metal oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17830181A JPS5881995A (en) 1981-11-09 1981-11-09 Formation of metal oxide film

Publications (2)

Publication Number Publication Date
JPS5881995A true JPS5881995A (en) 1983-05-17
JPH0146599B2 JPH0146599B2 (en) 1989-10-09

Family

ID=16046073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17830181A Granted JPS5881995A (en) 1981-11-09 1981-11-09 Formation of metal oxide film

Country Status (1)

Country Link
JP (1) JPS5881995A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114188A (en) * 1984-06-27 1986-01-22 神東塗料株式会社 Formation of ceramic material
JPH03150394A (en) * 1989-07-25 1991-06-26 Nippon Alum Mfg Co Ltd Formation of metal oxide coating film
JPH06293997A (en) * 1993-04-07 1994-10-21 Nippon Gijutsu Kaihatsu Center:Kk Method for fixing dielectric material film to conductive material and activator produced therefrom
US5472583A (en) * 1992-09-24 1995-12-05 W. R. Grace & Co.-Conn. Manufacture of conical pore ceramics by electrophoretic deposition
EP0729195A1 (en) * 1995-02-22 1996-08-28 AT&T Corp. Current collecting elements
JP2005307299A (en) * 2004-04-23 2005-11-04 Toppan Printing Co Ltd Metal etched product and its production method
JP2007021409A (en) * 2005-07-19 2007-02-01 Chokoon Zairyo Kenkyusho:Kk Method for manufacturing diesel particulate filter
JP2007332451A (en) * 2006-06-19 2007-12-27 Catalysts & Chem Ind Co Ltd Method for forming metal oxide particulate layer onto electrically conductive base material
US7422671B2 (en) 2004-08-09 2008-09-09 United Technologies Corporation Non-line-of-sight process for coating complexed shaped structures
CN100432158C (en) * 2004-05-31 2008-11-12 关西涂料株式会社 Electrophoresis paint
US7538045B2 (en) 2004-08-09 2009-05-26 United Technologies Corporation Coating process to enable electrophoretic deposition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417915A (en) * 1977-07-12 1979-02-09 Fujitsu Ltd Ceramic coating process

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417915A (en) * 1977-07-12 1979-02-09 Fujitsu Ltd Ceramic coating process

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114188A (en) * 1984-06-27 1986-01-22 神東塗料株式会社 Formation of ceramic material
JPH03150394A (en) * 1989-07-25 1991-06-26 Nippon Alum Mfg Co Ltd Formation of metal oxide coating film
JPH0543800B2 (en) * 1989-07-25 1993-07-02 Nippon Aluminium Mfg
US5472583A (en) * 1992-09-24 1995-12-05 W. R. Grace & Co.-Conn. Manufacture of conical pore ceramics by electrophoretic deposition
JPH06293997A (en) * 1993-04-07 1994-10-21 Nippon Gijutsu Kaihatsu Center:Kk Method for fixing dielectric material film to conductive material and activator produced therefrom
EP0729195A1 (en) * 1995-02-22 1996-08-28 AT&T Corp. Current collecting elements
JP2005307299A (en) * 2004-04-23 2005-11-04 Toppan Printing Co Ltd Metal etched product and its production method
JP4501519B2 (en) * 2004-04-23 2010-07-14 凸版印刷株式会社 Manufacturing method of metal partition for PDP
CN100432158C (en) * 2004-05-31 2008-11-12 关西涂料株式会社 Electrophoresis paint
US7422671B2 (en) 2004-08-09 2008-09-09 United Technologies Corporation Non-line-of-sight process for coating complexed shaped structures
US7538045B2 (en) 2004-08-09 2009-05-26 United Technologies Corporation Coating process to enable electrophoretic deposition
JP2007021409A (en) * 2005-07-19 2007-02-01 Chokoon Zairyo Kenkyusho:Kk Method for manufacturing diesel particulate filter
JP2007332451A (en) * 2006-06-19 2007-12-27 Catalysts & Chem Ind Co Ltd Method for forming metal oxide particulate layer onto electrically conductive base material
WO2007148642A1 (en) * 2006-06-19 2007-12-27 Jgc Catalysts And Chemicals Ltd. Method of forming metal oxide microparticle layer on conductive substratum
US7901742B2 (en) 2006-06-19 2011-03-08 Jgc Catalysts And Chemicals Ltd. Method for forming metal oxide fine particle layer on conductive substrate

Also Published As

Publication number Publication date
JPH0146599B2 (en) 1989-10-09

Similar Documents

Publication Publication Date Title
JPS5881995A (en) Formation of metal oxide film
WO2003045584A1 (en) Hot melt conductor paste composition
US2530546A (en) Electrophoretic deposition of insulating coating
CN109692971A (en) A kind of nano-silver powder and its preparation and the application in low-temperature cured conductive silver paste
US4584074A (en) Capacitors
US2695275A (en) Silver paint
JP3257815B2 (en) Method for producing metal oxide coating
GB2158463A (en) Forming ceramic films
JP3381429B2 (en) Method for producing substrate with metal oxide film
JPH01132789A (en) Resin molded electrolytic electrode and its production
JPH01198404A (en) Inorganic sintering body and its manufacture
JPH11241103A (en) Production of spherical platinum powder to be used for platinum paste
US2806189A (en) Alkaline titanate rectifiers
JP3227909B2 (en) Method of forming insulating layer on thermistor strip
JPS63141635A (en) Ashless polyvalent cation stability dispersant for inorganic powder
JP2730941B2 (en) Manufacturing method of aluminum nitride sintered body
JP2000001707A (en) Silver particle, its production and conductor paste consisting of silver particle
JP2002309181A (en) Coating material and coating method
JP2005505096A5 (en)
JPS6378476A (en) Heater and manufacture of the same
CN1349371A (en) Electromolded electrothermal alloy element and its making process
RU1791852C (en) Suspension for fabrication of current conducting coating
CN2428938Y (en) Electrically casted alloy electric-heating element
JPH0796681B2 (en) Method for producing palladium-coated silver powder
JPH02281968A (en) Production of thermal head