JPH01132789A - Resin molded electrolytic electrode and its production - Google Patents

Resin molded electrolytic electrode and its production

Info

Publication number
JPH01132789A
JPH01132789A JP62290739A JP29073987A JPH01132789A JP H01132789 A JPH01132789 A JP H01132789A JP 62290739 A JP62290739 A JP 62290739A JP 29073987 A JP29073987 A JP 29073987A JP H01132789 A JPH01132789 A JP H01132789A
Authority
JP
Japan
Prior art keywords
electrode
particles
resin
oxide
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62290739A
Other languages
Japanese (ja)
Other versions
JPH036231B2 (en
Inventor
Kaoru Hirakata
平形 薫
Akihiko Fujii
昭彦 藤井
Shinichi Shimoda
慎一 下田
Koji Koma
小間 弘司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Carlit Co Ltd
Original Assignee
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Carlit Co Ltd filed Critical Japan Carlit Co Ltd
Priority to JP62290739A priority Critical patent/JPH01132789A/en
Publication of JPH01132789A publication Critical patent/JPH01132789A/en
Publication of JPH036231B2 publication Critical patent/JPH036231B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To develop the title lightweight resin molded electrolytic electrode having excellent corrosion resistance and mechanical strength by using a specified thermoplastic resin as the base material, coating the base material with a reticular conductive layer consisting of a valve metal and a platinum-group metal or its oxide, or dispersing conductive fine particles in the base material. CONSTITUTION:When the electrolytic electrode is produced, an inexpensive particulate thermoplastic resin such as PVC and polystyrene having 50-500mum mean particle diameter is used, the surface of the particle is dissolved in an org. solvent such as acetone, the layer of the valve metal such as Ti, Nb, and Zr and their oxide having 0.02-5mum mean particle diameter is formed on the surface, a platinum-group metal such as Ir, Ru, Rh, and Pt and their oxide are deposited and dispersed thereon, and the material is pressure-molded. Alternatively, the thermoplastic resin is used as the electrode base material, the reticular conductor consisting of the platinum-group metal and its oxide wherein the particles of the oxide of the valve metal are dispersed is formed on the surface, and the electrolytic electrode is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、過硫酸塩の電解製造、金属の電解採取、クロ
ムの電液、アルミ箔の化成処理用液体給電槽などに用い
る酸素発生用不溶性陽極及びその製造方法に関し、特に
、導電性金属基体を用いることなく絶縁性の熱可塑性樹
脂粒子表面を導電性粒子で被覆し成型した電極及びその
製造方法に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention is for use in oxygen generation for electrolytic production of persulfates, electrowinning of metals, electrolyte for chromium, liquid power supply tanks for chemical conversion treatment of aluminum foil, etc. The present invention relates to an insoluble anode and a method for manufacturing the same, and in particular to an electrode in which the surface of an insulating thermoplastic resin particle is coated with conductive particles and molded without using a conductive metal substrate, and a method for manufacturing the same.

(従来の技術) ケイ7フ化浴からのクロムメツキ、コンデンサ用アルミ
箔の化成処理、あるいは亜鉛、マンガン等の金属の電解
採取には鉛または鉛合金、二酸化鉛が広く用いられてい
る。しかしながら、これらの鉛系の電極はすべて酸素過
電圧が高く電力を多消費し、重くて取り扱いに不便なこ
と、機械的強度が弱くたわみやすいことなど多くの欠点
がある。
(Prior Art) Lead, lead alloys, and lead dioxide are widely used in chromium plating from silica baths, chemical conversion treatment of aluminum foil for capacitors, and electrolytic extraction of metals such as zinc and manganese. However, all of these lead-based electrodes have many drawbacks, such as high oxygen overvoltage, high power consumption, heavy weight and inconvenience in handling, and low mechanical strength and easy bending.

また、銀あるいは錫などを含有させた鉛合金は、純鉛に
比べれば電解消耗量は少ないものの、尚、硫酸浴中で多
量のスラッゾを生成し、陰極とじて得られるメツキ製品
中に取り込まれて品質低下を来たすなどの問題がある。
In addition, although lead alloys containing silver or tin have less electrolytic consumption than pure lead, they still produce a large amount of sludzo in the sulfuric acid bath, which is incorporated into the plating product obtained as a cathode. There are problems such as deterioration of quality.

これら鉛系電極の問題を解決すべく開示された非鉛系の
電極として、たとえば特公昭57−54555に見られ
るように金属ビスマスまたは酸化ビスマスからなる第一
被覆層をチタン基体上に施し、さらにその上に金属イリ
ジウムと二酸化イリジウムの第二被覆層を設けた電極な
ど白金族金属及びそれらの酸化物を被覆したチタン電極
が多く知られている。
As a lead-free electrode disclosed to solve the problems of these lead-based electrodes, for example, as seen in Japanese Patent Publication No. 57-54555, a first coating layer made of metal bismuth or bismuth oxide is applied on a titanium substrate, and Many titanium electrodes coated with platinum group metals and their oxides are known, such as electrodes on which a second coating layer of metallic iridium and iridium dioxide is provided.

これらの電極は一様に寸法安定性電極と呼ばれ、電解中
に形状や寸法に変化を未たすことがなく、耐食性および
触媒能を持つ電極活性物質を導電性金属基体上に被覆し
た構造を有し、低い酸素過電圧を示す優れた電極である
These electrodes are commonly referred to as dimensionally stable electrodes, which do not change in shape or size during electrolysis and have a structure in which a conductive metal substrate is coated with an electrode active material that has corrosion resistance and catalytic ability. It is an excellent electrode that exhibits low oxygen overvoltage.

しかしながら、これらの電極の基体であるチタン等のバ
ルブ金属は一般構造材に用いる鉄、あるいは鉛などに比
べると価格は十数倍も高く、電極に用いるに際して大幅
な制限を受けざるを得ないのが現状である。これらの基
体を陽極として用いると酸化物の生成のために急激な不
動態化を生じ、硫酸酸性浴、クロムメツキ1こおけるケ
イ7ツ化浴、7ツ化物を含む過硫酸浴などにおいては被
覆のピンホールを通してこれらの浴の電解液が基体であ
るチタンを腐食し、被覆とチタンとの界面の抵抗が増大
して摺電圧が上昇しrこり、被覆の剥離や浮き上がりを
生じて被覆があるにもかかわらず寿命に至り、高価な貴
金属の損失を招くなど用いる基体の材質に問題があった
However, valve metals such as titanium, which are the base material of these electrodes, are more than ten times more expensive than iron or lead used for general structural materials, and are subject to significant restrictions when used in electrodes. is the current situation. When these substrates are used as anodes, rapid passivation occurs due to the formation of oxides, and the coating is difficult to coat in acidic sulfuric acid baths, silicate baths for chrome plating, persulfuric acid baths containing heptides, etc. The electrolyte in these baths corrodes the base titanium through the pinholes, increasing the resistance at the interface between the coating and titanium, increasing the sliding voltage and causing the coating to peel or lift, causing damage to the coating. However, there were problems with the material used for the substrate, such as reaching the end of its life and causing loss of expensive precious metals.

一方、高価なバルブ金属基体を使用せず、基体に耐食性
に富む熱可塑性樹脂を利用した試み(特公昭39−29
748)も見られる。この電極は粉末二酸化鉛を樹脂で
被覆し、これを熱間圧縮して成型し電極基体とするもの
であるので、導電性を良くするために二酸化鉛の量を多
くする必要があり、このために樹脂量を少なくすると機
械的強度が低下し、圧縮圧も1000kg/CI+12
と高く、大型の電極を製作するには特殊な成型機を必要
とした。また同様に金属粉末と合成樹脂を単に混合し成
型して導電性基体を作製し、これに白金を被覆した電極
(特公昭47−25982)においては、導電性粒子の
樹脂への分散が困難で不均一になりやすく、電解中に剥
離、脱落を生じる。
On the other hand, an attempt was made to use a highly corrosion-resistant thermoplastic resin for the base without using an expensive valve metal base (Japanese Patent Publication No. 39-29
748) can also be seen. This electrode is made by coating powdered lead dioxide with resin and hot-pressing it to form the electrode base, so it is necessary to increase the amount of lead dioxide to improve conductivity. If the amount of resin is reduced, the mechanical strength will decrease and the compression pressure will also be 1000kg/CI+12.
A special molding machine was required to produce the large electrodes. Similarly, in an electrode (Japanese Patent Publication No. 47-25982) in which a conductive substrate is prepared by simply mixing and molding a metal powder and a synthetic resin and coated with platinum, it is difficult to disperse the conductive particles into the resin. It tends to be non-uniform and may peel or fall off during electrolysis.

(発明が解決しようとする問題点) 本発明の目的は、高価なバルブ金属基体を用いることな
く、安価な合成樹脂を用いてバルブ金属が腐食する条件
下においても耐食性に富み、機械的強度も十分に有し、
低い電気抵抗を持ち製造法も簡単な酸素発生用電極を提
供することにある。
(Problems to be Solved by the Invention) An object of the present invention is to provide high corrosion resistance and mechanical strength even under conditions where valve metal corrodes by using an inexpensive synthetic resin without using an expensive valve metal base. have enough;
The object of the present invention is to provide an electrode for oxygen generation that has low electrical resistance and is easy to manufacture.

(問題点を解決するための手段) 本発明者らは、上記問題に鑑み熱可塑性樹脂と電極活性
物質の粒子を熱間加圧成型して成る電極について鋭意検
討を重ねた結果、ついにこれを完成したものである。
(Means for Solving the Problems) In view of the above-mentioned problems, the inventors of the present invention have conducted extensive studies on electrodes formed by hot-pressing molding of thermoplastic resin and electrode active material particles, and have finally developed this electrode. It is completed.

即ち本発明は、導電性粒子と熱可塑性樹脂を熱間加圧成
型してなる電極において、イリジウム、ルテニウム、a
ノウム、白金およびそれらの酸化物の一種以上より成る
被覆をバルブ金属酸化物粒子表面に施して平均粒子径が
0.02〜5μ−である導電性粒子を形成し、該導電性
粒子で、平均粒子径が50〜500μmであり、かつ、
表面を有機溶剤により溶解した熱可塑性樹脂の粒子表面
を被覆したのち乾燥し、その後熱間加圧成型した樹脂成
型電極である。
That is, the present invention provides an electrode formed by hot-press molding conductive particles and a thermoplastic resin.
A coating consisting of one or more of platinum, platinum, and their oxides is applied to the surface of the valve metal oxide particles to form conductive particles having an average particle diameter of 0.02 to 5 μ-. The particle size is 50 to 500 μm, and
This is a resin-molded electrode in which the surfaces of particles of thermoplastic resin dissolved in an organic solvent are coated, dried, and then hot-press molded.

本発明に使用する熱可塑性樹脂としては、電解液に耐食
性を有することが必要であるが、合成樹脂は一般に無機
酸、黒磯塩溶液−二対して高い耐食性を有するため多く
の種類の樹脂が使用できる。
The thermoplastic resin used in the present invention must have corrosion resistance to the electrolyte, but synthetic resins generally have high corrosion resistance to inorganic acids and Kuroiso salt solutions, so many types of resins are used. can.

例えば、ポリ塩化ビニル、ポリスチレン等の安価な材料
が使用できる。又、導電性粒子で樹脂粒子表面を被覆す
るためには、たとえば用脂粒子表面を適当な溶剤で溶解
させ、その状態で樹脂粒子表面に導電性粒子を均一にま
ぶしたのち乾燥させて被覆する。そのために樹脂が溶剤
に溶けることが必要で、例えばポリ塩化ビニルとア七ト
ンあるいはトルエン、ポリスチレンと7セトンなどの組
み合わせが使用でき、ポリプロピレン、ポリエチレンな
どの樹脂は安価ではあるが適当な溶剤がないために使用
できない。
For example, inexpensive materials such as polyvinyl chloride and polystyrene can be used. In addition, in order to coat the surface of a resin particle with conductive particles, for example, the surface of the grease particle is dissolved in an appropriate solvent, and in that state, the surface of the resin particle is uniformly sprinkled with conductive particles, and then dried and coated. . For this purpose, the resin must be soluble in a solvent. For example, combinations such as polyvinyl chloride and acetone, toluene, or polystyrene and sevencetone can be used.Resins such as polypropylene and polyethylene are inexpensive, but there is no suitable solvent. cannot be used because of

本発明に使用する導電性粒子としては、チタン、ジルコ
ニウム、ニオブなどのバルブ金属の酸化物粒子の表面に
白金族金属およびそれらの酸化物を被覆したものが用い
られる。バルブ金属の酸化物としては、二酸化チタン、
二酸化ジルコニウム、五酸化二ニオブなどが用いられ、
白金族金属としてはイリジウム、ルテニウム、ロジウム
、白金が用いられる。また、被覆方法は、これらの白金
族11、Hの塩化物をブタノール、7ミルアルコール等
に溶解した塗布液にバルブ金属の酸化物粒子を浸漬して
塗布し、大気中で400〜550℃、10〜60分間の
焼成を数回繰り返す熱分解法により行なうのが最も経済
的であり、被覆量は白金族金属として30〜100g/
m2が適当である。
The conductive particles used in the present invention include oxide particles of a valve metal such as titanium, zirconium, and niobium, whose surfaces are coated with platinum group metals and oxides thereof. Valve metal oxides include titanium dioxide,
Zirconium dioxide, diniobium pentoxide, etc. are used.
Iridium, ruthenium, rhodium, and platinum are used as platinum group metals. In addition, the coating method is to immerse the valve metal oxide particles in a coating solution in which platinum group 11, H chlorides are dissolved in butanol, 7 mil alcohol, etc. It is most economical to carry out the thermal decomposition method, in which firing is repeated several times for 10 to 60 minutes, and the coating amount is 30 to 100 g of platinum group metal.
m2 is appropriate.

本発明は、上記導電性粒子を表面だけを溶剤により溶解
した熱可塑性樹脂粒子にまぶして均一に被覆し乾燥して
導電性粒子を樹脂表面に固着させ、その後熱間加圧成型
し、導電性粒子よりなる導電層を網目状に形成した電極
であり、金属粒子と合成樹脂を単に混合成型した場合に
比べ各粒子の比重はほとんど同じで、このため成型体は
均一なものが得られる。導電性粒子は成型後嗣目構造を
成して電路を形成し電流を供給する役割を果たしており
、樹脂粒子は電極活性物質である導電性粒子を保持する
役割と基体の+91械的強度を保つ役目を担っており、
絶縁体であっても一向に差し支えなく、成型体中の導電
性粒子の含有量は使用する樹脂や導電性粒子の比重によ
り一概に定めることはできないが、概ね10〜35重量
%である。
In the present invention, only the surface of the conductive particles is sprinkled on thermoplastic resin particles dissolved in a solvent to uniformly coat the conductive particles, dried to fix the conductive particles to the resin surface, and then hot-press molded to form a conductive resin. It is an electrode in which a conductive layer made of particles is formed in a mesh shape, and the specific gravity of each particle is almost the same compared to when metal particles and synthetic resin are simply mixed and molded, so a uniform molded product can be obtained. After molding, the conductive particles form a cross-linked structure to form an electric path and play the role of supplying current, and the resin particles play the role of holding the conductive particles, which are electrode active materials, and the role of maintaining +91 mechanical strength of the substrate. is responsible for
There is no problem even if it is an insulator, and the content of the conductive particles in the molded body cannot be determined unconditionally depending on the resin used and the specific gravity of the conductive particles, but it is generally 10 to 35% by weight.

また、熱可塑性樹脂粒子および導電性粒子は篩分して用
いる。粒子の形状は球形が望ましいが特に球形である必
要はない6 しかし、粒子の長径と短径の比が大きい形
状は成型時に樹脂が融着しない部分が生じたり、導電性
粒子の網目構造が分断することがあるので1:3以内の
形状のものを用いる。
Further, the thermoplastic resin particles and the conductive particles are used after being sieved. The shape of the particles is preferably spherical, but is not necessarily spherical.6 However, if the particle shape has a large ratio of the major axis to the minor axis, there may be parts where the resin does not fuse during molding, or the network structure of the conductive particles may become fragmented. Therefore, use one with a ratio of 1:3 or less.

本発明に用いる導電性粒子の大きさは、粒子の凝集性が
強くなく均一な分散状態を維持できれば良く、粒子径が
0.02〜5μ曽にしたものが用いられる。又、導電性
粒子は熱可塑性樹脂粒子の表面に均一に被覆、固着され
ることが必要で、導電性粒子の粒子径が5μmである場
合に、これを満足するためには樹脂粒子の大きさは50
μ−以上が必要となり、これ以下になると樹脂表面が導
電性粒子で被覆されない部分が生じる。また、樹脂粒子
の大きさが500μ輪以上になると熱開成型した場合に
導電性粒子で形成する網目構造が大きくなり過ぎたり電
路がとぎれたりして電×抵抗が増大する。
Regarding the size of the conductive particles used in the present invention, it is sufficient that the particles do not have strong agglomeration and can maintain a uniform dispersion state, and those having a particle diameter of 0.02 to 5 μm are used. In addition, the conductive particles must be uniformly coated and fixed on the surface of the thermoplastic resin particles, and when the conductive particles have a particle diameter of 5 μm, the size of the resin particles must be adjusted to satisfy this requirement. is 50
μ- or more is required, and if it is less than this, some parts of the resin surface will not be covered with conductive particles. Furthermore, if the size of the resin particles exceeds 500 microns, the network structure formed by the conductive particles becomes too large or the electrical path is interrupted during thermal open molding, resulting in an increase in electrical resistance.

本発明において、樹脂を熱間加圧成型する場合の温度と
加圧条件は樹脂および導電性粒子の種類により異なるが
、通常温度は120〜170℃、圧力は高いほうが樹脂
間の融着度合が大きくなり成型体の機械的強度が向上す
るが、反面、網目構造が分断される場合が生じるため1
50〜250kg/am2が適当である。
In the present invention, the temperature and pressure conditions when hot-pressing the resin vary depending on the type of resin and conductive particles, but the temperature is usually 120 to 170°C, and the higher the pressure, the better the degree of fusion between the resins. This increases the size and improves the mechanical strength of the molded product, but on the other hand, the network structure may become fragmented.
50 to 250 kg/am2 is suitable.

本発明に用いる導電性粒子の芯となるバルブ金属酸化物
以外にアルミナ、プラス粒子などを利用することが考え
られるが、これらは前記熱分解法で被覆した白金族金属
との密着性が悪いため好ましくない。また、イリジウム
、ロジウム等の白金族金属の酸化物の粒子をそのまま用
いることもできるが、高価な貴金属を使用して目的とす
る粒子径にするには歩溜まりが悪く経済的ではない。
In addition to the valve metal oxide that forms the core of the conductive particles used in the present invention, it is possible to use alumina, positive particles, etc., but these have poor adhesion to the platinum group metal coated by the above-mentioned pyrolysis method. Undesirable. Further, particles of oxides of platinum group metals such as iridium and rhodium can be used as they are, but using expensive noble metals to achieve the desired particle size is not economical due to poor yield.

本発明の電極は、成型厚みが5+*m以上であれば従来
の電極と同様な取り扱いができる程の十分な機械的強度
を有する。また、板状あるいは棒状等の成型樹脂を芯と
して本発明の電極を構成すれば、強度は格段に向上する
The electrode of the present invention has sufficient mechanical strength so that it can be handled in the same way as a conventional electrode if the molded thickness is 5+*m or more. Furthermore, if the electrode of the present invention is constructed using a molded resin core in the form of a plate or rod, the strength will be significantly improved.

次に本発明の電極を実施例および比較例によってさらに
具体的に説明する。
Next, the electrode of the present invention will be explained in more detail with reference to Examples and Comparative Examples.

(実施例1) 平均粒子径0.2μ論の二酸化チタン粉末10gを四塩
化イリジウム3gをインプロパノール20輸lに溶解し
た塗布液の入ったビーカーに入れてよく混合した後、ろ
別した。この粉末を乾燥後、電気炉内で500°C11
時間の加熱処理を行なった。
(Example 1) 10 g of titanium dioxide powder with an average particle size of 0.2 μm was placed in a beaker containing a coating solution prepared by dissolving 3 g of iridium tetrachloride in 20 ml of inpropanol, mixed well, and then filtered. After drying this powder, heat it in an electric furnace at 500°C.
A heat treatment was performed for an hour.

この塗布〜加熱処理工程を20回繰り返して60g/−
2の二酸化イリジウム被覆を有する二酸化チタン導電性
粒子を得た。
Repeat this coating to heat treatment process 20 times to obtain 60g/-
Titanium dioxide conductive particles having an iridium dioxide coating of 2 were obtained.

モ均粒子径100μmのポリ塩化ビニルO(脂2Ogの
入ったビーカーに7セトン一トルエン50150混合溶
液を入れ10分間攪はんして表面を溶解させた後、溶媒
をろ別した。その後直ちにこのビーカーに前記導電性粒
子を加えて樹脂表面にまぶすようによく混合した後、乾
燥器の中で50℃、1時間放置し樹脂表面に二酸化鉛を
均一に固着させた粒子を製作した。44μ−のナイロン
製篩により余分な二酸化鉛粒子を篩分して取り除いたこ
の粒子を、直径20輸mのヒーター付金型に仕込み20
0kg/cL112の圧力で150℃、30分間保持し
た後常温まで冷却して直径20mm、厚み81III1
1のタブレット状O(脂成型電極を得た。
A mixed solution of 7 setone and toluene 50150 was placed in a beaker containing 20 g of polyvinyl chloride O (fat) with an average particle diameter of 100 μm, and the mixture was stirred for 10 minutes to dissolve the surface.Then, the solvent was immediately filtered off. The conductive particles were added to a beaker, mixed well so as to be sprinkled on the resin surface, and then left in a dryer at 50°C for 1 hour to produce particles in which lead dioxide was evenly adhered to the resin surface.44μ- Excess lead dioxide particles were removed by sieving through a nylon sieve, and the particles were placed in a mold with a heater of 20 cm in diameter.
After holding at 150°C for 30 minutes at a pressure of 0 kg/cL112, it was cooled to room temperature and made into a shape with a diameter of 20 mm and a thickness of 81III1.
A tablet-shaped O (lipid molded electrode) of No. 1 was obtained.

この電極にリード用として中5mmX長さ1100II
1×厚さ1+amのチタン板を導電性接着剤で固定し、
電極面積が1010X10になるように電極をエポキシ
樹脂で覆った。
This electrode has a medium 5mm x length 1100II for the lead.
1 x 1+am thick titanium plate fixed with conductive adhesive,
The electrode was covered with epoxy resin so that the electrode area was 1010×10.

また比較のため、中20mn+X長さ100mmX厚さ
1mmのチタン板をトリクレンで10分間蒸気脱脂し、
80℃の6%シュウ酸中で16時間エツチングして表面
を粗面化した後、大塩化イリジウム酸のブタノール溶液
をへヶ塗りし、大気中で450℃、30分間の焼成を行
ない、この塗布〜焼成工程を15回繰り返して二酸化イ
リジウムとして30g/m2の被覆を有するチタン電極
を製作した。
For comparison, a titanium plate with a size of 20 mm in diameter, 100 mm in length, and 1 mm in thickness was degreased with steam for 10 minutes using Triclean.
After roughening the surface by etching in 6% oxalic acid at 80°C for 16 hours, a butanol solution of large chloroiridic acid was applied to the surface and baked at 450°C for 30 minutes in the air. The calcination process was repeated 15 times to produce a titanium electrode with a coating of 30 g/m2 of iridium dioxide.

このようにして製作したO(脂成型電極と比較電極を用
い下記のクロムメツキ用ケイ7〕化浴において画電極の
耐久性を試験した。
The durability of the picture electrode thus produced was tested in an O (silicon 7 for chrome plating described below) bath using a resin molded electrode and a reference electrode.

ケイ7ツ化浴組成 無水り。ム酸     250g71 ケイ7フ化ソーダ      7g/l硫酸     
       1g/l陽極電流密度0.5A/cm2
、浴温40−50℃にてステンレス板を陰極として連続
電解を行なった結果、比較電極はエッヂ部から腐食が進
行してチタン基体が露出し50日で寿命になった。電解
中、適宜ケイ光xi膜厚計によt)二酸化イリジウム担
持量の測定を行なったが被覆厚みの減少はほとんどなく
、チタン基体が腐食して被覆が浮き上がり脱落して寿命
になったと考えられた。一方、本発明の樹脂成型電極は
120日を経過しても何ら変化せず円滑に電解できた。
The composition of the chemical bath is anhydrous. Muic acid 250g71 Sodium silicofluoride 7g/l sulfuric acid
1g/l anode current density 0.5A/cm2
As a result of continuous electrolysis using a stainless steel plate as a cathode at a bath temperature of 40 to 50 DEG C., corrosion progressed from the edges of the reference electrode, exposing the titanium substrate, and the life of the reference electrode reached its end in 50 days. During the electrolysis, the amount of iridium dioxide supported was measured using a fluorescent xi film thickness meter, but there was almost no decrease in the coating thickness, and it is thought that the titanium substrate corroded and the coating lifted and fell off, reaching the end of its life. Ta. On the other hand, the resin-molded electrode of the present invention showed no change even after 120 days and was able to perform electrolysis smoothly.

(実施例2) バルブ金属酸化物および熱可塑性樹脂の種類と粒子径を
種々変え、塗布液は該当白金族金属の塩化物のブタ/−
ル溶液を用いて実施例1と同様な方法で第1表に示すA
−Dの4種類の電極を製作し、16%硫酸中で銀−塩化
銀電極を参照電極として室温で電流密度0.IA/cm
2における電位を測定した結果を、実施例1の樹脂成型
電極および比較電極の結果と合わせて第1表に示す。
(Example 2) The type and particle size of the valve metal oxide and thermoplastic resin were varied, and the coating liquid was a chloride of the platinum group metal.
A shown in Table 1 was prepared in the same manner as in Example 1 using
-D four types of electrodes were fabricated in 16% sulfuric acid at room temperature with a current density of 0. IA/cm
The results of measuring the potential in Example 2 are shown in Table 1 together with the results of the resin molded electrode of Example 1 and the comparative electrode.

(実施例3) 陽極に実施例2のB電極、陰極に鉛板を用い、下記の電
解液で陽イオン交換膜を使用した過硫酸アンモニウムの
製造を行なった。
(Example 3) Ammonium persulfate was produced using the B electrode of Example 2 as an anode, a lead plate as a cathode, and a cation exchange membrane with the following electrolyte solution.

電解液 陽4ii液            2.01硫酸アン
モニウム  396g71 7フ化アンモニウム 7 、4 g/l陰4ii液 3
0%硫酸      2.0β陽極電流密度20A/d
a”、液温は15℃に冷却し、陽極液に25%水酸化ア
ンモニウムを定量ポンプにより注入してpHを5に保ち
つつ電解を行なった。平均電流効率は73.5%、所要
電力1゜18kwl+/kHであった。尚、実施例1の
比較電極を使用しても同様な電流効率が得られたが、電
解を継続するに従って電極の表面お上びエッヂ部にピッ
ティングが生じ、チタン基体が溶出して露出しているの
が確認された。
Electrolyte positive 4ii solution 2.01 ammonium sulfate 396g71 ammonium 7 fluoride 7, 4 g/l negative 4ii solution 3
0% sulfuric acid 2.0β anode current density 20A/d
a”, the liquid temperature was cooled to 15°C, and 25% ammonium hydroxide was injected into the anolyte using a metering pump to perform electrolysis while maintaining the pH at 5.The average current efficiency was 73.5%, and the required power was 1. 18kwl+/kH.Although similar current efficiency was obtained using the comparative electrode of Example 1, as electrolysis continued, pitting occurred on the surface and edges of the electrode. It was confirmed that the titanium substrate was eluted and exposed.

(発明の効果) 以上、明らかなように、本発明の電極は硫酸水溶液で酸
素発生用陽極として使用した場合、従来のチタン基体電
極に比べて同等またはそれ以下の酸素発生電位を示した
。これにより高価なバルブ金属基体を用いる事なく、安
価な樹脂を用いてチタン等の金属が腐食する条件下にお
いても従前の電解電圧で、しかも長期間使用し得る事が
できるようになった。さらにこの電極は製造方法も容易
である。
(Effects of the Invention) As is clear from the above, when the electrode of the present invention was used as an anode for oxygen generation in an aqueous sulfuric acid solution, it exhibited an oxygen generation potential equal to or lower than that of a conventional titanium-based electrode. This has made it possible to use an inexpensive resin without using an expensive valve metal base, and to use the conventional electrolysis voltage for a long period of time even under conditions where metals such as titanium corrode. Furthermore, this electrode is easy to manufacture.

特許出願人 日本カーリット株式会社Patent applicant Nippon Carlit Co., Ltd.

Claims (1)

【特許請求の範囲】 1、有機溶剤可溶性の熱可塑性樹脂よりなる基体と、前
記基体中に網目状に形成されたイリジウム、ルテニウム
、ロジウム、白金及びそれらの酸化物の一種以上よりな
る導電層と、前記導電層中に分散されたバルブ金属酸化
物粒子とから成る電解用樹脂成型電極。 2、イリジウム、ルテニウム、ロジウム、白金及びそれ
らの酸化物の一種以上より成る被覆をバルブ金属酸化物
粒子表面に施して平均粒子径が0.02〜5μmである
導電性粒子と成し、前記導電性粒子で、平均粒子径が5
0〜500μmであり、かつ、表面を有機溶剤により溶
解した熱可塑性樹脂粒子表面を被覆したのち乾燥し、そ
の後熱間加圧成型し、前記導電性粒子より成る導電層を
形成する事を特徴とする電解用樹脂成型電極の製造方法
[Scope of Claims] 1. A base made of an organic solvent-soluble thermoplastic resin, and a conductive layer made of one or more of iridium, ruthenium, rhodium, platinum, and oxides thereof formed in a network shape in the base. and valve metal oxide particles dispersed in the conductive layer. 2. A coating made of one or more of iridium, ruthenium, rhodium, platinum, and their oxides is applied to the surface of the valve metal oxide particles to form conductive particles having an average particle diameter of 0.02 to 5 μm, and particles with an average particle size of 5
0 to 500 μm, and the surface is coated with the surface of thermoplastic resin particles dissolved in an organic solvent, and then dried, and then hot pressure molded to form a conductive layer made of the conductive particles. A method of manufacturing a resin molded electrode for electrolysis.
JP62290739A 1987-11-19 1987-11-19 Resin molded electrolytic electrode and its production Granted JPH01132789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62290739A JPH01132789A (en) 1987-11-19 1987-11-19 Resin molded electrolytic electrode and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62290739A JPH01132789A (en) 1987-11-19 1987-11-19 Resin molded electrolytic electrode and its production

Publications (2)

Publication Number Publication Date
JPH01132789A true JPH01132789A (en) 1989-05-25
JPH036231B2 JPH036231B2 (en) 1991-01-29

Family

ID=17759898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62290739A Granted JPH01132789A (en) 1987-11-19 1987-11-19 Resin molded electrolytic electrode and its production

Country Status (1)

Country Link
JP (1) JPH01132789A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5560815A (en) * 1994-06-27 1996-10-01 Permelec Electrode Ltd. Electrolytic chromium plating method using trivalent chromium
US7324840B2 (en) 2000-12-04 2008-01-29 Mitsubishi Denki Kabushiki Kaisha Short-range automobile wireless communication device
CN105565605A (en) * 2016-01-15 2016-05-11 济南大学 Chromium plating wastewater purification system and method
CN105565604A (en) * 2016-01-15 2016-05-11 济南大学 Iron plating wastewater purification system and method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105502838B (en) * 2016-01-15 2018-03-16 济南大学 A kind of copper plating wastewater water cleaning systems and process for purifying water
CN105481082B (en) * 2016-01-15 2018-02-06 济南大学 A kind of lead plating waste water water cleaning systems and process for purifying water

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5560815A (en) * 1994-06-27 1996-10-01 Permelec Electrode Ltd. Electrolytic chromium plating method using trivalent chromium
GB2290553B (en) * 1994-06-27 1998-01-07 Permelec Electrode Ltd Chromium plating method using trivalent chromium
US7324840B2 (en) 2000-12-04 2008-01-29 Mitsubishi Denki Kabushiki Kaisha Short-range automobile wireless communication device
CN105565605A (en) * 2016-01-15 2016-05-11 济南大学 Chromium plating wastewater purification system and method
CN105565604A (en) * 2016-01-15 2016-05-11 济南大学 Iron plating wastewater purification system and method

Also Published As

Publication number Publication date
JPH036231B2 (en) 1991-01-29

Similar Documents

Publication Publication Date Title
US4302321A (en) Novel sintered electrodes
Chen et al. Corrosion resistance mechanism of a novel porous Ti/Sn-Sb-RuOx/β-PbO2 anode for zinc electrowinning
US3778307A (en) Electrode and coating therefor
US3853739A (en) Platinum group metal oxide coated electrodes
FI69123B (en) ELEKTROD OCH ELEKTROLYTISK CELL
DK166690B1 (en) ELECTRODES FOR ELECTROCHEMICAL PROCESSES, PROCEDURES FOR THE MANUFACTURING THEM AND APPLICATION OF THEM
JPS58161785A (en) Electrode clad with lead or lead alloy and manufacture
JP5686456B2 (en) Method for producing oxygen generating anode
US3926751A (en) Method of electrowinning metals
JP3319887B2 (en) Method for producing hypochlorite
US3855084A (en) Method of producing a coated anode
JPH02247393A (en) Electrolytic electrode with durability and its production
US4008144A (en) Method for manufacturing of electrode having porous ceramic substrate coated with electrodeposited lead dioxide and the electrode manufactured by said method
CA1075202A (en) Lead dioxide electrode
US6231731B1 (en) Electrolyzing electrode and process for the production thereof
JP5686457B2 (en) Method for producing oxygen generating anode
JP2574699B2 (en) Oxygen generating anode and its manufacturing method
JPH01132789A (en) Resin molded electrolytic electrode and its production
US6103299A (en) Method for preparing an electrode for electrolytic processes
JPH0257159B2 (en)
JPH036995B2 (en)
JPS62161975A (en) Electrode used in electrolytic cell and its production
JPH02179891A (en) Anode for generate oxygen and production thereof
JPS5925985A (en) Low overvoltage cathode having high durability and its production
JPH05156480A (en) Production of oxygen generating anode