JPS5875767A - Manufacture of nickel electrode for battery - Google Patents

Manufacture of nickel electrode for battery

Info

Publication number
JPS5875767A
JPS5875767A JP56174267A JP17426781A JPS5875767A JP S5875767 A JPS5875767 A JP S5875767A JP 56174267 A JP56174267 A JP 56174267A JP 17426781 A JP17426781 A JP 17426781A JP S5875767 A JPS5875767 A JP S5875767A
Authority
JP
Japan
Prior art keywords
nickel
paste
cobalt
electrode
core member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56174267A
Other languages
Japanese (ja)
Inventor
Tsutomu Iwaki
勉 岩城
Isao Matsumoto
功 松本
Mieko Watanabe
渡辺 美栄子
Ryoji Tsuboi
良二 坪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56174267A priority Critical patent/JPS5875767A/en
Publication of JPS5875767A publication Critical patent/JPS5875767A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To increase both the utilization rate and the life of a nickel electrode for a battery by making an active-material mixture, which is prepared by mixing nickel powder with cobalt powder, into a paste, and drying the paste by leaving it to stand under the existence of oxygen. CONSTITUTION:A paste used for a positive nickel electrode is prepared by adding an aqueous carboxymethyl cellulose solution to a mixture powder consisting of nickel hydroxide, carbon nickel, a graphite, an acrylonitrile-vinylchloride copolymer fiber and cobalt metal, and drying thus prepared mixture. Here, the mixture is dried within 5 days while being stirred once a day. As a core member, a punched metal plated with nickel is used. After above paste is applied to both surfaces of the core member, the core member coated with above paste is dried by being sent through a slit. Next, the core member is immersed in an aqueous cobalt-acetate solution before being dried, and immersed in an aqueous caustic potash solution so as to make above paste to be added with cobalt hydroxide. Then, thus obtained electrode plate is out, and extended with pressure in the longitudinal direction by being sent between rollers. After that, thus obtained electrode is cut, and combined with a cadmium electrode and a nonwoven polyamide fabric used as a separator so as to constitute a battery.

Description

【発明の詳細な説明】 本発明は、アルカリ電池に用いる非焼結式ニッケル電極
の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing non-sintered nickel electrodes for use in alkaline batteries.

各種の電源として用いられている電池において、電解液
としてアルカリ水溶液を用いる系では、正極としてニッ
ケル極、酸化銀極、二酸化マンガン極、空気極などがあ
り、負極には、カドミウム極、鉄棒、水素極な、どかあ
る。正極のうち、ニッケル極は、とくにアルカリ水溶液
中で安定であり、充放電の可逆性にも優れていて長寿命
、が期待できること、さらには利用率の点でも優れてい
るなどの理由で最もよく使われている。とくにニッケル
ーカドミウム電池は、二次電池として鉛電池についで実
用化されていて、今後も大きな需要の伸びが予測されて
いる。また、ニッケルー亜全呂電池やニッケルー鉄電池
がとくに電気自動車用として開発が進められ、また、ニ
ッケルー水素電池が主に宇宙用など特殊な用途に対して
実用段階に入っている。
In batteries used as various power supplies, in systems that use alkaline aqueous solutions as electrolytes, positive electrodes include nickel electrodes, silver oxide electrodes, manganese dioxide electrodes, air electrodes, etc., and negative electrodes include cadmium electrodes, iron rods, hydrogen electrodes, etc. Extremely, somewhere. Among positive electrodes, nickel electrodes are the most popular because they are particularly stable in alkaline aqueous solutions, have excellent charge/discharge reversibility, can be expected to have a long life, and are also excellent in terms of utilization. It is used. In particular, nickel-cadmium batteries have been put into practical use as secondary batteries next to lead batteries, and demand is expected to continue to grow significantly in the future. In addition, nickel-submerged batteries and nickel-iron batteries are being developed especially for use in electric vehicles, and nickel-metal hydride batteries have entered the practical stage for special uses, mainly for space use.

このようにニッケル極は広く用いられていて、その電極
構造としては、かってはポケット式、最近は焼結式が主
流を占めている。ポケット式はよ【知られているように
、孔を多く設けた鋼製の容器に水酸化ニッケルを黒鉛な
どの導電材とともに機械的に充てんして得られている。
As described above, nickel electrodes are widely used, and the electrode structure used to be a pocket type, but recently the sintered type has become mainstream. Pocket type containers are made by mechanically filling a steel container with many holes with nickel hydroxide and a conductive material such as graphite.

したがって電極は外観上は堅牢に出来ている、が、活物
質は導電材や容器(ポケット)とは接触して存在してい
るのみであるから、大電流放電での分極が犬きく、利用
率も低くなる。また、急充電などの苛酷な条件では寿命
が短くなる。
Therefore, the electrode has a robust appearance, but since the active material exists only in contact with the conductive material and the container (pocket), polarization during large current discharge is poor, resulting in poor utilization. will also be lower. In addition, under harsh conditions such as rapid charging, the lifespan will be shortened.

これに対して焼結式では、微孔を有する焼結体されてい
るので、上記ポケット式にみられるよう−な問題は少な
く、大電流放電特性、急充電特性、寿命いずれの点でも
大きな改良がけがられている。
On the other hand, the sintered type is made of a sintered body with micropores, so there are fewer problems like the pocket type mentioned above, and there are significant improvements in terms of large current discharge characteristics, rapid charging characteristics, and lifespan. It is defaced.

したがって特性のみからみれば焼結式はがなり理想の段
階に達しているといえよう。ところが、焼結林の製造、
活物質の充てんいずれにおいても工程は複雑であって、
ポケット式に比べればがなり高価になる問題がある。焼
結式に代えて孔径、多孔度とも大きい発泡メタルを活物
質支持体として用い、これにペースト状にした活物質を
直接光てんする方法が開発され、少なくとも活物質の充
てん工程の簡易化がはかられている。
Therefore, from the viewpoint of characteristics alone, it can be said that the sintered type has reached the ideal stage. However, the production of sintered forest,
The process for filling active materials is complicated.
The problem is that it is bulkier and more expensive than the pocket type. Instead of the sintering method, a method has been developed in which a foamed metal with a large pore size and porosity is used as an active material support, and a paste-like active material is directly exposed to light, which at least simplifies the active material filling process. It's being measured.

さらに簡単な方法がいわゆるペースト式であって、芯材
としてネット、孔あき板、エキスバンドメタルなどの二
次元的な多孔体を用い、これに活物質と結着剤を混合し
てペースト状にしたものを塗着し、これをスリットある
いはローラ間を通すことにより平滑化して、乾燥後、必
要に応じて加圧するものである。この方法は、芯材が極
めて安4、− 価であり、壕だ活物質の充てんも容易であるので製法と
しては理想的であり、多くの提案がされている。ペース
ト式電極の歴史は古く、製法はやや異なるがペースト式
鉛極板は極めて広く用いられている。また、カドミウム
極についても実用化されている。
An even simpler method is the so-called paste method, in which a two-dimensional porous material such as a net, perforated plate, or expanded metal is used as the core material, and an active material and a binder are mixed with this material to form a paste. The coated material is applied, smoothed by passing it through slits or between rollers, and after drying, pressure is applied as necessary. This method is ideal as a manufacturing method because the core material is extremely low in valence and the active material can be easily filled in the trenches, and many proposals have been made. Paste-type electrodes have a long history, and although the manufacturing method is slightly different, paste-type lead electrode plates are extremely widely used. Cadmium electrodes have also been put into practical use.

これらに対してニッケル極についても多くの提案がある
にもかかわらず実用化ができない理由としては、次のよ
うな点が挙げられる。
The following are the reasons why nickel electrodes have not been put into practical use despite many proposals.

(1)ニッケルつまり活物質としての充電時でのオキシ
水酸化ニッケル、放電時の水酸化ニッケルいずれもすぐ
nた導電体ではない。したがって導電材を別に加える必
要があり、加えても利用率が向上し難い。また、加えす
ぎると絶対容量が小さくなってしまう。
(1) Nickel, that is, neither nickel oxyhydroxide as an active material during charging nor nickel hydroxide during discharging are good conductors. Therefore, it is necessary to separately add a conductive material, and even if it is added, it is difficult to improve the utilization rate. Moreover, if too much is added, the absolute capacity will become small.

?)充放電の繰り返しにより活物質の体積変化は当然あ
るが、ニッケル極では膨潤が激しく生じる。
? ) Naturally, the volume of the active material changes due to repeated charging and discharging, but nickel electrodes undergo severe swelling.

主に上記の要因がペースト式ニッケル極の広範囲な実用
化を阻害しているのである。
The above-mentioned factors mainly prevent the widespread practical application of paste-type nickel electrodes.

つまり、まず強度をあげてe)のような膨潤、ま来は種
々の結着剤が考えられてきた。結着剤としては、ポリエ
チレン、ポリプロピレン、ポリ塩化ビール、ポリスチレ
ン、フッ素樹脂などや、ポリビニルアルコール、カルボ
キシメチルセルロース、エチルセルロースなどがある。
That is, first of all, various binders have been considered, such as increasing the strength and swelling as shown in e). Examples of the binder include polyethylene, polypropylene, polychlorinated beer, polystyrene, fluororesin, polyvinyl alcohol, carboxymethyl cellulose, and ethyl cellulose.

耐電解液性、耐酸化性の点では勿論前者がすぐれている
が、強度を向上させるために大量に加えれば、電圧特性
は劣り、利用率も低下してしまう。これを抑制するため
にニッケル粉末や黒鉛などが加えられたが、多量に加え
ると活物質の占める割合が減少するし、少ないと利用率
が小さい点で問題があった。
Of course, the former is superior in terms of electrolyte resistance and oxidation resistance, but if a large amount is added to improve strength, the voltage characteristics will be inferior and the utilization rate will also decrease. To suppress this, nickel powder, graphite, etc. were added, but if too much was added, the proportion occupied by the active material would decrease, and if too little was added, the utilization rate would be low.

以上の結着剤の添加やその他の耐電解液性の繊維は、ペ
ースト式あるいは加圧式のニッケル極、いわゆる非焼結
式ニッケル極の特性や寿命をある程度向上させることが
できるが、従来の焼結式に比べるとはるかに劣るために
実用上広く用いられるには至っていない。
The addition of binders and other electrolyte-resistant fibers can improve the properties and lifespan of pasted or pressurized nickel electrodes, so-called non-sintered nickel electrodes, to some extent; It has not been widely used in practice because it is far inferior to the keishiki.

本発明は、発泡メタルを活物質支持体とする電極やペー
スト式電極における容易に活物質の充てんができる長所
をそのit残して、放電特性や寿命を焼結式に近づける
すぐれた一つの製造法を提供するものである。すなわち
、本発明は、水酸化ニッケルを主としたペースト状活物
質混合物にニッケルとコバルトを混合し、これを放置に
よりペースト状態から徐々に乾燥状態にする工程を有す
ることを特徴とする。
The present invention provides an excellent manufacturing method that maintains the advantage of easy filling of active material in electrodes using foamed metal as an active material support and paste-type electrodes, and which brings the discharge characteristics and lifespan closer to those of the sintered type. It provides: That is, the present invention is characterized by the step of mixing nickel and cobalt into a paste-like active material mixture mainly composed of nickel hydroxide, and gradually changing the mixture from a paste state to a dry state by leaving it to stand.

本発明において、ペースト状の活物質混合物を放置によ
り乾燥する工程で、乾燥を完全に行ってもよく、また空
気が内部捷で通る程度の半乾燥状態にしてもよい。また
、一旦乾燥した後、さらに水分を加えて混合し、再びゆ
っくり乾燥させることはさらに好捷しい。放置中に適宜
攪拌操作を加えるのもよい。このようにして、ニッケル
粉末とコバルト粉末を加えた活物質混合物をペースト状
にし、これを酸素共存下で放置して乾燥する工程を加え
ることによって、水酸化ニッケルの利用率を向上する効
果の得られることがわかった。
In the present invention, in the step of drying the paste-like active material mixture by leaving it to stand, drying may be carried out completely, or it may be in a semi-dry state to the extent that air passes through an internal sieve. Moreover, it is more preferable to add water to the mixture after it has been dried, mix it, and slowly dry it again. It is also good to add stirring operation as appropriate while standing. In this way, the active material mixture containing nickel powder and cobalt powder is turned into a paste, and by adding a step of drying it by leaving it in the coexistence of oxygen, it is possible to obtain the effect of improving the utilization rate of nickel hydroxide. I found out that it can be done.

上記の放置により乾燥された活物質混合物は、そのまま
ポケットに充填してポケット式電極を構成することがで
きるが、発泡メタルや孔あき板などの芯材に充填するに
は、さらに水分を加えてペースト状ビする。
The active material mixture dried as described above can be directly filled into pockets to form a pocket electrode, but in order to fill it into a core material such as foamed metal or perforated plate, further moisture must be added. It becomes a paste.

つぎに、本発明を芯材としてパンチングメタルを用いた
場合を実施例として説明する。
Next, the present invention will be described as an example in which a punched metal is used as the core material.

性能比較のための電池として、単2サイズの密閉形ニッ
ケルーカドミウム蓄電池を用いた。カドミウム黄蓮は以
下のようにして製造したものを用いた。まず、酸化カド
ミ6ムを主体とするペーストをニッケルメッキした鉄製
のパンチングメタルの両面に塗着し、所定の厚さに設定
されたスリット中を通過させ、乾燥工程を経て、厚さ0
.7 mmの極板を得た。その後、苛性カリの10重量
%水溶液中で部分充電して酸化カドミウムの一部を金属
カドミウムに変化させ、さらに、水洗、乾燥後、加圧し
て厚さ0・55mmにした。
A AA size sealed nickel-cadmium storage battery was used as a battery for performance comparison. Cadmium Yellow Lotus was manufactured as follows. First, a paste mainly composed of cadmium oxide is applied to both sides of a nickel-plated iron punching metal, passed through a slit set to a predetermined thickness, and then dried to a thickness of 0.
.. A 7 mm electrode plate was obtained. Thereafter, it was partially charged in a 10% by weight aqueous solution of caustic potassium to convert some of the cadmium oxide into metal cadmium, and after washing with water and drying, it was pressurized to a thickness of 0.55 mm.

セパレータにはポリアミドの不織布を用い、電解液には
苛性カリの255重量%水溶液少量の水酸化リチウムを
溶解したものを1セル当たり6.3v3や用いた。
A polyamide nonwoven fabric was used as the separator, and a 255% by weight aqueous solution of caustic potash in which a small amount of lithium hydroxide was dissolved was used as the electrolytic solution at 6.3v3 per cell.

ニッケル正極を形成するペーストとしては、200メツ
シユのふるいを通過する粒度の水酸化ニッケル1kgと
カーボニルニッケル1oog、黒鉛10gと直径0・1
 mm、長さ3〜5mmのアクリロニトリル−塩化ビニ
ル共重合体繊維20gおよび金属コハル)50g゛、カ
ルボキシメチルセルロースの3重量%水溶液を前記混合
粉末に対して、1kg加えた後に40℃で乾燥した。1
日1回がくはんしながら5日間で乾燥した。芯材には厚
さくLlmmの鉄板に穴径2mm、中心間ピッチ3mm
で開孔したパンチングメタルにニッケルメッキを施した
ものを使用した。この芯材の両面に上記ペーストを塗着
し、スリットを通過させ、乾燥後の厚さを1・0±O−
05mmにした。その後酢酸コバルトの200g/l水
溶液中に浸漬し、乾燥後、苛性カリの水溶液中に浸漬し
、酢酸コバルトを水酸化コバルトに変化させる方法によ
り、水酸化コバルトを添加した。これらの極板を1・ず
幅120mm、長さ680 mmに裁断した。ついでロ
ーラー間を通して如圧し、長さ方向へ4チまで延伸した
。電極の厚 − さは0・7mmであった。この電極をさらに単二の大き
さに裁断した。この場合は幅38mmで長さを22Gm
tnにした。これを公知のカドミウム極とポリアミド不
織布をセパレータとして組合せて電池を構成した。この
電池をムとする。
The paste for forming the nickel positive electrode includes 1 kg of nickel hydroxide with a particle size that can pass through a 200-mesh sieve, 100 g of carbonyl nickel, 10 g of graphite, and a diameter of 0.1 kg.
20 g of acrylonitrile-vinyl chloride copolymer fibers with a length of 3 to 5 mm, 50 g of metal cohar, and 1 kg of a 3% by weight aqueous solution of carboxymethyl cellulose were added to the mixed powder, and then dried at 40°C. 1
It dried in 5 days with stirring once a day. The core material is a LLmm thick iron plate with a hole diameter of 2mm and a center-to-center pitch of 3mm.
Punched metal with holes drilled in it and nickel plated was used. The above paste is applied to both sides of this core material, passed through a slit, and the thickness after drying is 1.0±O-
It was set to 05mm. Thereafter, cobalt hydroxide was added by immersing it in a 200 g/l aqueous solution of cobalt acetate, and after drying, immersing it in an aqueous solution of caustic potash to convert cobalt acetate into cobalt hydroxide. These electrode plates were cut into pieces with a width of 120 mm and a length of 680 mm. Then, it was passed between rollers and stretched to 4 inches in the length direction. The thickness of the electrode was 0.7 mm. This electrode was further cut into pieces. In this case, the width is 38mm and the length is 22Gm.
I changed it to tn. A battery was constructed by combining this with a known cadmium electrode and a polyamide nonwoven fabric as a separator. Let's call this battery Mu.

ついで40”Cで1日放置したペーストを用いた電池B
1同じく7日間放置したものをC11o日間放置したも
のをDとした。この場合、芯材への塗着に際しては、蒸
発分に相当する水分を加えてペースト状にした。また1
0日間放置したが水の蒸発を押えて溶液のまま放置した
ものをD′とした。
Battery B using the paste that was then left at 40”C for one day.
1. The sample that was left for 7 days was also designated as C1, and the sample that was left for 10 days was designated as D. In this case, when applying it to the core material, water equivalent to the evaporated amount was added to form a paste. Also 1
The solution that was allowed to stand for 0 days but remained as a solution by suppressing water evaporation was designated as D'.

また比較のためただちに使用したものをEとした。Also, for comparison, the sample used immediately was designated as E.

なお、空気に触れながら放置すると水酸化ニッケルの緑
色が褐色に変化していることがわかる。その理由ははっ
きりしないが、コバルトが酸化物に変化しつつ水酸化ニ
ッケル中に拡散しているのではないかと考えられる。こ
の反応は水にぬれた状態で酸素にふれることにより加速
されるようであって実施例のように溶液状で放置したり
、1だ、ペーストを急速に乾燥した場合にはとくに効果
は10  、 はとんどないことが認められた。
It can be seen that when left exposed to air, the green color of nickel hydroxide changes to brown. The reason for this is not clear, but it is thought that cobalt is diffusing into nickel hydroxide while changing into an oxide. This reaction seems to be accelerated by exposure to oxygen while wet with water, and is particularly effective when left in a solution state as in the example, or when the paste is rapidly dried. It was recognized that there was no such thing.

これら電池ム〜Eの充てん容量と各放電時での利用率、
それに充電は0.15G、放電は0・3Cの条件で放電
し、初期容量の60%まで低下した場合を寿命としたサ
イクル寿命を示す。
The charging capacity of these batteries M~E and the utilization rate at each discharge,
In addition, the cycle life is determined by charging at 0.15G and discharging at 0.3C, and the life when the capacity decreases to 60% of the initial capacity.

この表より明らかなように、調製後のペーストを直ちに
使用したものに比べて放置したものは効果が太きいが、
1日程度で乾燥が十分でないものはそれほど効果がなか
った。また、長期日放置しても浴液状では効果がさらに
少なかった。
As is clear from this table, the effect is greater when the paste is left to stand than when it is used immediately after preparation, but
If the drying time was not sufficient for about one day, the effect was not so great. Moreover, even if left for a long time, the effect was even less in bath liquid form.

117 なお、実施例では40℃で放置した場合を示したが、こ
れ以上の温度の場合には乾燥の速度を若干押えることが
必要であり、常温の場合は放置は1週間程度が最適であ
、る。また、常時攪拌を行う場合には、放置の時間は短
縮できて数時間程度でよい。また、このように金属コバ
ルトを加えて放置することが効果があるのであって、は
じめから酸化コバルトを加えることは、このような効果
を期待する上では好ましいとはいえない。
117 In addition, in the example, the case where the product was left at 40°C was shown, but if the temperature is higher than this, it is necessary to slightly slow down the drying speed, and in the case of room temperature, it is best to leave it for about one week. ,ru. In addition, when constant stirring is performed, the time for leaving the mixture to stand can be shortened to about several hours. Further, adding cobalt metal and leaving it as is effective as described above, but adding cobalt oxide from the beginning is not preferable in terms of expecting such an effect.

以上のように、水酸化ニッケル、ニッケル、コバルトを
含むペーストを空気にふれさせながら少なくとも1夜程
度以上放置したものを使用することにより、電極の利用
率、寿命ともに向上することができる。
As described above, by using a paste containing nickel hydroxide, nickel, and cobalt that has been left exposed to air for at least one night, both the utilization rate and the lifespan of the electrode can be improved.

Claims (1)

【特許請求の範囲】[Claims] 水酸化ニッケルを主体とし、ニッケル粉末及びコバルト
粉末を含む活物質混合物をペースト状にする工程と、ペ
ースト状の活物質混合物を酸素存在′下で放置により乾
燥状態にする工程を有することを特徴とする電池用ニッ
ケル電極の製造法。
The method is characterized by comprising a step of turning an active material mixture mainly composed of nickel hydroxide and containing nickel powder and cobalt powder into a paste, and a step of drying the paste-like active material mixture by leaving it in the presence of oxygen. A method for manufacturing nickel electrodes for batteries.
JP56174267A 1981-10-29 1981-10-29 Manufacture of nickel electrode for battery Pending JPS5875767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56174267A JPS5875767A (en) 1981-10-29 1981-10-29 Manufacture of nickel electrode for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56174267A JPS5875767A (en) 1981-10-29 1981-10-29 Manufacture of nickel electrode for battery

Publications (1)

Publication Number Publication Date
JPS5875767A true JPS5875767A (en) 1983-05-07

Family

ID=15975654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56174267A Pending JPS5875767A (en) 1981-10-29 1981-10-29 Manufacture of nickel electrode for battery

Country Status (1)

Country Link
JP (1) JPS5875767A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59209270A (en) * 1983-05-13 1984-11-27 Japan Storage Battery Co Ltd Manufacture of positive plate for alkaline battery
US6225004B1 (en) * 1998-02-23 2001-05-01 Matsushita Electric Industrial Co., Ltd. Nickel positive electrode for alkaline storage batteries and method for producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5564375A (en) * 1978-11-07 1980-05-15 Matsushita Electric Ind Co Ltd Manufacturing method of positive pole for alkaline storage battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5564375A (en) * 1978-11-07 1980-05-15 Matsushita Electric Ind Co Ltd Manufacturing method of positive pole for alkaline storage battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59209270A (en) * 1983-05-13 1984-11-27 Japan Storage Battery Co Ltd Manufacture of positive plate for alkaline battery
JPH0418670B2 (en) * 1983-05-13 1992-03-27 Japan Storage Battery Co Ltd
US6225004B1 (en) * 1998-02-23 2001-05-01 Matsushita Electric Industrial Co., Ltd. Nickel positive electrode for alkaline storage batteries and method for producing the same

Similar Documents

Publication Publication Date Title
US9478806B2 (en) Iron electrode employing a polyvinyl alcohol binder
JP2003526877A (en) Rechargeable nickel zinc battery
KR100222746B1 (en) Gas-tight alkaline accumulator
US5989746A (en) Pasted nickel electrode
US4000005A (en) Method for making a nickel positive electrode for an alkaline battery
JPS5875767A (en) Manufacture of nickel electrode for battery
JP2926732B2 (en) Alkaline secondary battery
JPS5897267A (en) Manufacture of nickel electrode for battery
JPS5897265A (en) Manufacture of nickel electrode for battery
JPS58175262A (en) Manufacture of nickel electrode for battery
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JPS5897266A (en) Manufacture of nickel electrode for battery
JPS58121557A (en) Manufacture of nickel electrode for battery
JPH0693360B2 (en) Manufacturing method of battery with nickel pole
AU2014212260B2 (en) Iron electrode employing a polyvinyl alcohol binder
JPS6097560A (en) Sealed type alkaline storage battery
JPS58137965A (en) Manufacture of nickel electrode for battery
JPS58206055A (en) Manufacture of nickel electrode for battery
JPS5937659A (en) Manufacturing method for nickel electrode
JPS5875768A (en) Manufacture of pasted electrode for battery
JPS5960966A (en) Manufacture of nickel electrode for battery
JPH04237951A (en) Manufacture of nickel electrode for alkaline storage battery
Sakaguchi et al. Solid-state metal hydride batteries using ZrO 2· n H 2 O as an electrolyte
JPS5916268A (en) Manufacture of battery using nickel electrode
JPS61203569A (en) Pasted negative plate for alkaline storage battery