JPH04237951A - Manufacture of nickel electrode for alkaline storage battery - Google Patents

Manufacture of nickel electrode for alkaline storage battery

Info

Publication number
JPH04237951A
JPH04237951A JP3004274A JP427491A JPH04237951A JP H04237951 A JPH04237951 A JP H04237951A JP 3004274 A JP3004274 A JP 3004274A JP 427491 A JP427491 A JP 427491A JP H04237951 A JPH04237951 A JP H04237951A
Authority
JP
Japan
Prior art keywords
nickel
cobalt
storage battery
electrode
alkaline storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3004274A
Other languages
Japanese (ja)
Inventor
Tsutomu Iwaki
勉 岩城
Yoshio Moriwaki
良夫 森脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3004274A priority Critical patent/JPH04237951A/en
Publication of JPH04237951A publication Critical patent/JPH04237951A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide the manufacture of a nickel electrode for an alkaline storage battery improving the utilization factor of an active material and increasing the volume efficiency and weight efficiency at a low cost, particularly the manufacture of the nickel electrode used for the alkaline storage battery such as a nickel-cadmium storage battery or a nickel-hydrogen storage battery. CONSTITUTION:A nickel electrode obtained by directly using nickel hydroxide has the utilization factor of nickel hydroxide slightly lower than that of the sintered type. Cobalt is effective in particular including the sintered type to improve the utilization factor, however, the absolute capacity is decreased if too much cobalt is added. The nickel electrode used for an alkaline storage battery is mainly made of nickel hydroxide added with cobalt powder, and it is heated at 120-170 deg.C in the atmospheric air so that the low potential caused by cobalt is not extinguished. Carbonyl cobalt is preferable for the cobalt used here, and the cobalt powder about 3-15wt.% is preferably added to nickel hydroxide.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明はアルカリ蓄電池用ニッケ
ル極の製造法に関し、特にニッケル・カドミウム蓄電池
やニッケル・水素蓄電池のようなアルカリ蓄電池に用い
るニッケル極の製造法に関する。 【0002】 【従来の技術】各種の電源として使われるアルカリ蓄電
池は高信頼性が期待でき、小形軽量化も可能などの理由
で小形電池は各種ポ−タブル機器用に、大形は産業とし
て広く使われてきた。 【0003】このアルカリ蓄電池において、負極として
はカドミウムの他に亜鉛、鉄、水素などが対象となって
いる。しかし正極としては一部空気極や酸化銀極なども
取り上げられているがほとんどの場合ニッケル極である
。ポケット式から焼結式に代わって特性が向上し、さら
に密閉化が可能になるとともに用途も広がった。 【0
004】しかし焼結式は基板の製法や活物質の充填など
の点で工程が煩雑であり高価である。その上焼結式では
基板の多孔度を83%以上にすると強度が大幅に低下す
るので活物質の充填に限界があり、したがって高容量化
にも限界がある。そこで非焼結式ニッケル極として1つ
の方向は90%以上のような高多孔度の基板として発泡
状基板や繊維状基板が取り上げられ高容量化が図られ一
部実用化されている。もう1つの方向は低廉化であり、
水酸化ニッケルに導電剤と結着剤を加えて2次元構造の
多孔体とともにシ−ト状に加工して得られる方式が広く
研究され多くの製法上の提案がされている。これらに用
いる活物質にはニッケルとコバルトあるいは酸化コバル
トそれに対極活物質たとえば酸化亜鉛や酸化カドミウム
の少量などが加えられている。 【0005】 【発明が解決しようとする課題】水酸化ニッケルを直接
用いて得られるニッケル極は焼結式に比べて水酸化ニッ
ケルの利用率がやや悪い。これを向上するために焼結式
も含めてとくにコバルトが有効であるが加えすぎると絶
対容量が減少する。本発明はこのような課題を解決する
もので、活物質の利用率をあげて体積効率や重量効率を
大きくするとともに低廉化できるアルカリ蓄電池用ニッ
ケル極の製造法を提供することを目的とする。 【0006】 【課題を解決するための手段】この課題を解決するため
本発明のアルカリ蓄電池用ニッケル極の製造法は、ニッ
ケル・カドミウムやニッケル・水素蓄電池のようなアル
カリ蓄電池に用いるニッケル極においてコバルト粉末を
加えた水酸化ニッケルを主とするニッケル極を製作しこ
れをコバルトに基因する低い充電々位が消滅しない12
0〜170℃で加熱する。雰囲気は空気中でよい。ここ
で用いるコバルトとしてはカ−ボニルコバルトがよく、
水酸化ニッケルに対する添加量としては3〜15重量%
がよい。 【0007】 【作用】この構成により本発明のアルカリ蓄電池用ニッ
ケル極の製造法は、ニッケル極の利用率を上げるために
は、コバルトが最も好ましく酸化時に活物質層にコバル
トイオンが拡散し、これが活物質の利用率を向上させる
。この場合加熱によって金属コバルトがごく一部酸化す
るとともに活物質層に拡散していく。したがってあらか
じめ酸化コバルトを加えた場合は拡散はほとんどないの
でこのような効果は期待できない。なおコバルトでもカ
−ボニルコバルトは比較的安価で、しかもきわめて微粉
末の状態で得られるので活物質との混合が均一に行なわ
れ、活性なので本願のような一部酸化しつつ拡散させる
目的に最適である。 【0008】なお密閉形の場合放電保証用の負極容量を
次の現象を利用して形成することもできる。すなわちニ
ッケル極に金属コバルトを用いた場合、充電初期にこの
金属コバルトが酸化され、その間はニッケル極は充電さ
れず負極は充電され、しかも酸化を受けた金属コバルト
はそれ自身が放電には寄与しない。 【0009】 【実施例】以下本発明の一実施例のアルカリ蓄電池用ニ
ッケル極の製造法について説明する。市販の水酸化ニッ
ケル粉末92部、コバルト粉末8部を混合後これにカル
ボキシメチルセルロ−スの2(重量)%の水溶液用いて
ペ−ストを得る。このペ−ストを厚さ1.5mm、孔径
200μm、多孔度95%の発泡状ニッケル基板に充填
塗着し、120℃で1時間乾燥した。得られた電極を加
圧して厚さ0.80mmに調整した。その後これを空気
中160℃で30分間加熱した。電極は水酸化ニッケル
による薄い緑色から全体が薄い黒褐色に変化した。この
ようにして得られた発泡式ニッケル極をSubC形用と
して幅33mm、長さ160mmに裁断し、リ−ド板を
スポット溶接により取り付けた。このニッケル極の実際
の放電容量は0.2Cで2.8Ahである。 【0010】負極として水素吸蔵合金を例とした。その
一般式が(化1)で示される系の合金の一つであるその
一般式が(化2)で示される材料を粉砕して360メッ
シュ通過させた後1.5重量%CMC水溶液を加えてペ
−ストをつくる。 【0011】 【化1】 【0012】 【化2】 【0013】ついでこのペ−ストを多孔度95%厚さ0
.8mmの発泡状ニッケル板に充填し加圧して電極を得
た。減圧で乾燥後5%のフッ素樹脂ディスパ−ジョンを
添加した。この発泡状ペ−スト式水素吸蔵合金極を幅3
3mm、長さ210mmに裁断し、リ−ド板をスポット
溶接により取り付けた。なおこの電極の放電可能容量は
正極の1.55倍の4.5Ahである。 【0014】親液処理ポリプロピレン不織布セパレ−タ
を用いて密閉形ニッケル−水素蓄電池を構成した。比重
1.30の苛性カリ水溶液に30g/lの水酸化リチウ
ムを溶解した電解液を注入した。電池はSubC形であ
る。この電池をAとする。 【0015】比較のためにニッケル極に加熱工程を入れ
ず他は電池Aと同じ工程で得られた電池をBとして加え
た。 【0016】第1回目の化成として両電池を周囲温度2
5℃で0.4Aで初充電を行なった。コバルト金属の酸
化に基因すると思われる1.1V付近での平坦部がA、
Bとも認められ1.2時間程度保った後電位の上昇が始
まった。充電は13時間行なった。その後放電は0.6
Aで行なった結果Aは2.69Ah、Bは2.71Ah
の容量であった。 【0017】ところがついで0.4Aで150%充電−
0.6Aで0.8Vまでの放電の結果Aは2.92Ah
、Bは2.75Ahであった。化成を2回繰り返して化
成を終了した。最終的にはAは2.95Ah、Bは2.
78Ahの容量となった。  【0018】両電池それぞれ10セル用い、とくにとく
に寿命特性を比較した。20℃1.0Aで容量の150
%定電流充電−1Aで0.8Vまでの放電を繰り返した
。 【0019】その結果いずれの電池も500サイクルで
初期容量の95%以上を示した。なお750サイクルで
もAの平均は2.83AhでBの平均2.64Ahより
かなり優れていた。 【0020】なお実施例では負極に水素吸蔵合金を用い
た場合を示したが本願がニッケル極の改良に関するもの
であり、負極にカドミウム極を用いても同じ効果を発揮
し、そのほか鉄極や亜鉛極などでも同じ効果が得られる
。 【0021】 【発明の効果】以上の実施例の説明で明らかなように本
発明のアルカリ蓄電池用ニッケル極の製造法によれば、
水酸化ニッケルにコバルト粉末を加えて得られたニッケ
ル極を、コバルトに基因した低い充電電位が消滅しない
範囲つまり120〜170℃程度で加熱することにより
、高容量を維持しつつ長寿命のニッケル極を用いたアル
カリ蓄電池を提供することができる。
[0001] The present invention relates to a method for manufacturing nickel electrodes for alkaline storage batteries, and in particular to a method for manufacturing nickel electrodes for alkaline storage batteries such as nickel-cadmium storage batteries and nickel-metal hydride storage batteries. Regarding manufacturing methods. [0002] Alkaline storage batteries used as various power sources are expected to have high reliability and can be made smaller and lighter. Therefore, small batteries are used for various portable devices, while large ones are widely used in industry. It has been used. [0003] In this alkaline storage battery, the negative electrode is made of zinc, iron, hydrogen, etc. in addition to cadmium. However, although some air electrodes and silver oxide electrodes are used as positive electrodes, in most cases nickel electrodes are used. The pocket type was replaced by the sintered type, which improved its properties, made it possible to seal it more tightly, and expanded its uses. 0
[004] However, the sintering method is complicated and expensive in terms of the manufacturing method of the substrate and the filling of the active material. Furthermore, in the sintering method, if the porosity of the substrate is increased to 83% or more, the strength will be significantly reduced, so there is a limit to how much active material can be filled, and therefore there is a limit to how high the capacity can be increased. Therefore, as a non-sintered nickel electrode, a foamed substrate or a fibrous substrate is used as a substrate with a high porosity of 90% or more in one direction, and a high capacity is achieved, and some of them have been put into practical use. The other direction is lower prices,
A method in which a conductive agent and a binder are added to nickel hydroxide and processed into a sheet with a porous body having a two-dimensional structure has been widely studied, and many manufacturing methods have been proposed. The active materials used in these materials include nickel and cobalt or cobalt oxide and small amounts of counter electrode active materials such as zinc oxide and cadmium oxide. [0005] A nickel electrode obtained by directly using nickel hydroxide has a slightly lower utilization rate of nickel hydroxide than a sintered type. To improve this, cobalt is particularly effective, including in sintering types, but if too much is added, the absolute capacity will decrease. The present invention solves these problems, and aims to provide a method for manufacturing a nickel electrode for an alkaline storage battery that can increase the utilization rate of active materials, increase volumetric efficiency and weight efficiency, and reduce the cost. [Means for Solving the Problem] In order to solve this problem, the method for manufacturing a nickel electrode for an alkaline storage battery according to the present invention provides a method for manufacturing a nickel electrode for an alkaline storage battery such as a nickel-cadmium or nickel-hydrogen storage battery. A nickel electrode made mainly of nickel hydroxide with added powder is manufactured so that the low charge level caused by cobalt does not disappear12
Heat at 0-170°C. The atmosphere is good in the air. The cobalt used here is preferably carbonyl cobalt.
The amount added to nickel hydroxide is 3 to 15% by weight.
Good. [Function] With this configuration, in the method of manufacturing a nickel electrode for an alkaline storage battery of the present invention, in order to increase the utilization rate of the nickel electrode, cobalt is most preferable and cobalt ions are diffused into the active material layer during oxidation. Improve the utilization rate of active materials. In this case, heating oxidizes a small portion of the metal cobalt and diffuses into the active material layer. Therefore, if cobalt oxide is added in advance, such an effect cannot be expected because there is almost no diffusion. Regarding cobalt, carbonyl cobalt is relatively inexpensive and can be obtained in the form of extremely fine powder, so it can be mixed evenly with the active material, and since it is active, it is ideal for the purpose of diffusion while partially oxidizing as in the present application. It is. In the case of a sealed type, the negative electrode capacity for ensuring discharge can also be formed by utilizing the following phenomenon. In other words, when metal cobalt is used for the nickel electrode, this metal cobalt is oxidized at the beginning of charging, and during that time the nickel electrode is not charged but the negative electrode is charged, and the oxidized metal cobalt itself does not contribute to the discharge. . [Embodiment] A method for manufacturing a nickel electrode for an alkaline storage battery according to an embodiment of the present invention will be described below. After mixing 92 parts of commercially available nickel hydroxide powder and 8 parts of cobalt powder, a 2% (by weight) aqueous solution of carboxymethyl cellulose was added to the mixture to obtain a paste. This paste was filled and applied to a foamed nickel substrate having a thickness of 1.5 mm, a pore diameter of 200 μm, and a porosity of 95%, and dried at 120° C. for 1 hour. The obtained electrode was pressurized to adjust the thickness to 0.80 mm. This was then heated in air at 160°C for 30 minutes. The entire electrode changed from a light green color due to nickel hydroxide to a light blackish brown color. The thus obtained foamed nickel electrode was cut into a size of 33 mm in width and 160 mm in length for SubC type, and a lead plate was attached by spot welding. The actual discharge capacity of this nickel electrode is 2.8 Ah at 0.2C. [0010] A hydrogen storage alloy was used as an example of the negative electrode. A material whose general formula is represented by (Chemical formula 2), which is one of the alloys whose general formula is represented by (Chemical formula 1), is crushed and passed through 360 mesh, and then a 1.5% by weight CMC aqueous solution is added. Make a paste. [Chemical formula 1] [Chemical formula 2] [Chemical formula 2] Next, this paste is made into a powder having a porosity of 95% and a thickness of 0.
.. An 8 mm foamed nickel plate was filled and pressurized to obtain an electrode. After drying under reduced pressure, 5% fluororesin dispersion was added. This foamed paste type hydrogen storage alloy electrode has a width of 3
It was cut into pieces of 3 mm and 210 mm long, and a lead plate was attached by spot welding. Note that the dischargeable capacity of this electrode is 4.5 Ah, which is 1.55 times that of the positive electrode. A sealed nickel-hydrogen storage battery was constructed using a lyophilic treated polypropylene nonwoven fabric separator. An electrolytic solution in which 30 g/l of lithium hydroxide was dissolved in a caustic potassium aqueous solution with a specific gravity of 1.30 was injected. The battery is SubC type. This battery is called A. For comparison, a battery B was prepared using the same process as battery A except that the nickel electrode was not heated. During the first chemical formation, both batteries were heated to an ambient temperature of 2
Initial charging was performed at 0.4 A at 5°C. The flat part around 1.1V, which is thought to be caused by the oxidation of cobalt metal, is A,
B was also recognized, and the potential began to rise after being maintained for about 1.2 hours. Charging was carried out for 13 hours. After that, the discharge is 0.6
Result of A is 2.69Ah, B is 2.71Ah
The capacity was . [0017] However, 150% charging at 0.4A-
The result of discharging to 0.8V at 0.6A is 2.92Ah.
, B was 2.75 Ah. The chemical formation was completed by repeating it twice. In the end, A is 2.95Ah and B is 2.95Ah.
The capacity was 78Ah. Ten cells of each of the two batteries were used, and their life characteristics were compared. 150 of capacity at 20℃ 1.0A
Discharge to 0.8V was repeated at a constant current charge of -1A. As a result, all the batteries exhibited 95% or more of their initial capacity after 500 cycles. Even after 750 cycles, the average of A was 2.83 Ah, which was considerably better than the average of B, 2.64 Ah. [0020]Although the example shows the case where a hydrogen storage alloy is used for the negative electrode, the present application relates to the improvement of a nickel electrode, and the same effect can be achieved even if a cadmium electrode is used for the negative electrode. The same effect can be obtained with poles. Effects of the Invention As is clear from the description of the examples above, according to the method of manufacturing a nickel electrode for an alkaline storage battery of the present invention,
By heating a nickel electrode obtained by adding cobalt powder to nickel hydroxide at a temperature within the range where the low charging potential caused by cobalt disappears, that is, around 120 to 170 degrees Celsius, the nickel electrode can maintain high capacity and have a long life. It is possible to provide an alkaline storage battery using.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】コバルト粉末を加えた水酸化ニッケルを主
とする活物質材料を用いて得られたニッケル極を、コバ
ルトに基因する低い充電電位が消滅しない範囲で加熱す
るアルカリ蓄電池用ニッケル極の製造法。
Claim 1: A nickel electrode for an alkaline storage battery in which a nickel electrode obtained using an active material mainly composed of nickel hydroxide to which cobalt powder is added is heated within a range that does not eliminate the low charging potential caused by cobalt. Manufacturing method.
【請求項2】加熱温度が120〜170℃である請求項
1記載のアルカリ蓄電池用ニッケル極の製造法。
2. The method for producing a nickel electrode for an alkaline storage battery according to claim 1, wherein the heating temperature is 120 to 170°C.
【請求項3】コバルトがカ−ボニルコバルト粉である請
求項1記載のアルカリ蓄電池用ニッケル極の製造法。
3. The method for producing a nickel electrode for an alkaline storage battery according to claim 1, wherein the cobalt is carbonyl cobalt powder.
【請求項4】負極がカドミウム極か水素吸蔵合金極であ
る請求項1記載のアルカリ蓄電池用ニッケル極の製造法
4. The method for producing a nickel electrode for an alkaline storage battery according to claim 1, wherein the negative electrode is a cadmium electrode or a hydrogen storage alloy electrode.
JP3004274A 1991-01-18 1991-01-18 Manufacture of nickel electrode for alkaline storage battery Pending JPH04237951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3004274A JPH04237951A (en) 1991-01-18 1991-01-18 Manufacture of nickel electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3004274A JPH04237951A (en) 1991-01-18 1991-01-18 Manufacture of nickel electrode for alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH04237951A true JPH04237951A (en) 1992-08-26

Family

ID=11579964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3004274A Pending JPH04237951A (en) 1991-01-18 1991-01-18 Manufacture of nickel electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH04237951A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108075126A (en) * 2017-12-19 2018-05-25 宁波高新区锦众信息科技有限公司 A kind of preparation method of alkaline secondary cell cobalt cladding alpha-nickel hydroxide composite material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108075126A (en) * 2017-12-19 2018-05-25 宁波高新区锦众信息科技有限公司 A kind of preparation method of alkaline secondary cell cobalt cladding alpha-nickel hydroxide composite material

Similar Documents

Publication Publication Date Title
US20230121023A1 (en) Continuous manufacture ofa nickel-iron battery
JPS5937667A (en) Metal oxide-hydrogen battery
US5940946A (en) Alkali storage cell employing a spongelike metal substrate
JP3788484B2 (en) Nickel electrode for alkaline storage battery
JPH04237951A (en) Manufacture of nickel electrode for alkaline storage battery
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JP3156485B2 (en) Nickel electrode for alkaline storage battery
JP3088649B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH10334899A (en) Manufacture of alkaline storage battery and its electrode
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JPS6097560A (en) Sealed type alkaline storage battery
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery
JPH0465067A (en) Formation method of nickel-hydrogen battery
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH04181656A (en) Manufacture of nickel electrode for alkaline storage battery
JP3136688B2 (en) Nickel-hydrogen storage battery
JPS5875767A (en) Manufacture of nickel electrode for battery
JPH05151965A (en) Manufacture of nickel electrode for alkaline storage battery
JPH0888001A (en) Hydrogen storage alloy electrode and manufacture thereof
JP2005183339A (en) Nickel electrode for alkaline storage battery and alkaline storage battery
JP2003031216A (en) Method of manufacturing nickel positive electrode and method of manufacuring alkaline storage battery
JPS59114767A (en) Manufacture of hydrogen electrode
JPH07135020A (en) Manufacture of alkaline storage battery provided with nickel electrode
JPH05205739A (en) Manufacture of nickel electrode for alkaline storage battery
JP2615538C (en)