JPS5960966A - Manufacture of nickel electrode for battery - Google Patents

Manufacture of nickel electrode for battery

Info

Publication number
JPS5960966A
JPS5960966A JP57172731A JP17273182A JPS5960966A JP S5960966 A JPS5960966 A JP S5960966A JP 57172731 A JP57172731 A JP 57172731A JP 17273182 A JP17273182 A JP 17273182A JP S5960966 A JPS5960966 A JP S5960966A
Authority
JP
Japan
Prior art keywords
nickel
active material
nickel hydroxide
battery
precipitate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57172731A
Other languages
Japanese (ja)
Inventor
Hiromichi Ogawa
小川 博通
Tsutomu Iwaki
勉 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57172731A priority Critical patent/JPS5960966A/en
Publication of JPS5960966A publication Critical patent/JPS5960966A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To easily produce a nickel electrode for a battery having high active material utilization and long life by adding cobalt powder in a process in which nickel hydroxide precipitate obtained by mixing nickel salt solution and caustic alkali solution is washed and collected, and drying them. CONSTITUTION:Nickel hydroxide is precipitated by mixing nickle salt solution and caustive alkali solution. Cobalt powder is added in a process in which the precipitate is washed and collected. This mixture is dried or partially dried to prepare an active material mixture. The active material mixture obtained by this process has high utilization, and a long life nickel electrode for a battery is easily manufactured by using this mixture.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アルカリ電池に用いる非焼結式ニッケル電極
の製造法に関するもので、特に活物質混合物を得る方法
の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing non-sintered nickel electrodes for use in alkaline batteries, and in particular to an improvement in the method for obtaining an active material mixture.

従来例の構成とその問題点 アルカリ電池の正極には各種のものがあるが、ニッケル
極は、とくにアルカリ水溶液中で安定であり、充放電の
可逆性にも優れていて長寿命が期待できること、さらに
は利用率の点でも優れているなどの理由で最もよく使わ
れている。とくにニッケルーカドミウム電池は、二次7
1.池として鉛電池についで実用化されていて、今後も
大きな1−8要の伸びが予測されている。また、ニッケ
ルー]11鉛電池やニッケルー鉄7L池がとくに電気自
動車用として開発か進められ、まだ、ニッケルー水素電
池が主に宇宙用など特殊な用途に対して実用段階に入っ
ている。
Conventional structure and problems There are various types of positive electrodes for alkaline batteries, but nickel electrodes are particularly stable in alkaline aqueous solutions, have excellent charge/discharge reversibility, and can be expected to have a long life. Furthermore, it is the most commonly used method due to its superior utilization rate. In particular, nickel-cadmium batteries are
1. It has been put into practical use as a battery next to lead-acid batteries, and is expected to continue to grow significantly in the future. In addition, nickel-11 lead batteries and nickel-iron 7L batteries are being developed especially for use in electric vehicles, and nickel-metal hydride batteries are still in the practical stage, mainly for special uses such as space use.

この神のニッケル極の構造としては、かってはポケット
式、最近は焼結式か主流を占めている。
The structure of this divine nickel electrode used to be the pocket type, but recently the sintered type is the mainstream.

ポケット式はよく知られているように、孔を多く設けた
鋼製の容器に水酸化ニッケルを黒鉛などの導電材ととも
に機械的に光てんしだものである。
As is well known, the pocket type is a steel container with many holes and mechanically filled with nickel hydroxide and a conductive material such as graphite.

したがって電極は外観上は堅牢にできているが、活物質
は導電材や容器(ポケット)とは接触して存在している
のみであるから、大電流放電での分極が大きく、利用率
も低L)上に、急元電などの苛酷な条件では寿命が短く
なるなどの問題点がある。
Therefore, although the electrode has a robust appearance, the active material exists only in contact with the conductive material and the container (pocket), so polarization during large current discharge is large and the utilization rate is low. L) On top of that, there are problems such as shortened lifespan under severe conditions such as emergency power supply.

これに対して焼結式では、微孔を有する焼結体中に活物
質が強固に付着、内蔵された形で元てんされているので
、上記ポケット式にみられるような問題は少なく、大電
流放電特性、急光電特性。
On the other hand, in the sintered type, the active material is firmly attached to the sintered body with micropores and is concentrated in a built-in form, so the problems seen in the pocket type described above are fewer and less serious. Current discharge characteristics, rapid photoelectric characteristics.

寿命いずれの点でも大きな改良がはかられている。Significant improvements have been made in all aspects of lifespan.

したかって特性のみからみれば、焼結式はかなり理想の
段階に達しでいるといえる。ところが、焼結体の製造、
活物質の光てんいずれにおいても工程は複雑であって、
ポケット式に比べれはかなり高価になる問題がある。焼
結式に代えて孔径。
Therefore, from the viewpoint of characteristics alone, it can be said that the sintering method has reached the ideal stage. However, the production of sintered bodies,
The process for phototransferring active materials is complicated,
The problem is that it is considerably more expensive than the pocket type. Pore size instead of sintering type.

多孔度とも大きいスポンジ状金篇多孔体を活物質支持体
として用い、これにペースト状にした活物質、すなわち
水酸化ニッケルを直接光てんする方法が開発され、少な
くとも活物質の充てん工程の簡易化がはかられている。
A method has been developed in which a sponge-like porous material with high porosity is used as an active material support, and a paste-like active material, that is, nickel hydroxide, is directly injected into the material, which at least simplifies the active material filling process. is being measured.

さらに簡単な方法がいわゆるペースト式であって、芯材
としてネット、孔あき板、エキスバンドメタルなどの二
次元的な多孔体を用い、これに活物質と結着剤を混合し
てペースト状にしたものを塗着し、これをスリットある
いはローラー間を通すことにより平滑化して、乾燥後、
必要に応じて加圧するものである。この方法は、芯利が
極めて安価であり、また活物質の充てんも容易であるの
で、製法としては理想的であり、多くの提案がされてい
る。ペースト式電極の歴史は古く、製法はやや異なるか
ペースト式鉛極板Fi極めて広く用いられている。捷た
、カドミウム極についても実用化されている。
An even simpler method is the so-called paste method, in which a two-dimensional porous material such as a net, perforated plate, or expanded metal is used as the core material, and an active material and a binder are mixed with this material to form a paste. After coating, it is smoothed by passing it through slits or between rollers, and after drying,
Pressure is applied as necessary. This method is ideal as a manufacturing method because the core material is extremely cheap and filling with the active material is easy, and many proposals have been made. Paste-type electrodes have a long history, and although the manufacturing method is slightly different, paste-type lead electrode plates (Fi) are extremely widely used. Cutted cadmium poles have also been put into practical use.

これらに対してニッケル極についても多くの提案がある
にもかかわらず実用化かできない理由としては、次のよ
うな点が挙げられる。
The following are the reasons why nickel electrodes have not been put into practical use despite many proposals.

(1)  ニッケルつ1り活物質としての充電時でのオ
キシ水酸化ニッケル、放電時の水酸化ニッケルいずれも
すぐれた導電体ではない。したかってηT電拐を別に加
える心安があり、加えても利用率か向上し難い。寸だ、
加えずきると絶対容量が小さくなってし丑う。
(1) Neither nickel oxyhydroxide during charging nor nickel hydroxide during discharging as an active material is an excellent conductor. Therefore, it is safe to add ηT Denkiwa separately, and even if you add it, it is difficult to improve the utilization rate. It's a size.
If you run out of water, the absolute capacity will become smaller.

(2)充放電の繰り返しにより活物質の体積変化は当然
あるか、ニッケル極では膨潤が激しく生じる。
(2) Due to repeated charging and discharging, the volume of the active material naturally changes, or severe swelling occurs in the nickel electrode.

主に上記の要因がペースト式ニッケル極の広範囲な実用
化を阻害しているのである。つ捷り、まず強度をあけて
(2)のような膨潤、またこれに伴う活物質の脱落を防
ぐ方法として、従来は神々の結着剤が考えられてきた。
The above-mentioned factors mainly prevent the widespread practical application of paste-type nickel electrodes. Conventionally, the use of divine binders has been considered as a method to increase strength and prevent swelling as described in (2) above, as well as the accompanying shedding of the active material.

結着剤としては、ポリエチレン、ポリプロピレン、ポリ
塩化ビニル、ポリスチレノ、7ノ累樹脂などや、ポリビ
ニルアルコール、カルボキシメチルセルロース、エチル
セルロースなどがある。耐電解液性、耐酸化性の点では
勿論前者かすぐれているが、強度を向上させるために大
量に加えれば、電圧特性は劣り、利用率も低下してし捷
う。これを抑制するだめにニッケル粉末や黒鉛などが加
えられるか、多量に加えると活物質の占める割合が減少
するし、少ないと利用率が小さい点で問題がある。
Examples of the binder include polyethylene, polypropylene, polyvinyl chloride, polystyrene, 7-layer resin, polyvinyl alcohol, carboxymethyl cellulose, ethyl cellulose, and the like. Of course, the former is superior in terms of electrolyte resistance and oxidation resistance, but if a large amount is added to improve strength, the voltage characteristics will be inferior and the utilization rate will decrease. To suppress this, nickel powder or graphite is added, or if too much is added, the proportion occupied by the active material decreases, and if too little is added, the utilization rate is low, which is a problem.

以上の結着剤の添加やその他の耐電解液性の繊維は、ペ
ースト式あるいは粉末加圧式のニッケル極、いわゆる非
焼結式ニッケル極の特性や寿命をある程度向上させるこ
とができるか、従来の焼結式に比べるとはるかに劣るた
め、実用上広く用いられるには至っていない。
Is it possible to improve the properties and lifespan of paste-type or powder-pressed nickel electrodes, so-called non-sintered nickel electrodes, by adding the above-mentioned binders and other electrolyte-resistant fibers? It is far inferior to the sintered type, so it has not been widely used in practice.

本発明者らは、水酸化ニッケルを主としたペースト正極
拐料中にコバルト全混合し、これをペースト状態から徐
々に乾燥状態にして放置しておくことによって活物質の
利用率が向上し、したがって一定の負荷での光放電で長
ノ9を命になることを先に提案した。すなわち、コバル
トを水成化ニッケルに加えて水でぬらして放置すること
は、水酸化ニッケルの利用率の向上に効果があることが
わかったが、その放置はたとえ指付操作を加えても数時
間以」:か必要であり、連続的に行わない場合は数日V
、上が好ましいことがわかった。このことは工業的に多
b■のペーストを処理する必要かあることから、装置、
場所1人手に制約がある場合には、さらにすぐれた手段
かのぞ1れている。
The present inventors have discovered that the utilization rate of the active material is improved by completely mixing cobalt into a paste positive electrode material mainly composed of nickel hydroxide, and gradually drying it from a paste state and leaving it to stand. Therefore, I proposed earlier that a photodischarge under a certain load could save the life of a long-term battery. In other words, it was found that adding cobalt to aqueous nickel and leaving it wet with water is effective in improving the utilization rate of nickel hydroxide. "After an hour": It is necessary, and if it is not done continuously, it will take several days.
, the above was found to be preferable. This means that industrially it is necessary to process a large number of pastes, so the equipment,
If there are restrictions on location and manpower, there is an even better method.

発明の目的 本発明は、以上のような従来の不都合を解消し、活物質
の利用率が高く、長寿命のニッケル極を与える活物質を
より簡易に得る方法を提供するとと金目的とする。
OBJECTS OF THE INVENTION It is an object of the present invention to provide a method for easily obtaining an active material that provides a nickel electrode with a high active material utilization rate and a long life, eliminating the above-mentioned conventional disadvantages.

発明の構成 本発明は、ニッケル塩溶液と苛性アルカリから活物質の
水酸化ニッケルを製造する工程でコバルト粉末を加える
ものである。
Structure of the Invention In the present invention, cobalt powder is added in the process of producing nickel hydroxide as an active material from a nickel salt solution and a caustic alkali.

すなわち、ニッケル塩溶液と苛性アルカリ水浴液とを混
合して水酸化ニッケルを沈澱させ、これを水洗して沈澱
を採集する工程でコバルト粉末を加え、これを乾燥ない
しは半乾燥の状態にして活物質混合物を調釜するのであ
る。符にペースト式電極に用いる場合は、半乾燥状態の
壕まの力が好都合である。
That is, a nickel salt solution and a caustic alkaline bath solution are mixed to precipitate nickel hydroxide, which is washed with water and the precipitate is collected. During the process, cobalt powder is added, and this is left in a dry or semi-dry state to form the active material. The mixture is prepared in a pot. When used in paste-type electrodes, a semi-dry trench is advantageous.

」二記の水洗と乾燥の過程で、前記のように水酸化ニッ
ケルとコバルトとを水でぬらして放置する方法によるも
のと同様に、利用率の高い活物質混合物が得られる。
In the water washing and drying process described in Section 2, an active material mixture with a high utilization rate can be obtained, similar to the method described above in which nickel hydroxide and cobalt are wetted with water and left to stand.

なお、水酸化ニッケル鞭沈澱を得るための増が強アルカ
リ性であると、コバルトの一部が俗解するおそれがある
ので、沈澱の洗浄がある程度進んでからコバルトを加え
るのが好ましい。また、コバルトとともにニッケル粉末
も加えておくことか、ニッケル極の利用率の向」二に対
して一層好捷しい。
Note that if the additive used to obtain the nickel hydroxide precipitate is strongly alkaline, part of the cobalt may be lost, so it is preferable to add cobalt after the precipitate has been washed to some extent. In addition, adding nickel powder along with cobalt would be more advantageous in reducing the utilization rate of the nickel electrode.

実施例の説明 硫酸ニッケル水浴液に、やや過剰の苛性ソーダを加えて
公知の方法で水酸化ニッケルを沈族させる。これを遠心
分踊機にかけて大部分の水を刀ヲばした後、100℃程
度の温度で乾燥する。この状態では硫酸ノーズや少量の
苛性ノーズが残っているが、水酸化ニッケルは、コロイ
ド状から二次粒子に成長していて塩9扱いか容易になっ
ている。
Description of Examples A slight excess of caustic soda is added to a nickel sulfate water bath solution to precipitate nickel hydroxide using a known method. After applying this to a centrifugal separator to remove most of the water, it is dried at a temperature of about 100°C. In this state, a sulfuric acid nose and a small amount of caustic nose remain, but the nickel hydroxide has grown from a colloidal state to secondary particles and can be easily treated as a salt.

この状態の水酸化ニッケルに、コバルト粉末を水酸化ニ
ッケル11シに対して601.カーボニルニッケル粉末
を同じく60g加える。十分攪はん後に水のなかに分散
させて水洗し、再び遠心分離機で水を除く。この操作を
3回繰り返した後に80℃で6時間乾燥した。この方法
で得られた沈澱は、水酸化ニッケルにコバルトとニッケ
ルと水を加えて放置した場合と同様に、水酸化ニッケル
単独の場合と異なり、黒褐色を呈している。このように
して得られたコバルトとニッケルを含む水酸化ニッケル
を活物質主材料として用いた。
To the nickel hydroxide in this state, add cobalt powder to 11 parts of nickel hydroxide to 601 parts. Also add 60g of carbonyl nickel powder. After stirring thoroughly, disperse in water, wash with water, and remove water using a centrifuge again. After repeating this operation three times, it was dried at 80° C. for 6 hours. The precipitate obtained by this method has a dark brown color, similar to when cobalt, nickel, and water are added to nickel hydroxide and left to stand, unlike when nickel hydroxide is used alone. The thus obtained nickel hydroxide containing cobalt and nickel was used as the main active material.

なお、ペースト式やスポンジ状多孔体を用いる電極には
、これを水溶液でペーストにするので、工程の簡易化の
ために、沈澱の最終的な完全乾燥(実施例では80℃で
6時間)は必ずしも必要でなく、半乾燥の状態でっぎの
工程のペースト製造へ移ってもよい。しかし、本実施例
では前述のように乾燥して用いた。
Note that for electrodes using a paste type or sponge-like porous material, this is made into a paste using an aqueous solution, so in order to simplify the process, the final complete drying of the precipitate (6 hours at 80°C in the example) is required. It is not absolutely necessary, and it is also possible to proceed to the paste production in the degi process in a semi-dry state. However, in this example, it was dried as described above.

ニッケル電極としてはペースト式を採用し、以下のよう
にして製造した。ペースト組成は、200メノンユのふ
るいを通過させた前記の水酸化ニッケル19とカーボニ
ルニッケル粉末60g、コバル)60.pに黒鉛aoy
と直径0.1期・、長さ3〜5Mのアクリロニトリル−
塩化ビニル共重合体繊維20.51を加え、さらにポリ
エチレン粉末30Iとカルボキシメチルセルロースの3
重量矛水酊液IK/である。
A paste type was adopted as the nickel electrode, and it was manufactured as follows. The paste composition was the above-mentioned nickel hydroxide 19 passed through a 200-menon sieve, 60 g of carbonyl nickel powder, and 60 g of carbonyl nickel powder. graphite aoy on p
and acrylonitrile with a diameter of 0.1 mm and a length of 3 to 5 m.
Add 20.51 parts of vinyl chloride copolymer fiber, and then add 30 parts of polyethylene powder and 3 parts of carboxymethyl cellulose.
It is a weightless liquid IK/.

芯材には厚さ0.121711の鉄板に穴径2藺、、中
心間ピッチ31111mで開孔したパンチングメタルに
ニッケルメッキを施したものを使用した。この芯材の両
面に上記ペーストを塗着し、スリットを通過させ、乾燥
後の厚さを1,0±0.06vrtrbにした。こうし
て得た極板をまず幅120M、長さ680臥に裁断した
。ついでローラー間を通して加圧し、4フン化エチレン
樹脂の水性ナイスバージョン(固形分3重蓋%)を含浸
して乾燥した。電極の厚さは0.7wILであった。こ
の電極をさらに学2の大きさに裁断した。この場合は幅
38囮で長さを220懇にした。
The core material used was a punched metal plate with holes of 2 mm diameter and a center-to-center pitch of 31111 m on an iron plate with a thickness of 0.121711 m and plated with nickel. The above paste was applied to both sides of this core material, passed through a slit, and the thickness after drying was set to 1.0±0.06 vrtrb. The thus obtained electrode plate was first cut into a width of 120 m and a length of 680 m. The material was then pressed between rollers, impregnated with an aqueous nice version of tetrafluorinated ethylene resin (solid content: 3-fold lid %), and dried. The thickness of the electrode was 0.7 wIL. This electrode was further cut into a size of 2 mm. In this case, the width was 38 mm and the length was 220 mm.

性能比較のだめの電池として、単2サイズの密閉形ニソ
ケルーカトミウム蓄電池を用いた。カドミウム負極は以
下のようにして製造したものを用いた。1ず、酸化カド
ミウムを主体とするペーストをニッケルメッキした鉄製
のパンチングメタルの両面に塗着し、所定の厚さに設定
されたスリット中を通過させ、乾燥工程を経て、J享さ
0.7訓の極板を得だ。その後、苛性カリの10重量%
水溶液中で部分充電して酸化カドミウムの一部を金属カ
ドミウムに変化させ、さらに、水洗、乾燥後、加圧して
厚さ0.55間にしfc。
As a battery for performance comparison, a AA-sized sealed Nisokeru-Catomium storage battery was used. The cadmium negative electrode manufactured as follows was used. 1. First, a paste mainly composed of cadmium oxide is applied to both sides of a nickel-plated iron punching metal, passed through a slit set to a predetermined thickness, and subjected to a drying process to obtain a JK 0.7. Obtain the ultimate lesson. Then 10% by weight of caustic potash
Partially charged in an aqueous solution to change part of the cadmium oxide to metal cadmium, washed with water, dried, and then pressurized to a thickness of 0.55 fc.

セパレータにはポリアミドの不織准を用い、電解液には
苛性カリの25重量係水浴液に少量の水酸化リチウムを
f8 fp(、したものを1セル当たり6.3CC用い
た。
A non-woven polyamide material was used as the separator, and a small amount of lithium hydroxide was added to a 25 weight caustic potash bath solution at f8 fp (6.3 CC per cell) as the electrolyte.

この電池をAとする。比較例として、通常の方法で水酸
化ニッケル全製造し、これを用いて八と同じ組成の活物
質混合物をつくった。ずなシフち、1ず、水酸化ニッケ
ル1!(、、ニッケルおよびコバルト粉末各々60v1
それに水を500cc加えてぬらし、常温で6日間放置
して乾燥させ、これに黒鉛80,9 、樹脂繊維20g
、ポリエチレン粉末30gを加え、これにカルボキンメ
チルセルロースの3重量製水浴液11(!を加えてペー
ストとし、以下へと同じ製法でニッケル極を製造し、電
池をWDXした。これをBとする。さらに、汎用の水酸
化ニッケルを用い、そのまま電池を構成したものをCと
した。
This battery is called A. As a comparative example, nickel hydroxide was entirely produced by a conventional method, and an active material mixture having the same composition as in Example 8 was made using this. Zuna shift, 1, 1 nickel hydroxide! (60v1 each of nickel and cobalt powder
Add 500cc of water to wet it, leave it at room temperature for 6 days to dry, add 80.9 graphite and 20g of resin fiber.
, 30 g of polyethylene powder was added thereto, and a 3-weight water bath solution 11 (!) of carboquine methyl cellulose was added thereto to make a paste. Nickel electrodes were manufactured using the same method as described below, and a battery was WDXed. This will be referred to as B. Furthermore, C was a battery constructed using general-purpose nickel hydroxide.

前記の電池A−Cの光てんgkと各放電時での利用率、
および光電は0.15C,放電は0.5 Cの条件で光
放電し、初期容量の611で低下した場合を寿命とした
ザイクル寿命を次表に示す。
The photon gk of the above batteries A-C and the utilization rate at each discharge,
The cycle life is shown in the table below, where the life is defined as the life when photodischarge is carried out under the conditions of 0.15 C for photoelectric discharge and 0.5 C for discharge, and the life decreases to 611 of the initial capacity.

この表より明らかなように、水酸化ニッケルを製造する
工程でコバルトを添加しておくことにより、後で水にぬ
らして放置する操作を加えなくても、同程度に1で利用
率と寿命は向上し、操作の簡易化か大幅に可能になった
。なお、実施例では水酸化ニッケル11灸に対してコバ
ルトを60.j9加えたか、コバルトの添加量に限定は
ないが、60±50g、つ1す10〜110g程度がよ
い。壕だ、コバルトのみを加えてもよく、さらにコバル
ト。
As is clear from this table, by adding cobalt in the process of manufacturing nickel hydroxide, the utilization rate and lifespan can be maintained at the same level of 1 even without adding the operation of soaking it in water afterwards. It has been improved and the operation has become much easier. In addition, in the example, cobalt was added to 60% of moxibustion to 11% of nickel hydroxide. There is no limit to the amount of cobalt added, but it is preferably about 60±50 g, or about 10 to 110 g. It's a moat, you can just add cobalt, and then more cobalt.

ニッケルにその他の導電材を加えておいてもよい。Other conductive materials may be added to nickel.

また実施例ではペースト式策極について述べたが、スポ
ンジ状金用多孔体にベーストを充填する電極にも同様に
適用することができ、寸だ、ポケット式電極や粉末加圧
式電極の場合は乾燥状態のものをそのま1用いればよい
In addition, although a paste-type electrode was described in the example, it can be similarly applied to an electrode in which base material is filled in a sponge-like porous material for gold. Just use the one in its current condition.

発明の効果 以上のように、本発明によれば簡単な操作で利用率、]
j命ともすぐれたニッケル極を得ることができる。
Effects of the Invention As described above, according to the present invention, the utilization rate can be increased with simple operation.
You can obtain life-saving nickel electrodes.

Claims (2)

【特許請求の範囲】[Claims] (1)  ニッケル塩溶液と苛性アルカリ水溶液とf:
混合して水酸化ニッケルを沈澱させ、これを水洗し沈澱
を採集する工程でコ・・ルト粉末を加え、乾燥する工程
を有する電池用ニッケル電極の製造法。
(1) Nickel salt solution, caustic alkaline aqueous solution, and f:
A method for manufacturing nickel electrodes for batteries, which includes mixing and precipitating nickel hydroxide, washing it with water, collecting the precipitate, adding colt powder, and drying.
(2)  ニッケル塩溶液と苛性アルカリ水溶液とを混
合して水酸化ニッケルを沈澱させ、これを水洗し沈澱を
採集する工程でコバルト粉末を加え、半乾燥状態にして
活物質混合物を調整する工程を有する電池用ニッケルー
鉄の製造法。
(2) A step of mixing a nickel salt solution and an aqueous caustic alkali solution to precipitate nickel hydroxide, washing it with water and collecting the precipitate, adding cobalt powder, and making it semi-dry to prepare an active material mixture. A method for producing nickel-iron for batteries.
JP57172731A 1982-09-30 1982-09-30 Manufacture of nickel electrode for battery Pending JPS5960966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57172731A JPS5960966A (en) 1982-09-30 1982-09-30 Manufacture of nickel electrode for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57172731A JPS5960966A (en) 1982-09-30 1982-09-30 Manufacture of nickel electrode for battery

Publications (1)

Publication Number Publication Date
JPS5960966A true JPS5960966A (en) 1984-04-07

Family

ID=15947269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57172731A Pending JPS5960966A (en) 1982-09-30 1982-09-30 Manufacture of nickel electrode for battery

Country Status (1)

Country Link
JP (1) JPS5960966A (en)

Similar Documents

Publication Publication Date Title
CN111403739A (en) Nickel-cobalt-manganese acid lithium battery cell positive electrode active material, aluminum shell battery cell and manufacturing method thereof
JPS5960966A (en) Manufacture of nickel electrode for battery
JPS58175262A (en) Manufacture of nickel electrode for battery
CN108807820B (en) Rechargeable manganese metal hydride battery
JPS5875767A (en) Manufacture of nickel electrode for battery
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JP3249398B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP4049484B2 (en) Sealed alkaline storage battery
JPS645421B2 (en)
JPS58198856A (en) Manufacture of negative cadmium plate for alkaline storage battery
JPS5819866A (en) Manufacture of cadmium electrode for secondary battery
JPS5832363A (en) Manufacture of negative cadmium electrode for alkaline storage battery
JPS5937659A (en) Manufacturing method for nickel electrode
JPS5897265A (en) Manufacture of nickel electrode for battery
JPS5875768A (en) Manufacture of pasted electrode for battery
JPS5897267A (en) Manufacture of nickel electrode for battery
JPS58121557A (en) Manufacture of nickel electrode for battery
JPS58206055A (en) Manufacture of nickel electrode for battery
JPS5951463A (en) Production method of cell with nickel electrode
JPS58137965A (en) Manufacture of nickel electrode for battery
JPS5897266A (en) Manufacture of nickel electrode for battery
JPS5832745B2 (en) Manufacturing method of cadmium negative electrode plate for alkaline storage batteries
JPS5816467A (en) Manufacture of cadmium negative pole
JPH0217910B2 (en)
JPH0513075A (en) Hydrogen storage alloy electrode and manufacture thereof