JPS5872846A - Air cooling device - Google Patents

Air cooling device

Info

Publication number
JPS5872846A
JPS5872846A JP56170155A JP17015581A JPS5872846A JP S5872846 A JPS5872846 A JP S5872846A JP 56170155 A JP56170155 A JP 56170155A JP 17015581 A JP17015581 A JP 17015581A JP S5872846 A JPS5872846 A JP S5872846A
Authority
JP
Japan
Prior art keywords
condenser
cooling
evaporator
cooling water
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56170155A
Other languages
Japanese (ja)
Inventor
小川 定男
黒沢 辰夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIHON DENKI SYSTEM KENSETSU KK
Original Assignee
NIHON DENKI SYSTEM KENSETSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIHON DENKI SYSTEM KENSETSU KK filed Critical NIHON DENKI SYSTEM KENSETSU KK
Priority to JP56170155A priority Critical patent/JPS5872846A/en
Publication of JPS5872846A publication Critical patent/JPS5872846A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は冷房装置に関する。[Detailed description of the invention] The present invention relates to a cooling device.

電子計算機や通信機器(以下、電算機等という)の如く
大量の半導体素子等を使用する装置がかなりの発熱を伴
なうことは一般に広く知られているところであり、例え
ば電算機等を設置してなる部屋(以下、N算機室等とい
う)の発熱量は一般事務所の略3倍の500〜600 
kca、/7h−m″にも達する場合がある。しかして
近年の建築構造は冷暖房効率を高める親点から断熱性に
優れた建築材料を用いるのが一般的であるため、電算機
等の排熱は冬期や春、秋等の中間期においても自然放熱
されず、ここに′市し)機室等を夏期のみならず通年冷
房して電算機等の環境条件を一定に保つ必要が生じる。
It is generally known that equipment that uses a large number of semiconductor elements, such as electronic computers and communication equipment (hereinafter referred to as "computers, etc."), generates a considerable amount of heat. The calorific value of a room (hereinafter referred to as N computer room, etc.) is 500 to 600, which is approximately three times that of a general office.
kca, /7h-m''.However, in recent years, building structures have generally used building materials with excellent heat insulation properties to increase cooling and heating efficiency, so waste materials such as computers have been used. Heat is not dissipated naturally even during the winter, spring, and autumn, and heat is dissipated naturally.) It is necessary to maintain a constant environmental condition for computers, etc. by cooling machine rooms not only in the summer, but throughout the year.

第1図はかかる点に鑑みて構成された従来の冷房装置を
示すものであり、冷房機本体1内には圧縮器2、凝縮器
3、膨張弁4および蒸発器5からなる冷媒サイクルが形
成され、蒸発a5内の冷媒の気化による冷熱をファン6
により送風し、床[等を介して電算機室等の室内に供給
すると共に、凝縮器3の排熱を冷却塔7から冷却水ボン
デ8を介した冷却水により熱交換し、またはファンを用
いた空冷式の熱交換を行なっている。
FIG. 1 shows a conventional cooling system constructed in consideration of the above points, in which a refrigerant cycle consisting of a compressor 2, a condenser 3, an expansion valve 4, and an evaporator 5 is formed within the main body 1 of the cooling system. The cooling heat generated by the evaporation of the refrigerant in the evaporator a5 is transferred to the fan 6.
At the same time, the exhaust heat from the condenser 3 is exchanged with cooling water from the cooling tower 7 through the cooling water bonder 8, or by using a fan. Air-cooled heat exchange is performed.

しかしながらこの種の冷房装置において、その冷房能力
は最暑期を想定して設定しなくてはならず、このため外
気が寒冷な中間期や冬期においても最暑期の冷房能力で
運転されることとなり、年間を膚じて最暑期における電
力が消費されエネルギーの浪費であると共に極めて不経
済であるという欠点があった。オた中間期や冬期に自然
放熱量が増加するとしても、過冷却を防止するために蒸
発器5に近接1−2て配置された再熱ヒータ−9が稼動
するため、電力消費着は結局、通年で略一定となって工
不ルヂーの利用効率が悪いものであった。
However, in this type of cooling system, its cooling capacity must be set assuming the hottest season, so even in the middle and winter months when the outside air is cold, it will be operated at the cooling capacity of the hottest season. The disadvantage is that electricity is consumed during the hottest season of the year, which is a waste of energy and is extremely uneconomical. Even if the amount of natural heat dissipation increases during the intermediate and winter seasons, the reheat heater 9, which is placed close to the evaporator 5 in order to prevent overcooling, operates, so power consumption eventually decreases. , which remained almost constant throughout the year, resulting in poor utilization efficiency of manufactory.

本発明は成上の点に鑑み提案されたものであり、その目
的とするところは圧縮機、凝縮器、蒸発器等からなる第
1の冷媒サイクルに加えて第2の冷媒サイクルを形成し
、外気が寒冷な冬期等においては圧縮機を運転すること
なく第2の冷媒サイクルの冷媒の自然循環により冷房を
行なうようにし、更に寒冷期における冷却水の冷熱を蓄
熱して冷房に利用することとして市′力消費1Wの節減
を図り省エネルギー化をjうh成すると共に、冷房コス
トの低減を可能ならしめた、電算機室等の空調に使用し
て好適な冷房装置を提供するにある。
The present invention has been proposed in view of the above points, and its purpose is to form a second refrigerant cycle in addition to a first refrigerant cycle consisting of a compressor, a condenser, an evaporator, etc. In winter, when the outside air is cold, the air conditioner is cooled by the natural circulation of the refrigerant in the second refrigerant cycle without operating the compressor, and the cold heat of the cooling water during the cold season is stored and used for air conditioning. To provide a cooling device suitable for use in air conditioning a computer room, etc., which achieves energy conservation by reducing city power consumption of 1 W, and also enables reduction of cooling costs.

以下、図に沿って本発明の実施例を詳細にg)1゜明す
る。
Hereinafter, embodiments of the present invention will be explained in detail with reference to the drawings.

第2図は本発明にかかる冷房装置の全体の溝成を示すも
ので、冷房機本体l内には圧縮機2、第1の凝縮器3、
膨張弁4および第1の蒸発藷5からなる第1の冷媒サイ
クルが形成されている。冷房機本体1の土部には蓄熱熱
交換器1()が器5の上方に近接して設けられた第2の
蒸発器13に連庸している。なお、凝縮器11、・a路
12および蒸発2t13内にはフロンガスの如き冷媒が
封入され、ここに第2の冷媒サイクルが形成されている
。ここで第2の凝縮器11は第2の蒸発器13よりも高
所に設置されるものである。
FIG. 2 shows the overall structure of the cooling device according to the present invention, in which a compressor 2, a first condenser 3,
A first refrigerant cycle consisting of an expansion valve 4 and a first evaporator 5 is formed. A regenerative heat exchanger 1 ( ) is connected to a second evaporator 13 provided above and close to the container 5 in the soil part of the air conditioner main body 1 . Note that a refrigerant such as fluorocarbon gas is sealed in the condenser 11, the a-path 12, and the evaporator 2t13, forming a second refrigerant cycle. Here, the second condenser 11 is installed higher than the second evaporator 13.

蓄熱熱交換器10の構造は第3図に示すとおりであり、
同図において14は後述する如く冷却塔7から供給され
る冷却水が冷却水ボンf8を介して通水される管路で、
この管路14ハ蓄熱熱交換器10の内部に充填された蓄
熱材15の内部を経て、蓄熱熱交換器10の外部へと至
っている。凝縮器11はこの管路14の内部に挿・mさ
れており、凝縮器11の内部の気化された冷媒が管路1
4内の冷却水によって再び凝縮液化されるようになって
いる。
The structure of the regenerative heat exchanger 10 is as shown in FIG.
In the figure, reference numeral 14 denotes a pipe through which cooling water supplied from the cooling tower 7 passes through a cooling water bottle f8, as will be described later.
This conduit 14 passes through the heat storage material 15 filled inside the heat storage heat exchanger 10 and reaches the outside of the heat storage heat exchanger 10 . The condenser 11 is inserted into the pipe 14, and the vaporized refrigerant inside the condenser 11 flows into the pipe 14.
It is designed to be condensed and liquefied again by the cooling water in 4.

再び第2図において、屋外に設けられた冷却塔7の給水
側の管路16はベイパス用の三方弁17を経て冷却水ボ
ンデ8に至り、冷却水・ピンf8から出た管路18け蓄
熱熱交換器10の管路】4に連通し、この管路14は管
路19および三方弁20を介して凝縮器3に至っている
と共に凝縮器3から出た管路21け玉方弁22および管
路93を介して冷却塔7に達している。また、三方弁+
7 、90 、 !2と管路’、’3 、18 、19
との間には、夫々冷却塔7、管路14、凝縮器3への冷
却水の供給をパイ・セスするための・げ路24125 
、26が設けられている。
Referring again to FIG. 2, the pipe 16 on the water supply side of the cooling tower 7 installed outdoors passes through the three-way valve 17 for the bay pass, reaches the cooling water bond 8, and the pipe 18 exiting from the cooling water pin f8 is used for heat storage. 4 of the heat exchanger 10, and this pipe 14 reaches the condenser 3 via a pipe 19 and a three-way valve 20, and also connects a pipe 21 exiting from the condenser 3 with a three-way valve 22 and a three-way valve 22. It reaches the cooling tower 7 via a pipe 93. Also, three-way valve +
7, 90, ! 2 and pipe line', '3, 18, 19
There are channels 24125 for supplying cooling water to the cooling tower 7, pipe 14, and condenser 3, respectively.
, 26 are provided.

なお、三方弁17には冷却水の温度を検出して三方弁1
7を切換えるための0FAi検出器27が付設されてい
ると共に、冷房機本体1内の圧縮機2にはファン6から
床下Fを介して送風される冷気の温度を検出する温度検
出器28が接続されている。また第2図中、31 il
、tエアフィルターである。
In addition, the three-way valve 17 detects the temperature of the cooling water and operates the three-way valve 1.
A temperature detector 28 is connected to the compressor 2 in the air conditioner body 1 to detect the temperature of cold air blown from the fan 6 through the underfloor F. has been done. Also, in Figure 2, 31 il
, t air filter.

次にこの動作を説明する。Next, this operation will be explained.

先ず、夏ルj等において外気温が高い場合には通常の冷
房を行う。すなわち圧縮機2によって圧縮された冷媒は
第1の凝縮器3にて冷却水によシ冷却され液化する。こ
の液化された冷媒は膨張弁4で減圧され第1の蒸発器5
に入る。この蒸発器5において冷媒が気化する際にファ
ン6によって冷房機本体l内に吸入される空気から気化
熱を奪い、かかる冷却された空気が床下Fから電算機室
等の室内へと送られる。
First, when the outside temperature is high, such as during summer, normal cooling is performed. That is, the refrigerant compressed by the compressor 2 is cooled by cooling water in the first condenser 3 and liquefied. This liquefied refrigerant is depressurized by the expansion valve 4 and is transferred to the first evaporator 5.
to go into. When the refrigerant is vaporized in the evaporator 5, the fan 6 removes the heat of vaporization from the air sucked into the air conditioner main body l, and the cooled air is sent from the underfloor F to a room such as a computer room.

次に冬期や中間期、捷たは1日の寒暖差が大きい地域で
の夜間等、外気が寒冷な時期において、冷却塔7の冷却
水温度が室内温度よりも低くなった場合にこれを温度検
出器″27 、 HUBによって検出し、三方弁20 
、22を切り換えて冷却水?ンノ8からの冷却水を管路
18、蓄熱熱交換器10内の管路14、管路19、ペイ
・母ス用の管路26、三方弁22.管路23の経路で供
給すると共に、圧縮機2を停止せしめ、また冷却水の過
冷却防止のために三方弁17を冷却塔7経由の通水をな
すように固定する。
Next, when the temperature of the cooling water in the cooling tower 7 becomes lower than the indoor temperature during periods when the outside air is cold, such as during the winter, mid-season, or at night in areas with large temperature differences during the day, the temperature Detector "27, detected by HUB, three-way valve 20
, switch 22 to coolant? The cooling water from the pipe 8 is transferred to a pipe 18, a pipe 14 and a pipe 19 in the heat storage heat exchanger 10, a pipe 26 for pay/master, a three-way valve 22. At the same time, the compressor 2 is stopped, and the three-way valve 17 is fixed to allow water to flow through the cooling tower 7 to prevent overcooling of the cooling water.

しかして蓄熱熱交換器IO内においては、第2の凝縮器
11が管路14の冷却水により冷却され、第2の蒸発器
13との間に温IW差が生じると、それまで凝縮器11
と蒸発器13との温度が等しく飽和状態にあった冷媒は
蒸発器13内で気化する。
However, in the regenerative heat exchanger IO, when the second condenser 11 is cooled by the cooling water in the pipe 14 and a temperature IW difference occurs between the second condenser 11 and the second evaporator 13, the condenser 11
The refrigerant, which has the same temperature as that of the evaporator 13 and is in a saturated state, vaporizes within the evaporator 13.

この時冷房機本体lに吸入された空気は気化熱を奪われ
て冷却され、ファン6により床下Fへと送り出されて室
内を冷房する。同時に、気化した冷媒は管路12を上昇
して凝縮allに至り、この凝縮器11で再び冷却液化
されて落差により蒸発器13へと戻る。その後、蒸発器
13では凝縮器11との温度差により冷媒が再び気化さ
れ、以後はこの蒸発器13と凝縮器11との間の冷媒の
自然循環により、気化熱を奪われて冷却された空気が継
続的に電算機室等の室内に供給され、環境温+ilが一
定に保たれるものである。
At this time, the air sucked into the air conditioner main body 1 is cooled by being deprived of vaporization heat, and is sent to the underfloor F by the fan 6 to cool the room. At the same time, the vaporized refrigerant ascends through the pipe 12 and reaches the condenser all, where it is again cooled and liquefied in the condenser 11 and returns to the evaporator 13 by the head. After that, the refrigerant is vaporized again in the evaporator 13 due to the temperature difference with the condenser 11, and from then on, the natural circulation of the refrigerant between the evaporator 13 and the condenser 11 takes away the heat of vaporization and cools the air. is continuously supplied to a room such as a computer room, and the environmental temperature +il is kept constant.

また、蓄熱熱交換器10では外気温が低l/)時の冷却
水の冷熱を蓄熱材15に貯えることができるため、外気
温が上昇して冷却水に冷媒の自然循環を行なわせる程変
の冷却能力がなくなった場合には、三方弁′20を切換
えて蓄熱熱交換器10−\の冷却水をペイ・fスさせ、
蓄熱材15の冷熱によって凝縮411を冷却せしめ得、
冷媒の自然循環による冷房を継続することができる。そ
の後、蓄熱材15の蓄熱が飽和状態となり冷熱源となり
得なくなった場合には、温度検出器28がファン6から
の冷気の温度からこれを検出し、三方弁22の切換えに
より冷却水を第1の凝縮器3に通水して圧縮機2を運転
し、第1の冷媒サイクルによる従来の冷房システムに切
換えればよい。
In addition, since the thermal storage heat exchanger 10 can store the cold heat of the cooling water in the heat storage material 15 when the outside temperature is low (l/), it is possible to store the cold heat of the cooling water in the heat storage material 15. When the cooling ability of
The condensate 411 can be cooled by the cold heat of the heat storage material 15,
Cooling can be continued through natural circulation of refrigerant. After that, when the heat storage in the heat storage material 15 reaches a saturated state and can no longer serve as a cold heat source, the temperature detector 28 detects this from the temperature of the cold air from the fan 6, and switches the three-way valve 22 to switch the cooling water to the first It is sufficient to operate the compressor 2 by passing water through the condenser 3 and switch to a conventional cooling system using the first refrigerant cycle.

本発明では季節の温度差や一日のうちの外気温の変化に
応じて冷却水を蓄熱熱交換″er10に導入し、冷媒の
自然循環によって冷気を作り出すようにしたから、従来
の如く冬期や中間期における過冷却現象を生じることが
なく、再熱ヒータ−9も稼動することがない。
In the present invention, cooling water is introduced into the thermal storage heat exchanger 10 according to seasonal temperature differences and changes in outside temperature during the day, and cold air is created by natural circulation of the refrigerant. No supercooling phenomenon occurs in the intermediate period, and the reheat heater 9 does not operate.

なお、以上の実施例では冷却塔7を循環する冷却水を用
いて第2の凝縮器11を冷却している自然冷却したり、
またけファン30によって強制冷却することも可能であ
る。
In addition, in the above embodiment, the second condenser 11 is cooled by natural cooling using the cooling water circulating in the cooling tower 7,
It is also possible to perform forced cooling using the straddle fan 30.

更に第4図(ロ)に示すように、冷房機本体lと蓄熱熱
交換器10とを分離して蓄熱熱交換器】0を屋外に設置
したうえで管路29を同図(イ)の如く自然冷却し、も
しくはファン順により強制冷却してもよい。ここで第4
図(イ)、(ロ)中、人、Bは夫夫共通する管路の接続
部分を示している。
Furthermore, as shown in Fig. 4 (b), the cooling unit l and the regenerative heat exchanger 10 are separated, the regenerative heat exchanger 0 is installed outdoors, and the conduit 29 is connected as shown in Fig. 4 (a). Natural cooling may be performed as described above, or forced cooling may be performed using a fan order. Here the fourth
In Figures (A) and (B), person and B indicate the connecting part of the conduit that is common to both husband and wife.

第5図は第2の蒸発器13の設置位置を種々変更した例
であり、第5図(イ)に示す如く蓄熱熱交換器10を冷
房機本体1と分離して設けると共に、第2の凝縮器11
に連通ずる蒸発器13をファン6からの空気が通過する
床下Fの途中や室内への送気口近傍に設け、あるいは同
図(ロ)に示すように天井Gの近傍に蓄熱熱交換器10
を設けてこれよりやや下方に蒸発器13を設置し、室内
の上部から冷気を供給するように構成してもよい。なお
第5図((イ)、(ロ)中、C,Dは夫々共通する管路
の接続部分を示す。この場合、蓄熱熱交換器10の管路
14に供給する冷却水は前記した如く冷却塔7を循環さ
せるもののみならず、自然冷却やファン30による強制
冷却等の空冷式であってもよいことは言うまでもない。
FIG. 5 shows an example in which the installation position of the second evaporator 13 is changed in various ways. As shown in FIG. Condenser 11
An evaporator 13 that communicates with the fan 6 is installed in the middle of the underfloor F through which the air passes or near the air outlet into the room, or a regenerative heat exchanger 10 is installed near the ceiling G as shown in FIG.
It may be configured such that the evaporator 13 is installed slightly below the evaporator 13 and cool air is supplied from the upper part of the room. In addition, C and D in FIG. 5 ((a) and (b) respectively indicate the common connection parts of the pipes. In this case, the cooling water supplied to the pipes 14 of the thermal storage heat exchanger 10 is as described above. It goes without saying that the cooling tower 7 is not limited to a circulating type, but may be an air cooling type such as natural cooling or forced cooling using the fan 30.

これら第4図および第5図の実施例に共通して言えるこ
とは第2の凝縮器11をこれに連通ずる第2の蒸発器1
3よりも高所に設置するという点であり、これによって
冷媒の自然循環が保証され、本発明による効率の良い冷
房が担保されるもので、かかる凝縮器11と蒸発2へ1
3との位置関係が守られる限り、冷却水の冷却方法や蒸
発器13の設置位置の変更は適宜行い得るものである。
What is common to the embodiments shown in FIGS. 4 and 5 is that the second evaporator 1 communicates with the second condenser 11.
3. This ensures natural circulation of the refrigerant and ensures efficient cooling according to the present invention.
As long as the positional relationship with evaporator 13 is maintained, the method of cooling the cooling water and the installation position of evaporator 13 can be changed as appropriate.

以上述べたように本発明によれば、第1の冷媒サイクル
に加えて、冷媒の自然循環を可能とした第2の蒸発器お
よび凝縮器からなる第2の冷媒サイクルを形成し、冬期
や中間期、または夜間等、外気が寒冷な時には圧縮機の
運転を停止して第1の冷媒サイクルを休止させると共に
冷却水の循環を第2の凝縮器側に切換えるようにしたか
ら、第2の蒸発器と凝縮器との間で冷媒の気化、循環、
凝縮液化が自動的に行なわれ、単に冷却水ポンプやファ
ン等のみの運転によって電算機室等の冷房が行なえる効
果があり、特に冬期や中間期等の電力消費を少なくして
+i年で平均40〜50チの電、力消費10節減が可能
となる利点がある。
As described above, according to the present invention, in addition to the first refrigerant cycle, a second refrigerant cycle consisting of a second evaporator and a condenser that enable natural circulation of the refrigerant is formed, and When the outside air is cold, such as during the winter or at night, the compressor is stopped, the first refrigerant cycle is stopped, and the circulation of cooling water is switched to the second condenser. Vaporization and circulation of refrigerant between the container and the condenser,
Condensation and liquefaction occur automatically, which has the effect of cooling computer rooms, etc. simply by operating the cooling water pump and fan, etc., and reduces power consumption, especially in winter and intermediate seasons, resulting in an average increase in +i years. There is an advantage that power consumption can be reduced by 10% by 40 to 50%.

また蓄熱熱交換器の蓄熱作用により冷却水の冷却能力が
低下した場合でも第2の凝縮器を冷却し得るためエネル
ギーの利用効率が良く、更に一日の寒暖差の太き込地穢
では蓄熱材の蓄熱、排熱のサイクルが夜間蓄熱、昼間υ
1熱の如く短いため蓄熱による第2の凝縮器の冷却が通
年でも可能であり、これによって略90〜95チの電力
消費址の大幅な節減も期待でき、従来の如く過熱ヒータ
ーの稼動が不要であることとも相俟って顕著な省エネル
ギー効果および経済性を奏するものである。
In addition, even if the cooling capacity of the cooling water decreases due to the heat storage effect of the heat storage heat exchanger, the second condenser can be cooled, resulting in high energy usage efficiency. The cycle of heat storage and exhaust heat in the material is heat storage at night and υ during the day.
Since it is as short as 1 heat, it is possible to cool the second condenser by storing heat throughout the year, and this can be expected to significantly reduce power consumption by approximately 90 to 95 inches, and there is no need to operate a superheater like in the past. Coupled with this, it has a remarkable energy saving effect and economical efficiency.

加えて第1の冷媒サイクルを有する従来の各種冷房装置
に第2の冷媒サイクルを構成する蒸発器や凝縮器、その
他僅かな部品を付加するだけで全体が構成できるから、
従来設備の有効利用が図れる等の利点を有する。
In addition, the entire system can be configured by simply adding the evaporator, condenser, and other few parts that make up the second refrigerant cycle to various conventional cooling devices that have the first refrigerant cycle.
It has the advantage of making effective use of conventional equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の冷房装置の説明図、第2図乃至第5図は
本発明の実施例を示すもので第2図は全体の構成を示す
説明図、第3図は蓄熱熱交換器の断面図5第4図(イ)
、(ロ)および第5図(イ)。 (ロ)は夫々他の実施例の説明図である。 2・・・圧縮機、3・・第1の凝縮器、4・・・膨張弁
、5・・・第1の蒸発器、10・・・蓄熱熱交換器、1
1・・第2の凝縮器、12・・管路、13・・・第2の
蒸発層、14・・・管路、15・・・蓄熱材。 才 1 区
Fig. 1 is an explanatory diagram of a conventional cooling device, Figs. 2 to 5 show an embodiment of the present invention, Fig. 2 is an explanatory diagram showing the overall configuration, and Fig. 3 is an explanatory diagram of a regenerative heat exchanger. Cross-sectional view 5 Figure 4 (a)
, (b) and Figure 5 (a). (B) is an explanatory diagram of each other embodiment. 2... Compressor, 3... First condenser, 4... Expansion valve, 5... First evaporator, 10... Regenerative heat exchanger, 1
1... Second condenser, 12... Pipe line, 13... Second evaporation layer, 14... Pipe line, 15... Heat storage material. Sai 1 Ward

Claims (1)

【特許請求の範囲】[Claims] 第1の冷媒サイクルを形成する圧縮機、第1の凝縮器、
膨張弁および第1の蒸発器を備え、第1の凝縮器を屋外
を循環する冷却水にて冷却するようにした冷房装置にお
いて、第2の蒸発器とこの蒸発器に連通しかつ第2の蒸
発器よりも高所に設置される第2の凝縮器とにより第2
の冷媒サイクルを形成すると共に、第2の凝縮器を蓄熱
材が充填されてなる蓄熱熱交換器内例前記冷却水が供給
される管路と共に配設し、外気が寒冷な時に前記冷却水
の通水を第1の凝縮器側から第2の凝縮器側に切換えて
前記圧縮機の運転を停止し、かつ必要に応じて第2の凝
縮器への前記冷却水の通水を停止して前記蓄熱材に貯え
られた冷熱により第2の凝縮器を冷却するようにしたこ
とを特徴とする冷房装置。
a compressor forming a first refrigerant cycle; a first condenser;
A cooling device including an expansion valve and a first evaporator, the first condenser being cooled by cooling water circulating outdoors, the cooling device being connected to a second evaporator and the second evaporator. A second condenser is installed at a higher place than the evaporator.
A refrigerant cycle is formed, and a second condenser is disposed in the heat storage heat exchanger filled with a heat storage material together with a pipe to which the cooling water is supplied, so that when the outside air is cold, the cooling water is Switching water flow from the first condenser side to the second condenser side to stop operation of the compressor, and stopping the flow of the cooling water to the second condenser as necessary. A cooling device characterized in that a second condenser is cooled by cold heat stored in the heat storage material.
JP56170155A 1981-10-26 1981-10-26 Air cooling device Pending JPS5872846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56170155A JPS5872846A (en) 1981-10-26 1981-10-26 Air cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56170155A JPS5872846A (en) 1981-10-26 1981-10-26 Air cooling device

Publications (1)

Publication Number Publication Date
JPS5872846A true JPS5872846A (en) 1983-04-30

Family

ID=15899699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56170155A Pending JPS5872846A (en) 1981-10-26 1981-10-26 Air cooling device

Country Status (1)

Country Link
JP (1) JPS5872846A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6438558A (en) * 1987-07-31 1989-02-08 Takenaka Komuten Co Cooling system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6438558A (en) * 1987-07-31 1989-02-08 Takenaka Komuten Co Cooling system

Similar Documents

Publication Publication Date Title
JP2006313034A (en) Geothermal unit
CN100476311C (en) Temperature and humidity individual control air conditioner system
KR102289404B1 (en) Air cooling system for data center
WO2022267877A1 (en) Multi-mode water-fluorine multi-split system
JP5295481B2 (en) Air conditioning system
JP2991337B1 (en) Unused heat source ice heat storage heat pump device
JP3036634B1 (en) District heating and cooling system with distributed heat pump device
KR100618292B1 (en) Triple purpose integrated power, heat and cold cogeneration system with absortion cooler from natural gas
CA3149757A1 (en) Micro chiller-based heating, ventilation, and air conditioning system
KR101454282B1 (en) Storage heat pump system with compensated heat source
KR200369438Y1 (en) Triple purpose integrated power, heat and cold cogeneration system with absortion cooler from natural gas
JP3653256B2 (en) Hybrid energy system
JPS6029861B2 (en) Solar heating/cooling/water heating equipment
JPS5872846A (en) Air cooling device
JPS5829397Y2 (en) Air conditioning equipment
CN211204587U (en) Local refrigerating system of cold storage space
JPH05126422A (en) Apparatus for cooling and heating
JPH0510168Y2 (en)
JP2003207174A (en) Heat source storage water-cooled heat pump system of separate package type
JP3273734B2 (en) Cold / hot heat supply device
JP3937704B2 (en) Ice heat storage tank heat radiation leveling system
JP2000073862A (en) Energy supply device and energy supply system
JPS6325489Y2 (en)
JP2543776B2 (en) Heating and hot water supply system using heat pump
JPH05118696A (en) Heat pump device