JPS5858925A - Size controller for continuous rolling mill - Google Patents

Size controller for continuous rolling mill

Info

Publication number
JPS5858925A
JPS5858925A JP56157203A JP15720381A JPS5858925A JP S5858925 A JPS5858925 A JP S5858925A JP 56157203 A JP56157203 A JP 56157203A JP 15720381 A JP15720381 A JP 15720381A JP S5858925 A JPS5858925 A JP S5858925A
Authority
JP
Japan
Prior art keywords
tension
rolling pressure
value
rolling
stand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56157203A
Other languages
Japanese (ja)
Inventor
Shuhei Shinno
新野 修平
Takeshi Okamoto
健 岡本
Koichi Ishimura
石村 耕一
Koichi Oba
大場 宏一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56157203A priority Critical patent/JPS5858925A/en
Priority to US06/425,769 priority patent/US4845969A/en
Priority to EP82109011A priority patent/EP0075946B1/en
Priority to DE8282109011T priority patent/DE3277861D1/en
Priority to SU823503947A priority patent/SU1128824A3/en
Publication of JPS5858925A publication Critical patent/JPS5858925A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To provide a titled size controller which controls the breadth size of rolled materials and prevent dimensional changes occuring in the change in temp. by correcting set tension values by the rolling pressure which detects the change in the deformation resistance occuring in the change in the temp. of the rolled materials and the tension of the rolled materials. CONSTITUTION:The rolling pressure measured with a rolling pressure gage 9 while no tension is applied is calculated with an operator 12. When the i-th stand 2 gnaws the preceding end of a rolled material 3, a switch 13 for locking on is closed after the time limit when the transient state during the gnawing settles. The ratio Pr/Pro of the rolling pressure Pr in the preceding end part of the rolled material and the rolling pressure Pro in the stage of locking on is determined by a locking on memory 14. A tension correction value is operated with a tension correction operator 16, and the correction value is added to a set tension value with a calculator 17 and is applied as a command value for a tension controller 11. Now when the temp. of the material 3 drops owing to skid marks or the like, the rolling pressure decreases and a change arises in the breadth size, but the tension correction value is added to the set tension value to increase the tension, whereby the change in the breadth size is prevented.

Description

【発明の詳細な説明】 この発明は、連続圧延機における圧延材の寸法を制御す
る装置に関するものであゐ。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for controlling the dimensions of a rolled material in a continuous rolling mill.

従来の連続圧延機においては、寸法変化を最小に抑える
ために第1図に示すようなセカ制御装置があった。
Conventional continuous rolling mills have a secondary control device as shown in FIG. 1 to minimize dimensional changes.

図において、(1)は第i −1スタンドロール、(2
)は第iスタンドロール、(3)は圧延札、(4)は各
ロールを駆動する電動機、(5)はこの’It 111
th (4)に電力を供給する電力変換器、(6)は速
度制御装k、(7)は電動機(4)の速度を検出する指
速発電機、(8)は各スタンドの駆動電動機(4)の速
度設定に関する加算器、(9)は圧延圧力針、QQは電
動機電流針(ロ)は張力制御装置であり、張力検出装置
(l1m) 、設定張力値と実測張力値とを・比較する
比較器(ob) 、張力偏差値に従がって電動機(4)
の速度を補正する制御演算器(llc)により構成され
ている。
In the figure, (1) is the i-1st stand roll, (2
) is the i-th stand roll, (3) is the rolled tag, (4) is the electric motor that drives each roll, (5) is this 'It 111
th (4) is a power converter that supplies power, (6) is a speed control device k, (7) is a finger speed generator that detects the speed of the electric motor (4), and (8) is a drive electric motor of each stand ( 4) An adder related to speed setting, (9) is a rolling pressure needle, QQ is a motor current needle (b) is a tension control device, and a tension detection device (11m) is used to compare the set tension value and the measured tension value. comparator (ob), electric motor (4) according to the tension deviation value
It is composed of a control calculator (llc) that corrects the speed of the motor.

次に動作について説明する。張力制御装置(ロ)が作動
しない場合は、各駆動電動機(4)は各速度設定値Ni
−1,Ntとなるように速度コントローfl(6)によ
り制御される。次に張力制御装[(ロ)はi−1スタン
ドとiスタンド間の張力値jl*i−a  を圧延圧力
針(9)及び電動機電流計(li)より算出し、その値
が設定値T1.t=s  となるように第iスタンドロ
ール(2ンの速度を補正するものである。以下、この張
力制御装置(ロ)の動作について説明する。圧延材(3
)の先−um動機電流11m1.Oを計測し、トルクア
ーム定I五−重 、O 数を01” ” Pi−1,(1”、として求める0次
6ζ第iスタンド(2)に噛み込むと圧延圧力Pi−1
11に動m1lEiIt−t  を計測し、スタンドr
kI張力により発生する電流変化分ΔIを、Δl1−1
− C1−I X P、−1−42)としてM!する。
Next, the operation will be explained. If the tension control device (b) does not operate, each drive motor (4)
-1, Nt by the speed controller fl(6). Next, the tension control system [(b) calculates the tension value jl*ia between the i-1 stand and the i-stand from the rolling pressure needle (9) and the motor ammeter (li), and that value is the set value T1. .. The speed of the i-th stand roll (2) is corrected so that t=s.Hereinafter, the operation of this tension control device (b) will be explained.
) ahead -um motive current 11m1. When the torque arm is bitten into the 0th order 6ζ i-th stand (2), the rolling pressure is Pi-1.
11, measure the movement m1lEiIt-t, and stand r
The current change ΔI caused by kI tension is expressed as Δl1-1
- C1-I X P, -1-42) as M! do.

張力による変流変化分Δ1−1  と張力値ti、i司
 は比例関係にあるゆえ% jL、i−1: ai −
I XΔI t −s  −(1)として求める。上記
(1) e (2) 。
Since there is a proportional relationship between the current change Δ1-1 due to tension and the tension value ti, i-1, % jL, i-1: ai -
It is determined as I XΔI t -s - (1). (1) e (2) above.

(3)式の演算を張力制御装置(lla)により実行す
る。
The calculation of equation (3) is executed by the tension control device (lla).

この実測張力値tt、i−1と設定張力値Ti、t−s
  との偏差を比較器(11b) jこて演算し、この
偏差信号が零となるよう制御演算器(lie)にて#r
iスタンド(2)の速度補正意を演算し、速度指令加算
器(8)に電力する。以上のようにして圧延Th (a
)の張力を一定に保つこ七ができていた。
This measured tension value tt, i-1 and the set tension value Ti, t-s
The comparator (11b) calculates the deviation from
The speed correction value of the i-stand (2) is calculated and power is supplied to the speed command adder (8). Rolling Th (a
) was formed to keep the tension constant.

従来の連続圧延機の張力制御装置は、以上のように―成
されているので、張力を設定値に一定に 。
The tension control device of conventional continuous rolling mills is constructed as described above, so that the tension can be kept constant at the set value.

保つことはできていたが、圧延材(3)の温度変化に起
因する寸法変化が除去できないという欠点か゛あった。
However, there was a drawback that dimensional changes due to temperature changes in the rolled material (3) could not be removed.

この理由を説明すると、圧k G (3)を穴形ロール
で圧延すると張力により巾寸法が変化すると同時に、圧
延材温度変化に起因する変形抵抗の変化によっても巾寸
法が変化するためである。
The reason for this is that when k G (3) is rolled with a slotted roll, the width changes due to tension, and at the same time, the width changes due to changes in deformation resistance due to changes in the temperature of the rolled material.

以下、第2図〜第5図に基づいて穴形ロールにより構成
される圧延機を一例として説明する。第2図0)、(ロ
)は連続圧延機における圧延材の各スタンド間の断面を
それぞれ示し、@sg(イ)はi。
Hereinafter, a rolling mill constituted by slotted rolls will be described as an example based on FIGS. 2 to 5. Figures 2 (0) and (b) show cross sections between each stand of rolled material in a continuous rolling mill, and @sg (a) is i.

i−1スタンド間断面形状、fR8図(ロ)はiスタン
ド出側の断面形状を示す、第8図は第iスタンドにおけ
るロール(2)及び圧延材(3)の断面を示すが、圧延
材(3)の巾寸法Bは、圧延ロール(2)により拘束さ
れていないため、スタンド間張力(圧縮力)により変化
する。
Figure 8 (b) shows the cross-sectional shape of the exit side of the i-1 stand. The width dimension B in (3) is not constrained by the rolling roll (2) and therefore changes depending on the tension (compressive force) between the stands.

第4図にスタンド間張力(圧縮力)と巾友動ΔBの関係
を示す。っまり張力が大きいと巾変動ΔB4は負方向に
大きくなり、圧縮力が大きいと、巾変動Δに正方向に大
きくなる。また、圧延材(3)の変形抵抗が小番いと、
張力(圧縮力)に対する巾変動Δp関係が大きくなる。
FIG. 4 shows the relationship between the tension between the stands (compressive force) and the width movement ΔB. When the tension is large, the width variation ΔB4 becomes large in the negative direction, and when the compression force is large, the width variation ΔB4 becomes large in the positive direction. Moreover, if the deformation resistance of the rolled material (3) is small,
The relationship between width variation Δp and tension (compressive force) increases.

第6図には圧延材(3)の温度と変形抵抗の関係を示す
が、圧延材温度が高くなゐと変形抵抗が小さくなる。
FIG. 6 shows the relationship between the temperature and deformation resistance of the rolled material (3), and the higher the temperature of the rolled material, the smaller the deformation resistance.

以上のような関係があるので、張力−を一定に保った状
態で圧延材温度が変化すると、変形抵抗が変化し、例え
ばスキッドマーク等のように温度が下降すると変形抵抗
が大きくなり、第4因に示すA点よりB点に圧延材(3
)の巾寸法が変化する。
Because of the above relationship, when the temperature of the rolled material changes while the tension is kept constant, the deformation resistance changes.For example, when the temperature decreases as in the case of skid marks, the deformation resistance increases, and the fourth The rolled material (3
) width dimension changes.

この発明は、上記のような従来のものの欠点を除去する
ためlζなされたもので、圧延材の湿度変化等に起因す
る変形抵抗の変化を圧延圧力により検出し、この圧延圧
力と圧延材の電力(圧縮力)とにより設定張力値を補正
して圧延材の巾寸法の制御を行なうことにより温度変化
に起因する寸法開化を防止することを目的としたもので
ある。
This invention was developed in order to eliminate the drawbacks of the conventional products as described above, and detects changes in deformation resistance caused by changes in humidity of the rolled material using rolling pressure, and calculates the rolling pressure and the power of the rolled material. The purpose of this is to correct the set tension value using (compressive force) and control the width dimension of the rolled material, thereby preventing dimensional deviation due to temperature changes.

以下、この発明の一実施例を図について説明する。第6
図において、(1)〜(ロ)は第1泡1こおける従来装
置のものと同様である。鵜ノよ実絢”圧延圧力Haとス
タンド間張力値ti、1−1  より無張力時の圧延圧
力Prを算出する無張力時圧延圧カ演算器、(至)は材
料光−がiスタンド(2)に噛み込み時無張力時の圧延
圧力Prを記憶するためのロックオン用スイッチ、04
はロックオン時の圧延圧力Proをに憶するメモリ、(
ハ)は無張力時の圧延圧力Prとロックオン時の圧延圧
力Proとの比率を求める除算器、αりは張力補正演算
器、aカは設定張力加算器である。
An embodiment of the present invention will be described below with reference to the drawings. 6th
In the figure, (1) to (b) are the same as those of the conventional device in which one first bubble is placed. The rolling pressure at no tension calculation unit calculates the rolling pressure at no tension Pr from the rolling pressure Ha and the inter-stand tension value ti, 1-1. 2) Lock-on switch for memorizing the rolling pressure Pr when there is no tension when biting, 04
is a memory that stores the rolling pressure Pro at the time of lock-on, (
C) is a divider that calculates the ratio between the rolling pressure Pr at no tension and the rolling pressure Pro at lock-on, α is a tension correction calculator, and a is a set tension adder.

次に上記のように構成される仁の発明の一層先例の動作
について説明する。
Next, the operation of a further precedent of Jin's invention constructed as described above will be explained.

温度変化等に起因する変形抵抗の変化を、この発明にお
いて圧延圧力により測定しようとするものである。スタ
ンド間に張力が働いていない場合の無張力時の圧延圧力
は変形抵抗に比例する関係がある。しかるに、圧延圧力
針(9)により測定される圧延圧力Paはψカによる影
響を受ける。張力と圧延圧力との関係を第TrIlに示
す、ゐ中、実線は後方張力の圧延圧力に及ぼす影響、破
線は釣力眼力の影響を示す。第7図の関係から無張力時
の圧延圧力Prを(4)式に従がい演算器(財)にて算
出する。
The present invention attempts to measure changes in deformation resistance due to temperature changes and the like using rolling pressure. When no tension is applied between the stands, the rolling pressure under no tension is proportional to the deformation resistance. However, the rolling pressure Pa measured by the rolling pressure needle (9) is affected by the ψ force. The relationship between tension and rolling pressure is shown in TrIl, in which the solid line shows the influence of rear tension on rolling pressure, and the broken line shows the influence of fishing force. From the relationship shown in FIG. 7, the rolling pressure Pr in the absence of tension is calculated using a calculator according to equation (4).

Pr = Pa +−gFf φti+16s+亙・t
i、t−1(4)att。
Pr = Pa + - gFf φti + 16s + t
i, t-1(4) att.

、ここで jp、は前方張力に対するait圧力の影会
う    att 1−は後方張力に対する圧延圧力の影響係数t i+1
 、 i  は前方張力 ti、i−1は後方張力をそれぞれ意味する。
, where jp is the influence of the ait pressure on the front tension; att 1- is the influence coefficient of rolling pressure on the rear tension t i+1
, i means the front tension ti, and i-1 means the rear tension, respectively.

圧延材(3)の先端が第iスタンド(2)に噛み込むと
When the tip of the rolled material (3) gets caught in the i-th stand (2).

噛み込み時の過渡状態がおさまる時限後にロックオン用
スイッチ(2)を閉じ、ロックオンメモリ(ロ)に圧延
材先端部の圧延圧力Proを記憶する。
The lock-on switch (2) is closed after the time limit when the transient state at the time of biting subsides, and the rolling pressure Pro at the tip of the rolled material is stored in the lock-on memory (b).

次に、乗算器Q$により無張力時の圧延圧力Prとロッ
クオン時の圧延圧力Proの比P r/P r oを求
める。
Next, the ratio P r /P r o of the rolling pressure Pr at the time of no tension and the rolling pressure Pro at the time of lock-on is determined by the multiplier Q$.

無張力時の圧延圧力Prは圧延材(3)の変形抵抗に比
例するゆえ、Pr/Proは圧延材先端部に対する測定
点部位の変形抵抗の比を示す。
Since the rolling pressure Pr in the absence of tension is proportional to the deformation resistance of the rolled material (3), Pr/Pro represents the ratio of the deformation resistance of the measurement point to the tip of the rolled material.

それから、張力補正演算器α0こおいて張力補正値ΔT
i、i−1を(5)式により演算する。
Then, in the tension correction calculator α0, the tension correction value ΔT
i and i-1 are calculated using equation (5).

Δ’rt、、−1=g(T1.t−1,Pr/Pro)
  −(s)この補正値を張力設定値Ti、i−1に加
算器(財)で加算し張力制御装置(ロ)の指令値として
与える。
Δ'rt,,-1=g(T1.t-1,Pr/Pro)
-(s) This correction value is added to the tension setting value Ti, i-1 by an adder and given as a command value to the tension control device (b).

上記動作を第8図において説明する。圧延部先    
□端近彷部の圧延圧力が圧延材の基準圧延圧力と見なす
と、 Pr/Pro = 1  の時っまり無張力時の圧延圧
力Prが基準圧延圧力Proと等しい時の張カー巾変動
の関係は実線で示され、 Pr/Pro < 1  の
時の胸係は一点鎖線で示される。設定張力Ti、t−1
の状態で基準圧延圧力の場合においては実線のA点に巾
変動値がある。スキ・ドマーク等により圧延材のmuが
下がると、圧延圧力が下がり一点銅線上のB点に巾変動
Δ藤移行し、巾寸法に変化が発生するが、張力補正値f
′r□、1−1  を”1+ilに加算して張力を大き
くすることにより、巾変動Δ階一点組線上の0点に移行
させることができるので巾寸法の変化の発生は防止され
るわけである。
The above operation will be explained with reference to FIG. Rolling part end
□If the rolling pressure at the end-near end portion is considered as the standard rolling pressure of the rolled material, then Pr/Pro = 1, which is the relationship between the tension car width fluctuation when the rolling pressure Pr at no tension is equal to the standard rolling pressure Pro. is shown by a solid line, and the chest value when Pr/Pro < 1 is shown by a dashed line. Setting tension Ti, t-1
In the case of the reference rolling pressure in the state of , the width variation value is at point A of the solid line. When the mu of the rolled material decreases due to gaps and marks, etc., the rolling pressure decreases and the width fluctuation shifts to point B on the copper wire, causing a change in the width dimension, but the tension correction value f
By adding ``r□, 1-1 to ``1+il to increase the tension, it is possible to shift the width variation Δ step to the 0 point on the one-point set line, so the occurrence of a change in the width dimension is prevented. be.

この時、張力が変化するので圧延圧力も変化するが、無
張カ時圧延圧カ演算器に)によりこの圧延圧力の変動を
補正しているため、変形抵抗が変らない限り算出無張力
圧延圧力Prは一定に保たれ、正確な巾寸法制御が行な
われる。
At this time, as the tension changes, the rolling pressure also changes, but since this variation in rolling pressure is corrected by the untensioned rolling pressure calculator), the untensioned rolling pressure can be calculated as long as the deformation resistance does not change. Pr is kept constant and accurate width dimension control is performed.

なお、上記実施例では、無張力時の圧延圧力と張力値と
により設定張力補正値を飯カ1IUIlllvicWj
Itに指令する方式について説明したが、目的とすると
ころは、無張力時の圧延圧力の変1によりスタンド間張
力を補正することゆえ、直接スタンド速度を補正しても
よい。その実施例を第9図および第10図−にそれぞれ
示す。
In addition, in the above embodiment, the set tension correction value is determined based on the rolling pressure and tension value when no tension is applied.
Although the method of commanding It has been described, since the purpose is to correct the inter-stand tension by changing the rolling pressure when no tension is applied, it is also possible to directly correct the stand speed. Examples thereof are shown in FIGS. 9 and 10, respectively.

第9図は、スタンド間張力補正値に従がい、ロール速度
を直接補正し、設定張力値をロール速度変化−張力変化
の応答性に従がって補正しようとするものである、図中
、(i6m)は無張力時の圧延圧力よりスタンド間張力
補正値を導出する演算器。
In FIG. 9, the roll speed is directly corrected according to the inter-stand tension correction value, and the set tension value is corrected according to the responsiveness of roll speed change - tension change. (i6m) is a calculator that derives the inter-stand tension correction value from the rolling pressure when no tension is applied.

(1sb)はスタンド間張力補正値をロール速度に変換
する定数、(16c)はスタンド間張カ袖正値指令に対
し、ロール速度変化の応答性に合致した演算器で、この
演算器(16r; )は定数(16b)の出力によりロ
ール速度が変化するため圧延材張力が変化する。設定張
力が不変であると、張力制御演算器で再度張カ一定とし
てしまうため、これを防止する手段として設けられてい
る。
(1sb) is a constant that converts the inter-stand tension correction value to roll speed, and (16c) is a calculator that matches the responsiveness of roll speed changes to stand tension positive value commands. ), the roll speed changes depending on the output of the constant (16b), so the tension of the rolled material changes. If the set tension remains unchanged, the tension control calculator will make the tension constant again, so this is provided as a means to prevent this.

第10図は、第9図に付加して、スタンド間張カ袖正値
よりロール速度補正値の変換を、張カ制御装置(IIC
)にて実測した張力−ロール速度の利得を用いて行なう
ものである◎ なお、上記実施例では、張力制御&i&が圧延圧力と電
動機電流により制御する例について示したが、他の張力
制御装置を用いたものでも良(、また、張力制御装置の
出力が下流スタンドの速度を補正する例を示したが上流
スタンドの速度全補正す場合でもよい。
In addition to FIG. 9, FIG. 10 shows the conversion of the roll speed correction value from the positive stand tension control device (IIC)
) This is done using the tension-roll speed gain actually measured at (Also, although the example is shown in which the output of the tension control device corrects the speed of the downstream stand, it may also be possible to correct the entire speed of the upstream stand.

さらに、無張力時の圧延圧力の基準値Proをロックオ
ン用フィッチ(至)、ロックオンメモリσりにて圧延材
先端部の測定値による例を示したが、設定器等にて基準
値Pr□を与えても同一の効果を奏する。
Furthermore, an example was shown in which the reference value Pro of the rolling pressure under no tension is determined by the measurement value of the tip of the rolled material using the lock-on fitter (To) and the lock-on memory σ, but the reference value Pro can be set using the setting device etc. Even if □ is given, the same effect is produced.

以上のように、この発明によれば連続圧延機の張力設定
値を圧延圧力により検出した変形抵抗により補正するよ
うに構成しているので、m度変化に起因する寸法変化を
除去することが可能となり。
As described above, according to the present invention, since the tension setting value of the continuous rolling mill is corrected by the deformation resistance detected by the rolling pressure, it is possible to eliminate the dimensional change caused by the m degree change. Next door.

圧延機の巾寸法を正確に制御することができる。The width dimension of the rolling mill can be accurately controlled.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の連続圧延機における張力制御装置を示す
ブロック図、第2図(イ)、(ロ)は各スタンド間の圧
延材断面形状をそれぞれ示す断面図、第8図はスタンド
のロールと圧延材の断面形状を示す断面図、第4図は張
力と圧延材の巾変動の1係を示す特性図、第5図は圧延
材温度と変形抵抗の関係を示す特性図、第6図はこの発
明の一実施例による寸法制御装置を示すブロック1.1
187図は圧延圧力と張力との関係を示す特$48図ζ
まこの発明の詳細な説明するための張カー圧延杓巾寸法
の関係を示す特性図、第9図および鴎lO図はこの発明
のそれぞれ異なる他の実施例を示すブロック図である。 図中%(1)・・・Igi−1スタンドロール、(2)
・・・勤iスタンドロール、(3)・・・圧延樽、(6
)・・・速度制卸装置。 (9)・・・圧延圧力計、(ロ)・・・張力制御装置、
(6)・・・M張力時圧延圧力演算器、(2)・・・ロ
ックオン用スイッチ。 α尋・・・メモリ%O5・・・除算器、叫・・・張力細
正演J1器、(ロ)・・・設定張力加算器である。 尚、各図中同一符号は1−一又は相当部を示す。 代理人 葛野信− 第1図 7シ、t、−7 第2図 (イ)                 (ロ)第3
r1 第4図 第50 力 tMP f丁I:6  図 Tt’、 l’−1 第7図 第81°4 r 視−1 第9図 T;’、1’−1
Figure 1 is a block diagram showing the tension control device in a conventional continuous rolling mill, Figures 2 (a) and (b) are sectional views showing the cross-sectional shape of the rolled material between each stand, and Figure 8 is the roll of the stand. Fig. 4 is a characteristic diagram showing the relationship between tension and width variation of the rolled material, Fig. 5 is a characteristic diagram showing the relationship between rolled material temperature and deformation resistance, and Fig. 6 is a sectional view showing the cross-sectional shape of the rolled material. Block 1.1 shows a dimension control device according to an embodiment of the present invention.
Figure 187 is a special figure 48 showing the relationship between rolling pressure and tension.
9 and 10 are block diagrams showing different embodiments of the present invention. % (1) in the figure: Igi-1 stand roll, (2)
・・・Working stand roll, (3) ・・・Rolling barrel, (6
)...Speed control device. (9)...Rolling pressure gauge, (b)...Tension control device,
(6)...Rolling pressure calculator at M tension, (2)...Lock-on switch. α fathom...memory %O5...divider, shout...tension adjustment J1 device, (b)...setting tension adder. Note that the same reference numerals in each figure indicate 1-1 or equivalent parts. Agent Makoto Kuzuno - Figure 1 7C, t, -7 Figure 2 (A) (B) 3rd
r1 Fig. 4 Fig. 50 Force tMP f t I: 6 Fig. Tt', l'-1 Fig. 7 Fig. 81° 4 r View -1 Fig. 9 T;', 1'-1

Claims (3)

【特許請求の範囲】[Claims] (1)連続圧覧機の各スタンド間の圧延機の張力(圧縮
力)を測定する張力測定器と、上記スタンドの圧延圧力
を測定する圧延圧力針と、上記圧延圧力の実測値と上記
圧延機の張力(圧縮力)とにより設定張力値を補正する
張力補正演算器と、上記補正された設定張力値により上
記スタンド間の圧延機の張力(圧縮力)を制御する張力
制御装置とを備えたことを特徴とする連続圧−延機の寸
法制御装置。
(1) A tension measuring device that measures the tension (compressive force) of the rolling mill between each stand of the continuous rolling machine, a rolling pressure needle that measures the rolling pressure of the above stands, and the actual measured value of the above rolling pressure and the above rolling pressure. A tension correction calculator that corrects a set tension value based on the tension (compressive force) of the machine, and a tension control device that controls the tension (compressive force) of the rolling mill between the stands based on the corrected set tension value. A dimensional control device for a continuous rolling mill, characterized in that:
(2)連続圧延機の各スタンド間の圧延機の張力(圧縮
力)を測定する張力測定器と、上記スタンドの圧延圧力
を測定する圧延圧力針と、上記圧延圧力の実測値と上記
圧延−の張力(圧縮力)とによりロール速度を補正しこ
の補正値に従って設定張力値を補正する張力補正演算器
と、上記補正された設定張力値により上記スタンド向の
圧延機の張力(圧縮力)を制御する張力制御装置とを備
えたことを特徴とする連続圧延機の寸法制御装置。
(2) A tension measuring device that measures the tension (compressive force) of the rolling mill between each stand of the continuous rolling mill, a rolling pressure needle that measures the rolling pressure of the stands, and the actual measured value of the rolling pressure and the rolling - a tension correction calculator that corrects the roll speed according to the tension (compression force) of the roller and corrects the set tension value according to this correction value; A dimensional control device for a continuous rolling mill, characterized by comprising a tension control device for controlling the tension.
(3)連続圧延機の各スタンド間の圧延機の張力(圧縮
力)を測定する張力測定器と、上記スタンドの圧延圧力
を測定する圧延圧力針と、上記圧延圧力の実測値と上記
圧延機の張力(圧縮力)とによりロール速度を補正しこ
の補正値に従って設定張力値を補正する張力補正演算器
と、上記補正された設定張力値により上記スタンド間の
圧延機の張力(圧縮力)を制御する張力制御装置と、上
記張力制御装置の設定張力と上記ロール速度補正値とに
よりロール速度補正ゲインを演算する演算装置とを備え
たことを特徴とする連続圧延機の寸法制御装置。
(3) A tension measuring device that measures the tension (compressive force) of the rolling mill between each stand of the continuous rolling mill, a rolling pressure needle that measures the rolling pressure of the stands, an actual measurement value of the rolling pressure, and the rolling machine. a tension correction calculator that corrects the roll speed based on the tension (compression force) of the stand and corrects the set tension value according to this correction value; and a tension correction calculator that corrects the tension (compression force) of the rolling mill between the stands using the corrected set tension value 1. A dimensional control device for a continuous rolling mill, comprising: a tension control device for controlling; and an arithmetic device for calculating a roll speed correction gain based on the set tension of the tension control device and the roll speed correction value.
JP56157203A 1981-09-30 1981-09-30 Size controller for continuous rolling mill Pending JPS5858925A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP56157203A JPS5858925A (en) 1981-09-30 1981-09-30 Size controller for continuous rolling mill
US06/425,769 US4845969A (en) 1981-09-30 1982-09-28 Dimension control device for continuous rolling machine
EP82109011A EP0075946B1 (en) 1981-09-30 1982-09-29 Dimension control device for a continuous rolling machine
DE8282109011T DE3277861D1 (en) 1981-09-30 1982-09-29 Dimension control device for a continuous rolling machine
SU823503947A SU1128824A3 (en) 1981-09-30 1982-09-29 Device for regulating geometrical size of rolled stock on continuous rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56157203A JPS5858925A (en) 1981-09-30 1981-09-30 Size controller for continuous rolling mill

Publications (1)

Publication Number Publication Date
JPS5858925A true JPS5858925A (en) 1983-04-07

Family

ID=15644451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56157203A Pending JPS5858925A (en) 1981-09-30 1981-09-30 Size controller for continuous rolling mill

Country Status (1)

Country Link
JP (1) JPS5858925A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62107808A (en) * 1985-11-06 1987-05-19 Toshiba Corp Rolling controller
JPH0488756U (en) * 1990-08-27 1992-07-31

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62107808A (en) * 1985-11-06 1987-05-19 Toshiba Corp Rolling controller
JPH0488756U (en) * 1990-08-27 1992-07-31

Similar Documents

Publication Publication Date Title
KR101285952B1 (en) Strip thickness control system for reverse rolling mill
JPH0253123B2 (en)
US20210394245A1 (en) Plate thickness control device and plate thickness control method
JPS5858925A (en) Size controller for continuous rolling mill
JP5418244B2 (en) Control method for cold tandem rolling mill
JPH038843B2 (en)
EP0075946B1 (en) Dimension control device for a continuous rolling machine
JP5610734B2 (en) Thickness control method for taper steel plate whose thickness changes in the rolling direction in a tapered shape
JP3016119B2 (en) Thickness control method of taper plate
JPH05111712A (en) Method for controlling sheet thickness/crown in continuous mill
JPH07102380B2 (en) Shape control method of rolled material in multi-high rolling mill
JP3610338B2 (en) Method and apparatus for temper rolling of metal strip
JP7503525B2 (en) Rolling mill thickness control device, method thereof, and rolling system
JP3400965B2 (en) Plate thickness controller
JP5565214B2 (en) Thickness control method of rolling mill
JPS6124082B2 (en)
JPH0317568B2 (en)
JPH0471605B2 (en)
JPH05220511A (en) Method for controlling thickness in continuous hot rolling mill
JP3355089B2 (en) Plate thickness control device and plate thickness control method
JP2601790B2 (en) Preset equipment for cluster rolling mill
JP2950182B2 (en) Manufacturing method of tapered steel plate
JPS5858924A (en) Size controller for continuous rolling mill
JPH0566204B2 (en)
RU70171U1 (en) DEVICE FOR REGULATING STRIP TENSION WHEN WINDING IN A ROLL