JPS5858924A - Size controller for continuous rolling mill - Google Patents

Size controller for continuous rolling mill

Info

Publication number
JPS5858924A
JPS5858924A JP56157202A JP15720281A JPS5858924A JP S5858924 A JPS5858924 A JP S5858924A JP 56157202 A JP56157202 A JP 56157202A JP 15720281 A JP15720281 A JP 15720281A JP S5858924 A JPS5858924 A JP S5858924A
Authority
JP
Japan
Prior art keywords
tension
rolled material
temperature
control device
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56157202A
Other languages
Japanese (ja)
Inventor
Shuhei Shinno
新野 修平
Takeshi Okamoto
健 岡本
Koichi Ishimura
石村 耕一
Koichi Oba
大場 宏一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56157202A priority Critical patent/JPS5858924A/en
Priority to US06/425,769 priority patent/US4845969A/en
Priority to EP82109011A priority patent/EP0075946B1/en
Priority to DE8282109011T priority patent/DE3277861D1/en
Priority to SU823503947A priority patent/SU1128824A3/en
Publication of JPS5858924A publication Critical patent/JPS5858924A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To provide a size controller for continuous rolling mills which controls breadth sizes always constant despite change in the temp. of rolling mills by correcting the set tension values of the continuous rolling mills according to the change in the temp. of the rolling mills. CONSTITUTION:The temp. of a rolled material 3 is measured with a thermometer 12 and deformation resistance is operated with an operator 14 for deformation resistance. Said resistance is stored into a memory 15 for tracking of the deformation resistance. More specifically, plural deformation resistance values of the material 3 from the point where the thermometer 12 is installed up to the point right under the roll of the 1st stand roll 2 are stored in the memory 15. From the contents of the memory for said deformation resistance value and the set tension values between the stands, correction values for tension are operated. Said correction values are added 17 to the set tension values, which are then applied as command values of a tension controller 11. Now when the measured temp. drops lower than the reference temp., a change in the breadth sizes arises in the set tension values, but the tension is increased by adding the correction values for tension to the set tension values by an adder 17 for set tension, whereby the change in the breadth size is obviated.

Description

【発明の詳細な説明】 この発明は連続圧延機における圧延材の寸法を制御する
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for controlling the dimensions of rolled material in a continuous rolling mill.

従来の連続圧延機においては、寸法変化を最小に抑える
ために第1図に示すような張力制御装置があった。
In conventional continuous rolling mills, a tension control device as shown in FIG. 1 was used to minimize dimensional changes.

図において、(])は第1−1スタンドロール、(2)
は第1スタンドロール、(3)は圧延材、(4)は各ロ
ールを駆動する電動機、(5) fiこの電vJ機(4
)に電力を供給する電力変換器、(6)は速度制御装置
、(7)は電動機(4)の速度を検出する指速発電機、
(8)は各スタンドの駆動電動機(4)の速度設定に関
する加算器、(9)は圧延圧力針、(10)は電動機電
流針、(11)は張力制御装置であり、張力検出−置C
1l&)、設定張力値と実測張力値とを比較する比較器
(IILI)、張力偏差値に従がって電動機(4)の速
度を補正する制御演算器(IIC)により構成されてい
る。
In the figure, (]) is the 1st-1st stand roll, (2)
is the first stand roll, (3) is the rolled material, (4) is the electric motor that drives each roll, (5) is the fi this electric VJ machine (4
), (6) is a speed control device, (7) is a finger speed generator that detects the speed of the electric motor (4),
(8) is an adder for setting the speed of the drive motor (4) of each stand, (9) is a rolling pressure needle, (10) is a motor current needle, and (11) is a tension control device.
1l&), a comparator (IILI) that compares the set tension value and the measured tension value, and a control calculator (IIC) that corrects the speed of the electric motor (4) according to the tension deviation value.

次に動作について説明する。張力制御装置(11)が作
動しない場合は、各駆動電動機(4)は各速度設定1[
N1=z 、 Niとなるように速度コントローラ(6
)により制御される。次に張力制御装置(11〕はi−
1スタンドと1スタンド間の張力値ti、i−1を圧延
圧力計(9)及び電動機電流針(10)より算出し、そ
の値が設定値Ti、i−1となるように第1スタンドロ
ール(2)の速度を補正するものである。以下、この張
力制御装置(11)の動作について説明する。圧延材(
3)の先端が第1−1スタンド(1)噛み込み時の圧延
圧力PL−1、O電動機電流針1−1、Oを計測し、ト
エi −10 ルクアーム定数をC1−1=ア□−1、。・・・(1)
として求める。欠に第1スタンド(2)に噛み込むと圧
延圧力P1−1 電動機電流針i、−,を計測し、スタ
ンド間張力により発生する電流変化分Δ工を、Δl1−
1=11−1−C1−+XPi−1・・・(2)   
として演算する。張力による変流変化分Δ工1−1と張
力値ti、i−1は比例関係にあるゆえ、ti 、1−
1=J−xx7Xi、−5−(3)   として求める
Next, the operation will be explained. If the tension control device (11) is not activated, each drive motor (4) is operated at each speed setting 1 [
The speed controller (6
) is controlled by Next, the tension control device (11)
The tension value ti, i-1 between the first stand and the first stand is calculated from the rolling pressure gauge (9) and the motor current needle (10), and the first stand roll is adjusted so that the value becomes the set value Ti, i-1. This is to correct the speed in (2). The operation of this tension control device (11) will be explained below. Rolled material (
3) Measure the rolling pressure PL-1, O motor current needle 1-1, and O when the tip of the 1-1 stand (1) bites, and calculate the torque arm constant as C1-1=A□- 1. ...(1)
Find it as. If it accidentally jams into the first stand (2), the rolling pressure P1-1 is measured.The motor current needle i,-, is measured, and the current change Δme caused by the tension between the stands is calculated as Δl1-
1=11-1-C1-+XPi-1...(2)
Calculate as Since there is a proportional relationship between the current change due to tension Δk1-1 and the tension value ti, i-1, ti, 1-1
1=J-xx7Xi, -5-(3).

上記(1)、(2)、(3)式の演算を張力制御装置(
IIa)によね実行する。この実測張力[ti、i−1
と設定張 ・力1iTii−1との偏差を比較器(11
1)) Kて演算し、この偏差信号が零となるよう制御
演算器(llc)にて第1スタンド(2)の速度補正量
を演算し、速度指令加算器(8)に出力する。以上のよ
うにして圧延材(3)の張力を一定に保つことができて
いた。
The tension control device (
IIa). This measured tension [ti, i-1
Comparator (11
1)) A control calculator (llc) calculates the speed correction amount of the first stand (2) so that this deviation signal becomes zero, and outputs it to the speed command adder (8). As described above, the tension of the rolled material (3) could be kept constant.

従来の連続圧延機の張力制御装置は以上のように構成さ
れているので、張力を設定値に一定に保つことはできて
も、圧延材(1)の温度変化に起因する寸法変化が除去
できないという欠点があった。
The tension control device of a conventional continuous rolling mill is configured as described above, so although it is possible to keep the tension constant at a set value, it is not possible to eliminate dimensional changes caused by temperature changes in the rolled material (1). There was a drawback.

この理由は、圧延材(1)を大形ロールで圧延すると、
張力により巾寸法が質化すると同時に圧延材温度変化に
起因する変形抵抗の変化によって巾寸法が変化するため
でああ。
The reason for this is that when rolled material (1) is rolled with large rolls,
This is because the width becomes rougher due to tension and at the same time changes due to changes in deformation resistance caused by changes in temperature of the rolled material.

以下これを第2図〜第5図により大形ロールにより構成
される圧延機を一例に説明する。第2図は連続圧延機に
おける圧延材の断面を示し、(イ)は1−1.iスタン
ド間の断面形状、(→けエスタンド後の断面形状を示す
。第3図は第1スタンドにおける口」ル(2)及び圧延
材(3)の断面を示すが、圧延材(3)の巾寸法BII
i、圧延ロール(2)Kよ快拘束されていないため、ス
タンド間張力(圧縮力)により変化する。
This will be explained below with reference to FIGS. 2 to 5, using a rolling mill composed of large rolls as an example. FIG. 2 shows a cross section of a rolled material in a continuous rolling mill, and (a) shows 1-1. The cross-sectional shape between the i-stands and the cross-sectional shape after the stand is shown. Figure 3 shows the cross-section of the mouth hole (2) and the rolled material (3) in the first stand. Width dimension BII
i. Since rolling roll (2) K is not comfortably restrained, it changes depending on the tension (compressive force) between the stands.

第4図にスタンド間張力(圧縮力)と巾変動ΔBの関係
を示す。つまり張力が大きいと巾変動ΔBは自方向に大
きくなり、圧縮力が大きいと巾変動ΔBは正方向に大き
くなる。まな圧延材(3)の変形抵抗が小さいと、張力
(圧縮力)に対する中質動ΔBの関係が大きくなる。第
5図に圧延材温度と変形抵抗の関係を示すが圧延材温度
が高くなると変形抵抗が小さくなる。
FIG. 4 shows the relationship between the tension (compressive force) between stands and the width variation ΔB. That is, when the tension is large, the width variation ΔB becomes large in the self-direction, and when the compression force is large, the width variation ΔB becomes large in the positive direction. When the deformation resistance of the flat rolled material (3) is small, the relationship between the medium dynamic ΔB and the tension (compressive force) becomes large. FIG. 5 shows the relationship between the temperature of the rolled material and the deformation resistance. As the temperature of the rolled material increases, the deformation resistance decreases.

以上のような関係があるので張力値を一定に保った状態
で圧延材温度が変化すると変形抵抗も質化し、例えばス
キンドマーク等のようにその位置の温度がF降すると、
変形抵抗が大きくなり、第4図に示すA点よりB点に圧
延材(3)の巾寸法が変化する。
Because of the above relationship, if the temperature of the rolled material changes while the tension value is kept constant, the deformation resistance will also change, and for example, if the temperature at that location drops F as in skin marks, etc.
The deformation resistance increases, and the width of the rolled material (3) changes from point A to point B shown in FIG.

この発明は上記のような従来のものの欠点を除去するた
めになされたもので、圧延材の温度を検知しこの温度変
化により張力値を制御することで温度変化に起因する巾
寸法の変化を除去することを目的としたものである。
This invention was made to eliminate the drawbacks of the conventional products as described above, and by detecting the temperature of the rolled material and controlling the tension value based on this temperature change, changes in width dimension due to temperature changes are eliminated. It is intended to.

以F、この発明の一実施例を図について説明する。第6
図において、(1)〜(11)までは第1図における従
来装置のものと同じである。(12)は圧延材(3)の
温度を測定する温度針、(13)はたとえばパルス発振
器等のロール回転検出装置、(14)は変形抵抗演算器
、(15)は変形抵抗トラッキング用メモリ、 (16
)は張力補正演算器、(17)は設定張力加算器である
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. 6th
In the figure, steps (1) to (11) are the same as those of the conventional device shown in FIG. (12) is a temperature needle that measures the temperature of the rolled material (3), (13) is a roll rotation detection device such as a pulse oscillator, (14) is a deformation resistance calculator, (15) is a memory for tracking deformation resistance, (16
) is a tension correction calculator, and (17) is a setting tension adder.

次に上記のように構成されるこの発明の一実施例の動作
について説明する。
Next, the operation of an embodiment of the present invention configured as described above will be explained.

圧延材(3)の温度TEMPt一温度針(12)で測定
し、第5図に示す関数に従って変形抵抗演算器(14)
により(4)式の如く変形抵抗−を演算する。
The temperature TEMPt of the rolled material (3) is measured with the temperature needle (12), and the deformation resistance calculator (14) is measured according to the function shown in Fig. 5.
The deformation resistance - is calculated as shown in equation (4).

Km=f (TEMj’)   −・・(4)温度針(
12)の設置場所より第1スタンドロールまでは設置場
所の制御条件により距離があるため、この間の圧延材(
3)の移送過程をトラッキングするため、ロール回転検
出装置(13)を用いて演算した変形抵抗Kmを変形抵
抗トラッキング用メモリ(15)に記憶する。従ってメ
モリ(15)内には、温度針(12)設置点より第1ス
タンドロール直下までの圧延材の変形抵抗値KJI11
が複数個記憶されている。第1スタンドロール直丁のメ
モリ内容Kmと、スタンド間張力設定値Ti、1−IK
より次の式にて張力補正値7Ti、1−1を演算する。
Km=f (TEMj') -... (4) Temperature needle (
Since there is a distance from the installation location of 12) to the first stand roll depending on the control conditions of the installation location, the rolled material (
In order to track the transfer process in step 3), the deformation resistance Km calculated using the roll rotation detection device (13) is stored in the deformation resistance tracking memory (15). Therefore, the deformation resistance value KJI11 of the rolled material from the temperature needle (12) installation point to just below the first stand roll is stored in the memory (15).
Multiple items are stored. The memory content Km of the first stand roll direct, and the inter-stand tension setting value Ti, 1-IK
Accordingly, the tension correction value 7Ti, 1-1 is calculated using the following formula.

7Ti、1−z=p(Ti、i−1,Kin)  −(
5)この補正値を張力設定値Ti、1−IK設定張カ加
算器(17)にて加算し張力制御装置(11)の指令値
として与える。
7Ti,1-z=p(Ti,i-1,Kin)-(
5) This correction value is added to the tension setting value Ti, 1-IK setting tension adder (17), and is given as a command value to the tension control device (11).

上記動作を第7図において説明すると、基準温度におけ
る張カー巾変動の関係を実線で示し、測定温度における
張カー巾変動の関係を一点鎖線で示す。設定張力Ti、
i−1において基準温度の場合は実線の1点に巾変動値
がある。
The above-mentioned operation will be explained with reference to FIG. 7. The solid line shows the relationship between the tension car width variation at the reference temperature, and the dashed line shows the relationship between the tension car width variation at the measured temperature. Set tension Ti,
In the case of the reference temperature at i-1, there is a width variation value at one point on the solid line.

測定温度が基準温度より下がると、張力設定値Ti、i
’−1では一点鎖線上のB点に巾変動7Bが移行し巾寸
法変化が発生するが、設定張力加算器(17)により張
力補正値7Ti、1−1を張力設定値Ti、i−sに加
算して張力を大きくすることにより一点鎖線上の0点に
移行させ巾寸法変化を発生させ、ないようにすることが
できる。
When the measured temperature falls below the reference temperature, the tension setting value Ti,i
'-1, the width variation 7B moves to point B on the dashed-dotted line and a width dimension change occurs, but the set tension adder (17) converts the tension correction value 7Ti, 1-1 into the tension setting value Ti, i-s. By increasing the tension by adding to , it is possible to shift to the 0 point on the dashed line and cause a width dimension change to occur, thereby eliminating it.

なお、上記実施例では圧延材温度と張力値とにより、設
定張力補正値を張カ制御装wに指令する方式について説
明したが、目的とするところけ圧延材温度の変動により
スタンド聞張カを補正することであるから、直接スタン
ド速度を補正してもよいっその実施例を第8図および第
9図に示す。
In addition, in the above embodiment, a method was explained in which a set tension correction value is commanded to the tension control device w based on the temperature of the rolled material and the tension value. A better embodiment in which the stand speed may be directly corrected is shown in FIGS. 8 and 9.

第8図はスタンド間張力補正値に従ってロール速度を直
接補正し、設定張力値をロール速度変化−張力変化の応
答性に従って補正しようとするものである。図中、(1
6a)は変形抵抗よりスタンド聞張力補正値を導出する
演算器、(16リ はスタンド間張力補正値をロール速
度に変換する定数、(16C)f′iスタンド間張カ補
正値指令に対し、ロール速度変化−張力変化の応答性に
合致した演算器である。定a (161))の出力によ
りロール速度が変化するため圧延材張力が変化する。設
定張力が不変であると張力制御演算器(11(り で再
度機カ一定としてしまうため、これを防止する手段上し
て演算器(160)を付加している。
In FIG. 8, the roll speed is directly corrected according to the inter-stand tension correction value, and the set tension value is corrected according to the responsiveness of roll speed change - tension change. In the figure, (1
6a) is a calculator that derives the stand tension correction value from the deformation resistance, (16li is a constant that converts the stand tension correction value to roll speed, (16C) f′i stands tension correction value command, This is an arithmetic unit that matches the responsiveness of changes in roll speed and changes in tension.Since the roll speed changes with the output of constant a (161)), the tension of the rolled material changes. If the set tension remains unchanged, the tension control calculator (11) will make the machine constant again, so a calculator (160) is added as a means to prevent this.

第9図は第8−図に付加してスタンドrIIi張カ補正
値よりロール速度補正値への変換を、張力制御演算器C
IIC)にて実測した張力ロール速度の利得を用いて行
うものである。
In addition to FIG. 8, FIG. 9 shows the conversion from the stand rIIi tension correction value to the roll speed correction value using the tension control calculator
This is done using the tension roll speed gain actually measured in IIC).

なお上記実施例では、張力制御装置(11)が圧延圧力
と電動機電流により制御する場合について示したがこれ
に限定されるものではない。また、張力制御装置!(1
1)の出方が下流スタンドの速度を補正する場合につい
て示したが上流スタンドの速度を補正するようにしても
よい。さらに変形抵抗トラッキングメモリ使用する場合
を示し念が、温度針(]2)と1スタンド(2)闇の距
離が短かい場合や圧延速度が早い場合は、ロール回転検
出装置(13)及び変形抵抗トラッキングメモリ(15
)を省略しても良い。まな、変形抵抗演算器(14) 
K jり温度を変形抵抗に換算後張力補正値を演算する
例を示したが、温度と張力値より直接張力補正値を演算
するように変形して4同様な効果を発揮する。
In the above embodiment, the tension control device (11) is controlled by rolling pressure and motor current, but the tension control device (11) is not limited to this. Also a tension control device! (1
Although the case in which the speed of the downstream stand is corrected is shown in 1), the speed of the upstream stand may be corrected. Furthermore, when using the deformation resistance tracking memory, if the distance between the temperature needle (2) and the stand (2) is short or the rolling speed is high, roll rotation detection device (13) and deformation resistance Tracking memory (15
) may be omitted. Mana, deformed resistance calculator (14)
Although an example has been shown in which the tension correction value is calculated after converting the temperature into deformation resistance, the same effect as in 4 can be achieved by modifying the structure so that the tension correction value is directly calculated from the temperature and tension values.

以上のように、この発明によれば連続圧延機の張力設定
値を圧延機温度の変化に応じて補正するようにしたので
、圧延機温度の変化があっても常に巾寸法を一定に制御
することが可能となる。
As described above, according to the present invention, the tension setting value of the continuous rolling mill is corrected according to the change in the rolling mill temperature, so that the width dimension can always be controlled to be constant even if the rolling mill temperature changes. becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の1続圧延機における張力制御装置を示す
グロック図、第2図0)(噂は各スタンド間の圧延材断
面形状をそれぞれ示す断面図、第3図はスタンドのロー
ルと圧延材の断面形状を示す断面図、第4図は張力(圧
縮力)と圧延材中変動の関係を示す特性図、第5図は圧
延材温度と変形抵抗の関係を示す特性図、第6図はこの
発明の一実施例における寸法制御装置を示すブロック図
、第7図はこの発明の詳細な説明するための張力−圧延
材巾寸法特性図、第8図、第9図はこの発明の異なる他
の実施例をそれぞれ示すブロック図である。 図中、(1)は第1−1スタンド、(2)は第1スタン
ド、(3)は圧延材、(6) F!速度制御装置、(1
1) 11張力制御装置、(12)は圧延材温度針、(
13) t−tロール回転検出装置、(14) Fi変
形抵抗演算器、(16) t″を張力補正演算器、(1
7)は設定張力加算器である。 尚、各図中同一符号は同一または相当部分を示す。 代 理 人  葛  野    信  −第11”4 に、イーl 第2ryl 第3図 第1図 第514 EMp 第6図 h と−l 第7図 鴨1−豹 第81η 万’、 t’J
Figure 1 is a Glock diagram showing the tension control device in a conventional continuous rolling mill, Figure 2 is a cross-sectional diagram showing the cross-sectional shape of the rolled material between each stand, and Figure 3 is a cross-sectional diagram showing the rolls of the stand and the rolling A cross-sectional view showing the cross-sectional shape of the material, Fig. 4 is a characteristic diagram showing the relationship between tension (compression force) and fluctuations in the rolled material, Fig. 5 is a characteristic diagram showing the relationship between the temperature of the rolled material and deformation resistance, and Fig. 6 is a block diagram showing a dimension control device in one embodiment of the present invention, FIG. 7 is a tension-rolled material width dimension characteristic diagram for detailed explanation of this invention, and FIGS. 8 and 9 are diagrams showing different dimensions of this invention. They are block diagrams showing other embodiments. In the figures, (1) is the 1-1 stand, (2) is the first stand, (3) is the rolled material, (6) F! speed control device, ( 1
1) 11 tension control device, (12) rolling material temperature needle, (
13) t-t roll rotation detection device, (14) Fi deformation resistance calculator, (16) t″ tension correction calculator, (1
7) is a setting tension adder. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent Makoto Kuzuno - No. 11"4, Il No. 2 ryl Fig. 3 Fig. 1 Fig. 514 EMp Fig. 6 h and - l Fig. 7 Duck 1 - Leopard No. 81 η 10,000', t'J

Claims (6)

【特許請求の範囲】[Claims] (1)連続圧延機の各スタンド間の圧延材の張力(圧縮
力)を測定する張力測定器と、上記圧延機の温度を測定
する温度針と、上記圧延材の温度と上記圧延材の張力(
圧縮力)とKより設定張力値を補正する張力補正演S器
と、上記補正された設定張力値により上記スタンド間の
圧−延材の張力(圧縮力)を制御する張力制御装置とを
備えたことを%徴とする連続王滝機の寸法制御装置。
(1) A tension measuring device that measures the tension (compressive force) of the rolled material between each stand of the continuous rolling mill, a temperature needle that measures the temperature of the rolling mill, and the temperature of the rolled material and the tension of the rolled material. (
a tension correction operator that corrects the set tension value from the set tension value (compressive force) and K; and a tension control device that controls the tension (compressive force) of the rolled material between the stands using the corrected set tension value. A dimensional control device for a continuous Otaki machine that takes percentage characteristics.
(2)圧延材の温度を変形抵抗に換算するようにしたこ
とを特徴とする特許請求の範囲第1項記載の連続圧延機
の寸法制御装置。
(2) A dimensional control device for a continuous rolling mill as set forth in claim 1, characterized in that the temperature of the rolled material is converted into deformation resistance.
(3)連続圧延機の各スタンド間の圧延材の張力(圧縮
力)を測定する張力測定器と、上記圧延材の温度を測定
する温度針と、上記圧延材の温度と上記圧延材の張力(
圧縮力)とKよりロール速度を補正しこの補正値に従っ
て設定張力値を補正する張力補正演算器と、上記補正さ
れた設定張力値により上記スタンド間の圧延材の張力(
圧縮力)を制御する張力制御装置上を備えたこをを特徴
とする連続圧延機の寸法制御装置。
(3) A tension measuring device that measures the tension (compressive force) of the rolled material between each stand of the continuous rolling mill, a temperature needle that measures the temperature of the rolled material, and the temperature of the rolled material and the tension of the rolled material. (
a tension correction calculator that corrects the roll speed from the compressive force) and K and corrects the set tension value according to this correction value; and a tension correction calculator that corrects the set tension value according to the corrected value;
1. A dimensional control device for a continuous rolling mill, comprising a tension control device for controlling compressive force.
(4)圧延材の温度を変形抵抗に換算するようにしたこ
七を特徴とする特許請求の範囲第3項記載の連続圧延機
の寸法側v4装置。
(4) The dimension-side v4 device for a continuous rolling mill as set forth in claim 3, characterized in that the temperature of the rolled material is converted into deformation resistance.
(5)連続圧延機の各スタンド間の圧延材の張力(圧縮
力)を測定する張力測定器と、上記圧延材の温度を測定
する温度計と、上記圧延材の温度と上記圧延材の張力(
圧縮力)七によりロール速度を補正しこの補正値に従っ
て設定張力値を補正する張力補正演算器と、上記補正さ
れた設定張力値によah記スタンド崗の圧延材の張力(
圧縮力)を制御する張力制御装置と、上記張力制御装置
の設定張力と上記ロール速度補正値とにようΩ−ル運度
補正ゲインを演算する演算装置上を備えたことを特徴と
する連続圧延機の寸法制御装置。
(5) A tension measuring device that measures the tension (compressive force) of the rolled material between each stand of the continuous rolling mill, a thermometer that measures the temperature of the rolled material, and the temperature of the rolled material and the tension of the rolled material. (
a tension correction calculator that corrects the roll speed according to (compression force) and corrects the set tension value according to this correction value; and a tension correction calculator that corrects the set tension value according to the corrected value;
continuous rolling comprising: a tension control device for controlling compressive force); and an arithmetic device for calculating an Ω-roll performance correction gain based on the set tension of the tension control device and the roll speed correction value. Machine dimension control device.
(6)圧延材の温度を変形抵抗に換算するようにしたこ
とを特徴とする特許請求の範囲゛第5項記載の連続圧延
機の寸法制御装r1t。
(6) The dimensional control device for a continuous rolling mill according to claim 5, characterized in that the temperature of the rolled material is converted into deformation resistance.
JP56157202A 1981-09-30 1981-09-30 Size controller for continuous rolling mill Pending JPS5858924A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP56157202A JPS5858924A (en) 1981-09-30 1981-09-30 Size controller for continuous rolling mill
US06/425,769 US4845969A (en) 1981-09-30 1982-09-28 Dimension control device for continuous rolling machine
EP82109011A EP0075946B1 (en) 1981-09-30 1982-09-29 Dimension control device for a continuous rolling machine
DE8282109011T DE3277861D1 (en) 1981-09-30 1982-09-29 Dimension control device for a continuous rolling machine
SU823503947A SU1128824A3 (en) 1981-09-30 1982-09-29 Device for regulating geometrical size of rolled stock on continuous rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56157202A JPS5858924A (en) 1981-09-30 1981-09-30 Size controller for continuous rolling mill

Publications (1)

Publication Number Publication Date
JPS5858924A true JPS5858924A (en) 1983-04-07

Family

ID=15644429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56157202A Pending JPS5858924A (en) 1981-09-30 1981-09-30 Size controller for continuous rolling mill

Country Status (1)

Country Link
JP (1) JPS5858924A (en)

Similar Documents

Publication Publication Date Title
US2883895A (en) Rolling mill thickness control system
JP3020771B2 (en) Plant control device
JPS5858924A (en) Size controller for continuous rolling mill
US3688532A (en) Control system for tandem rolling mill based on the constant volume principle
EP0075946A2 (en) Dimension control device for a continuous rolling machine
JP2018108599A (en) Plate thickness control device of rolling machine and method thereof and rolling machine
US3892112A (en) Rolling mill gauge control
JPS5858925A (en) Size controller for continuous rolling mill
JPH09239418A (en) Velocity compensating arithmetic unit of continuous rolling mill
JP3367401B2 (en) Shape control method of rolled material in rolling line
KR20040110479A (en) Forward-rate compensation method of rolling mill
KR950013243B1 (en) Control method and apparatus for rolling mill
JPH11285717A (en) Device for controlling eccentricity of roll for rolling mill
JP2846143B2 (en) Control device for hot rolling mill
JPH05220511A (en) Method for controlling thickness in continuous hot rolling mill
JPH06277729A (en) Method for restraining and controlling looper hunting in continuous rolling mill
JP3219975B2 (en) Roll bearing oil film thickness correction method for rolling mills
JP2763490B2 (en) Method of controlling tension between stands of rolling mill
JPH0157961B2 (en)
JPH0566204B2 (en)
JPS5820683B2 (en) Renzokushikiatsuenkiniokeruchiyouriyokuseigiyohouhou
JPH05146811A (en) Looperless rolling method for continuous hot finishing mill
JP2001018004A (en) Method for rolling tube stock with mandrel mill and mandrel mill
JPH11156418A (en) Control method for tension among stands in multistand rolling
JP3119169B2 (en) Thickness control method in hot continuous rolling mill