JPS5854633A - Microprocessing method - Google Patents

Microprocessing method

Info

Publication number
JPS5854633A
JPS5854633A JP56154228A JP15422881A JPS5854633A JP S5854633 A JPS5854633 A JP S5854633A JP 56154228 A JP56154228 A JP 56154228A JP 15422881 A JP15422881 A JP 15422881A JP S5854633 A JPS5854633 A JP S5854633A
Authority
JP
Japan
Prior art keywords
resist
film
electron beam
mask
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56154228A
Other languages
Japanese (ja)
Inventor
Katsuhiro Kawabuchi
川「淵」 勝弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56154228A priority Critical patent/JPS5854633A/en
Publication of JPS5854633A publication Critical patent/JPS5854633A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Analytical Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Drying Of Semiconductors (AREA)
  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To reduce fog caused by the back scattering of an electron beam and to form a high-accuracy minute pattern by a method wherein a high-density conductive film is formed on a processed body and a sensitive electron resist is formed on the film. CONSTITUTION:A high-density conductive film 13 controlling the penetration of electrons is formed on a processed body 12 and a sensitive electron resist 14 is formed on the film 13. Next, the resist 14 is exposed with a desired pattern and developed by using electron beams accelerated at 7-15keV. Dry etching is applied to the film 13 by using the resist 14 as a mask and then, dry etching is applied to the processed body 12 by using the film 13 as a mask. Therefore, the back scattering of an electron beam can extremely be reduced and sufficient exposure is also applied to the resist. Therefore, a decrease in resolving power caused by back scattering can be prevented and a pattern with a thickness of several mum or less can be formed with high accuracy.

Description

【発明の詳細な説明】 本発明は、電子ビームを用いた微細加工方法の改良に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in microfabrication methods using electron beams.

近時、半導体ウェーハやマスク基板等に微細な7譬ター
ンを形成するものとして、電子ビーム露光技術を利用し
た微細加工方法が用いられている。電子ビーム露光技術
は光露光技術と異なり、回折に起因する解像力の低下が
ない九め、本質的に微細・fターフを容易に形成できる
と云われている。ところが、電子ビームには固体中の散
乱と云う別のls像力の制限要素があり、これが数〔μ
m〕以下の・譬ターン形成に重大な問題となっている。
2. Description of the Related Art Recently, a microfabrication method using electron beam exposure technology has been used to form fine heptad turns on semiconductor wafers, mask substrates, and the like. Unlike light exposure technology, electron beam exposure technology does not reduce resolution due to diffraction, and is said to be essentially capable of easily forming fine f-turfs. However, the electron beam has another factor limiting the ls image power, called scattering in solids, and this
m) The following - parable turn formation has become a serious problem.

第1図は従来の微細加工方法に係わる電子ビーム露光法
を示す模式図である。基板1の上向に形成された被加工
物2上に感電子レジス)Jを塗布し、とのレジス)Jに
例えば20(K@V)に加速された電子ビームを照射し
て所望/fターンヲ露党する。次いで、レジストJを現
像し九のち該レジストJをマスクとして被加工物2を戸
うイエ、チングし、−臂ターン形成を行っている。
FIG. 1 is a schematic diagram showing an electron beam exposure method related to a conventional microfabrication method. An electron-sensitive resist (J) is coated on the workpiece 2 formed above the substrate 1, and the resist (J) is irradiated with an electron beam accelerated to, for example, 20 (K@V) to form a desired /f Turn to Russia. Next, the resist J is developed, and then the workpiece 2 is etched using the resist J as a mask to form a -arm turn.

ここで基板1をシリコン、被加工物2を厚さO,S(μ
m〕の酸化シリコン、レゾスト3Yr厚さ1〔綿〕のp
−仏(ポリメチルメタク1ルート)とすると、電子ビー
ムは基板1内の数〔μ畷〕の深さまで到達し、その深さ
から後方散乱する。この後方散乱した電子はレゾス)J
K再入射し同レジスト1に、所謂カプリ現象を引き起こ
す、このカプリの及ぶ範囲は電子ビームの径の大きさに
拘らず数〔μm) K達する・そして、レゾストJを現
像した場合、上記カプリによりレゾスト−ターンの寸法
精度が損われ、と九によp数〔#解〕以下の・ヤターン
を精度良く形成することはできなかった。
Here, the substrate 1 is silicon, and the workpiece 2 has a thickness of O, S (μ
m] silicon oxide, Resost 3Yr thickness 1 [cotton] p
-French (polymethylmethac 1 route), the electron beam reaches a depth of several [μ] within the substrate 1, and is backscattered from that depth. This backscattered electron is res)J
When K re-enters the resist 1, it causes the so-called capri phenomenon.The range of this capri reaches several [μm] K, regardless of the diameter of the electron beam.And when resist J is developed, the capri causes the so-called capri phenomenon. The dimensional accuracy of the resist turn was impaired, and it was not possible to form a diameter turn with a number of p or less with high precision.

そこで、上記後方散乱のII!囲を小さくする手段とし
て、電子ビームのエネルギを小さくすることが試みられ
ている0%に、5 (K@V) 以下Oエネルギ和する
と電子ビームの侵入深さが極めて小さくな9、後方散乱
が及ぶ範囲も小さくな炒、ffンクロンの・ナターン形
成に支1iIがなくなる。しかしながら、この場合電子
ビームの侵入深さが小さいためレジスト1の全域を十分
に露光できないと云う問題を生じる。また、電子ビーム
のエネルギを10(K@V)に設定し九場合にはs 2
0(K@V)の場合より多小嵐好な結果が得られるが、
満足できるものではなかった。
Therefore, the above-mentioned backscatter II! An attempt has been made to reduce the energy of the electron beam as a means to reduce the energy of the electron beam.If the sum of O energies is less than 5 (K@V), the penetration depth of the electron beam is extremely small9, and backscattering is The area covered is also small, and there is no support 1iI in the formation of ffnkuron. However, in this case, since the penetration depth of the electron beam is small, a problem arises in that the entire area of the resist 1 cannot be sufficiently exposed. Also, if the energy of the electron beam is set to 10 (K@V) and 9, s 2
Although a better result can be obtained than in the case of 0 (K@V),
It wasn't satisfying.

本発明は上記事情を考慮してな畜れたもので、その目的
とするところは、電子ビームの後方敏LK起因するカプ
リを低減でき、かつレジストを十分に露光でき、微細・
皆ターンを高精度に形成することのできる微細加工方法
を提供することにある。
The present invention was developed in consideration of the above circumstances, and its purpose is to reduce the capri caused by the backward sensitivity LK of the electron beam, to sufficiently expose the resist, and to
The object of the present invention is to provide a microfabrication method that can form turns with high precision.

まず、本発明のaSを説明する。電子ビームの加速電圧
を7(K@V)以下とすると前述しえ如くレジストの十
分な露光は不可能である。このため、電子ビームの加速
電圧は7(K@V)以上にする必要がある。また、VB
度の高い物質はど電子の侵入深さは浅くなり、それだけ
後方散乱の及ぶ範−が狭くなる。この九め、ある程度高
い密度の物質をある程度以上の膜厚に形成すれば、電子
の侵入を抑制できることになる。そして、本発明者等の
研究によれば、密度りが10以上の導電膜をD 〔μm
〕以上の厚さに形成すると、15(K@V)以下の電子
ビームの侵入は大11に抑制されることが判った。
First, the aS of the present invention will be explained. If the acceleration voltage of the electron beam is set to 7 (K@V) or less, sufficient exposure of the resist is impossible as described above. Therefore, the acceleration voltage of the electron beam needs to be 7 (K@V) or more. Also, VB
In materials with a high density, the penetration depth of electrons becomes shallower, and the range of backscattering becomes narrower. Ninth, if a material with a certain high density is formed to a certain thickness or more, the penetration of electrons can be suppressed. According to research by the present inventors, a conductive film with a density of 10 or more is D [μm
] It was found that when formed to a thickness greater than 1, the penetration of electron beams of 15 (K@V) or less is suppressed to a factor of 11.

本発明はこのような点に着目し、被加工物上に高密度の
導電膜、を形成し、この導電膜上に感電子レジストを形
成したのち、7〜l 5(K@V)に加速された電子ビ
ームを用いてレジストを所望ノfターンに露光し現像し
、次いでレジストをマスクとして上記導電膜をドライエ
、チンrし、しかるのち導電膜tマスクとして上記被加
工物をドライエ、チンrするようにした方法である。
The present invention has focused on these points, and after forming a high-density conductive film on the workpiece and forming an electrosensitive resist on the conductive film, it is accelerated to 7 to l5 (K@V). The resist is exposed to a desired number of turns using an electron beam, and then developed. Then, using the resist as a mask, the conductive film is subjected to a dry etching process, and then the workpiece is subjected to a dry etching process using a conductive film mask as a mask. This is the method I used to do it.

したがって、本発明によれば、電子ビームの後方散乱を
極めて小さくでき、かつレジストの十分な露光を行うこ
とができる。このため、上記後方散乱に起因する解像力
低下を防止し、数(J帛〕以下Odターン會もjl!I
精変に形成する仁とがてきる。−例として、第2mK示
す如くレゾスト30編厚を1[JllI)、白金(密度
214 t/d )からなる導電膜4のg厚t O,l
(s鯛〕とし、加速電fE 1 G(K@V)の電子ビ
ームでレゾストJ’)露光し九とζろ、同図にも示す如
く後方散乱の及ぶ範囲が181図に比して著しく小さく
なった。
Therefore, according to the present invention, backscattering of the electron beam can be extremely reduced, and the resist can be sufficiently exposed. For this reason, it is possible to prevent the resolution from decreasing due to the backscattering mentioned above, and to reduce the number of Od turns below Jl!I.
The jin that forms in a beautiful way comes. - As an example, as shown in the second mK, the thickness of the resist 30 is 1 [JllI], and the g thickness t O, l of the conductive film 4 made of platinum (density 214 t/d)
(s sea bream) and exposed it with an electron beam of accelerated electric current fE 1 G (K@V) (9 and ζ). It became smaller.

そしてto場合、l〔μm3寸法のI豐ターνを高精度
に露光することがで自た。また、被加工物2として絶縁
物t!fIいる場合、導電1114が電子ビームによる
チャージアラfを訪止し、z4ターンの歪を防止できる
等の利点がある。なお、微細加工では通常イオンビーム
エツチング、反応性イオンビームエツチング、反応性ス
/譬、タエ。
In the case of to, it was possible to expose with high precision an I-tar ν having a dimension of l [μm3. Further, as the workpiece 2, an insulator t! When there is fI, the conductor 1114 visits the charger f caused by the electron beam, and there are advantages such as being able to prevent distortion of the z4 turn. In microfabrication, ion beam etching, reactive ion beam etching, and reactive etching are usually used.

チンr等のドライエツチング用りられるが%導電膜はド
ライエ、チンrのマスク材として十分使用可能である。
Although dry etching such as Chin-R is used, the % conductive film can be sufficiently used as a mask material for Dry etching and Chin-R.

以下、本発明の詳細を図示の実施例によりてlIS!明
する。
The details of the present invention will be explained below with reference to illustrated embodiments. I will clarify.

第3図−)〜(dJは本発明の一実1例に係わる黴am
/eターン形成工程を示す断復模式−であみ。
Figure 3-) to (dJ are molds related to one example of the present invention.
/e A cut-and-return model showing the turn forming process.

マス、JllIS tllJklK示ft1J < y
 9 w y基1i: I l 上に熱酸化技術を用い
被加工物としての酸化シリコン膜12を0.5〔μ講〕
の膜厚に形成し、この酸化シリコン膜12上にアルfン
スイ、り蒸着法で白金II(導電膜)JJtO,1(μ
調〕の膜厚に形成し、続いて白金膜13上K Plil
!MAレジスト14をl〔μ講〕の厚さに回転塗布し九
0次いで、電子ビームを用い加速電圧10(K@V)、
ドーズ量60(Ja/j)の条件下で、レジスト141
1C1,2e4 、10(ms)の−々ターンを露光し
た。続いてインゾロパノールとメチルインブチルケトン
と。
Mass, JllIS tllJklK show ft1J < y
9 w y group 1i: I l A silicon oxide film 12 as a workpiece is formed on the silicon oxide film 12 by 0.5 [μ] using thermal oxidation technology.
Platinum II (conductive film) JJtO,1 (μ
Then, K Pliil was formed on the platinum film 13 to a thickness of
! MA resist 14 was spin-coated to a thickness of 1 [μ], and then an electron beam was used to apply an accelerating voltage of 10 (K@V).
Under the condition of a dose amount of 60 (Ja/j), the resist 141
1C1, 2e4, each turn of 10 (ms) was exposed. Followed by inzolopanol and methylinbutylketone.

混合液でレジスト14を現像し九ところ、第3図会)に
示す如きレノスト・ナターンが形成されえ。
When the resist 14 is developed with the mixed solution, a rennost-natern pattern as shown in FIG. 3 is formed.

なお、第3図会)では前記1(μ溝〕と2〔μ寓)(D
I!党部を現像した状態を示している。
In addition, in Figure 3), the above 1 (μ groove) and 2 [μ groove] (D
I! It shows the developed state of the party section.

次に、アル♂ンイオンピームエ、チング技櫂を用い、第
3図(@)に示す如くレジスト14をマスクとして白金
I[1st−工、チングし九、続いて、7レオンと水素
との混合ガスを反応ガスとする反応性イオン工、チング
技術を用い、第8111(d)に示す如く白金11JJ
をマスクとしてシリコン域化1s11を工、チングし友
、かくして形成された・+4−ンは1 、2 、4 、
10(岸購〕のいずれの寸法であっても精度良いもので
あった。
Next, as shown in FIG. 3 (@), using an aluminium ion beam and a chlorine gas, with the resist 14 as a mask, platinum I Platinum 11JJ as shown in Section 8111(d) using reactive ionization and ching techniques as a reactive gas.
The silicon region 1s11 is processed and etched using as a mask.
No. 10 (Kishi-purchased), all dimensions had good accuracy.

なお、上述した実施例てはシリコン基板を用いたが、こ
の代シにガラス基板を用りてもよく、クロム等を被加工
物とする7t)マスクの作製に適用することもできる。
Note that although a silicon substrate was used in the above embodiment, a glass substrate may be used instead, and the present invention can also be applied to the production of a 7t) mask in which the workpiece is chromium or the like.

また、導電膜としては白金膜に限るものではなく、密度
の高い物質、好ましくは密度りが10以上でその膜厚、
がυ 〔綿〕以上のものであればよい、さらに、被加工
物やレノストの材質および膜厚等は、仕iaK応じて適
宜定めればよい、その他、本発明の要旨を逸脱しない@
−で、櫨々変形して実施する仁とができる。
In addition, the conductive film is not limited to a platinum film, but is a material with high density, preferably a material with a density of 10 or more and a film thickness of
It is sufficient if the material is υ [cotton] or more. Furthermore, the material and film thickness of the workpiece and lenost may be determined as appropriate depending on the specifications, without departing from the gist of the present invention.
-, it is possible to transform the shape and execute it.

【図面の簡単な説明】[Brief explanation of the drawing]

ia1図は微細加工方法に係わる従来の電子ビーム露光
法を示す模式図、w42図は本砧明の原理をl!I!明
するための模式図、第3図(1)〜(d)は本発明の一
実施例に係わる微細・譬ターン形成工程を示す模式−で
ある。 11・軸シリコン基’l、J x・−シリコン11化1
[(被加工物)、IS・・・白金II(導電II)、1
4−・レジスト。 出願人代理人 弁理士 鈴 江 武 彦第1図 第2図・
Figure ia1 is a schematic diagram showing the conventional electron beam exposure method related to microfabrication method, and figure w42 is a schematic diagram of Akira Motokinuti's principle! I! For clarity, FIGS. 3(1) to 3(d) are schematic diagrams showing the process of forming fine and circular turns according to an embodiment of the present invention. 11・Axis silicon group'l, J x・-Silicon 11 compound 1
[(Workpiece), IS...Platinum II (Conductivity II), 1
4-・Resist. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 a) 被加工物上に電子の侵入を抑制する高置(ic@
v)に加速された電子ビームf:MJいて上記レジスト
を所望p4ターンに露光した0ち該レジストを現像する
工程と、次いで上記レジストをマスクとして前記導電@
tドライエツチングする工程と、しかるのち上記導電膜
をマスクとして前記被加工物をドライエツチングする工
程とを具備したことを特徴とする微細加工方法。 Q)前記導電膜の密度Di−10以上とし、かつその膜
圧をD Cμm1以上としたことtq#黴とする特許請
求の範囲第1項記載の微細加工方法。 (3)前記導電膜として、タンタル、白金、金或いはこ
れらの複合物を用いたことを特徴とする特許請求の範囲
第1項又は182項記載の微細加工方法。
[Claims] a) Elevated position (ic@
v) A step of exposing the resist to a desired p4 turn using an electron beam f:MJ accelerated by MJ, and then developing the resist using the resist as a mask.
1. A microfabrication method comprising the steps of dry etching the workpiece, and then dry etching the workpiece using the conductive film as a mask. Q) The microfabrication method according to claim 1, wherein the conductive film has a density Di-10 or more and a film thickness of D C μm1 or more. (3) The microfabrication method according to claim 1 or 182, wherein tantalum, platinum, gold, or a composite thereof is used as the conductive film.
JP56154228A 1981-09-29 1981-09-29 Microprocessing method Pending JPS5854633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56154228A JPS5854633A (en) 1981-09-29 1981-09-29 Microprocessing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56154228A JPS5854633A (en) 1981-09-29 1981-09-29 Microprocessing method

Publications (1)

Publication Number Publication Date
JPS5854633A true JPS5854633A (en) 1983-03-31

Family

ID=15579647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56154228A Pending JPS5854633A (en) 1981-09-29 1981-09-29 Microprocessing method

Country Status (1)

Country Link
JP (1) JPS5854633A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61288427A (en) * 1985-06-17 1986-12-18 Nippon Telegr & Teleph Corp <Ntt> Manufacture of semiconductor device
JPS63110729A (en) * 1986-10-29 1988-05-16 Nec Corp Manufacture of semiconductor device
JPH0210356A (en) * 1988-06-29 1990-01-16 Matsushita Electric Ind Co Ltd Fine pattern forming material and method therefor
US5019485A (en) * 1988-10-13 1991-05-28 Fujitsu Limited Process of using an electrically conductive layer-providing composition for formation of resist patterns
JPH05326385A (en) * 1992-05-25 1993-12-10 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61288427A (en) * 1985-06-17 1986-12-18 Nippon Telegr & Teleph Corp <Ntt> Manufacture of semiconductor device
JPS63110729A (en) * 1986-10-29 1988-05-16 Nec Corp Manufacture of semiconductor device
JPH0210356A (en) * 1988-06-29 1990-01-16 Matsushita Electric Ind Co Ltd Fine pattern forming material and method therefor
US5019485A (en) * 1988-10-13 1991-05-28 Fujitsu Limited Process of using an electrically conductive layer-providing composition for formation of resist patterns
JPH05326385A (en) * 1992-05-25 1993-12-10 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
US4976818A (en) Fine pattern forming method
JPH05205989A (en) Lithography method and manufacture of semiconductor device
JPS5854633A (en) Microprocessing method
US5098815A (en) Process for the production of dielectric layers in planar circuits on ceramics substrates
RU2632581C2 (en) Substrate for electronic high-resolution lithography and relevant lithography method
JPS52119172A (en) Forming method of fine pattern
KR100754369B1 (en) Method for forming predetermined patterns on a wafer by direct etching with neutral particle beams
JPS6246976B2 (en)
JPH01221637A (en) Observed sample processing method
JPH03138922A (en) Minute-pattern forming method
JPS607131A (en) Pattern formation
JP2561511B2 (en) Mask blanks
JPS58102523A (en) Position aligning marker
JPS58147117A (en) Pattern forming method
JP2899542B2 (en) Method of manufacturing transfer mask
JPS62241338A (en) Pattern formation
JPH04196209A (en) Formation of stencil mask
KR100238237B1 (en) Mask for electron beam cell projection lithography and method for fabricating thereof
JPS5934632A (en) Manufacture of x-ray mask
JPH02174216A (en) Manufacture of semiconductor device
JPS63237524A (en) Fine pattern formation
Buchmann Multi-level-patterning using ion species of different penetration depth
JPS59100537A (en) Formation of electrode wiring
JPH0748468B2 (en) Pattern formation method
JPS634700B2 (en)