JPS5853086B2 - Method for producing flame-resistant fibers - Google Patents

Method for producing flame-resistant fibers

Info

Publication number
JPS5853086B2
JPS5853086B2 JP51118266A JP11826676A JPS5853086B2 JP S5853086 B2 JPS5853086 B2 JP S5853086B2 JP 51118266 A JP51118266 A JP 51118266A JP 11826676 A JP11826676 A JP 11826676A JP S5853086 B2 JPS5853086 B2 JP S5853086B2
Authority
JP
Japan
Prior art keywords
fiber
flame
fibers
furnace
flameproofing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51118266A
Other languages
Japanese (ja)
Other versions
JPS5345425A (en
Inventor
博靖 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Beslon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Beslon Co Ltd filed Critical Toho Beslon Co Ltd
Priority to JP51118266A priority Critical patent/JPS5853086B2/en
Publication of JPS5345425A publication Critical patent/JPS5345425A/en
Publication of JPS5853086B2 publication Critical patent/JPS5853086B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、アクリロニトリル系重合体繊維を原料として
、耐炎性繊維を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing flame-resistant fibers using acrylonitrile polymer fibers as raw materials.

更に詳しくはアクリロニトリル系重合体繊維を原料とし
て炭素繊維の製造工程中、特に耐炎化工程での原料繊維
の切断を防止するための前処理に関するものである。
More specifically, the present invention relates to a pretreatment for preventing the raw fiber from being cut during the process of manufacturing carbon fiber using acrylonitrile polymer fiber as a raw material, particularly during the flameproofing process.

通常アクリロニトリル系重合体繊維を用いて炭素繊維を
製造する場合、その工程は耐炎化工程と炭素化工程に分
けられる。
Normally, when producing carbon fiber using acrylonitrile polymer fiber, the process is divided into a flame-retardant process and a carbonization process.

この耐炎化工程においてはアクリロニトリル系重合体繊
維は通常200〜300℃の酸化性雰囲気中で熱処理さ
れ、いわゆる耐炎性繊維とされる。
In this flame-retardant step, the acrylonitrile polymer fibers are usually heat-treated in an oxidizing atmosphere at 200 to 300°C to form so-called flame-resistant fibers.

この耐炎化工程は、炭素繊維製造工程の全所要時間の9
割以上を占めるもので、通常2〜4時間を費して行われ
、このため連続的工程の場合非常に長大な装置を必要と
し、この装置は熱効率、生産性を考慮し、通常は第1図
B、第2図Cの如き、炉内温度をコントロールされた多
段ローラ一群を有する炉としここに繊維を通し、緩慢な
移送を行いつ5処理するようにしている。
This flame-retardant process takes 90% of the total time required for the carbon fiber manufacturing process.
This process usually takes 2 to 4 hours to complete, and therefore requires very long equipment in the case of a continuous process. As shown in Figures B and 2C, the furnace is equipped with a group of multi-stage rollers whose internal temperature is controlled, and the fibers are passed through the furnace and processed while being slowly transferred.

このような長大な装置内において被処理繊維束の1部で
も切断すると、製品率を低下させるのみならず、切断端
のために正常処理中の繊維束の切断を誘発し、又その切
断の修復のために装置全体の処理条件を変動させるなど
、耐炎性繊維の品質に悪影響を及ぼす原因となっていた
If even a part of the fiber bundle to be processed is cut in such a long device, it will not only reduce the product yield, but also cause the fiber bundle to be cut during normal processing due to the cut end, and it will be difficult to repair the cut. Because of this, the processing conditions of the entire device had to be changed, which had an adverse effect on the quality of the flame-resistant fibers.

このため、耐炎化炉中における繊維の切断防止は製品々
質を著しく向上させる要因となる。
Therefore, prevention of fiber breakage in a flameproofing furnace is a factor that significantly improves product quality.

本発明者は、このような多段ローラーを使用した耐炎化
炉における繊維の切断を防止する方法について研究の結
果次の如き知見を得た。
The inventor of the present invention obtained the following knowledge as a result of research on a method for preventing fiber breakage in a flameproofing furnace using such multistage rollers.

すなわち、耐炎化工程中の原料繊維の切断は、その殆ん
どが耐炎化工程の初期、炉の入口部で発生する。
That is, most of the cutting of raw material fibers during the flameproofing process occurs at the inlet of the furnace at the beginning of the flameproofing process.

これは、熱処理によって原料繊維内の分子配向が緩和し
、収縮力が発生すると同時に一時的に繊維の9張強度が
極度に低下すること、及び、原料繊維の潜在的な欠陥(
例えばボイド)が該工程中の条件下で拡大、顕在化し、
強度低下作用と相俟って繊維の切断を誘発すること等に
よる。
This is due to the fact that the molecular orientation within the raw fiber is relaxed by the heat treatment, and at the same time the tensile strength of the fiber is temporarily extremely reduced, and the potential defects of the raw fiber (
For example, voids) expand and become apparent under the conditions during the process,
This is due to the fact that it induces fiber breakage in conjunction with the strength-reducing effect.

更に、アクリロニl−IJル系重合体繊維は、耐炎化工
程中順次その密度を増し1.399 /cc程度にまで
なるが、耐炎化工程における繊維は繊維の密度が1.2
0 g/CCまでの間、特に1.18〜1.20j;/
/ccの範囲において90%以上切断していることの知
見を得た。
Furthermore, the density of acrylonyl-IJ polymer fibers gradually increases during the flame-retardant process, reaching approximately 1.399/cc;
0 g/CC, especially 1.18 to 1.20j;/
It was found that 90% or more of the cleavage occurred in the range of /cc.

か\る矢「!見に基き、更に検討の結果、耐炎化工程に
先たち、原料繊維を前処理することによって耐炎化炉内
における繊組の切断をなくすることかできることを見出
した。
Based on this observation and further study, we discovered that it is possible to eliminate the cutting of fibers in the flameproofing furnace by pre-treating the raw material fibers prior to the flameproofing process.

すなわち本発明は、アクリロニトリル系重合体繊維を原
料として、多段ローラ一群を有する耐炎化炉にて酸化性
雰1」j気中に連続的に耐炎性繊維を製造するに当り、
耐炎化工程に先たち別個の前処理工程を設けて繊維密度
が1.18〜1.209/ccの範囲となるまで酸化性
雰囲気中230〜270℃の温度で前処理し、次いで耐
炎化工程に供給ずにとによって、品質安定な耐炎性繊維
とするものであり、このようにして得られた耐炎性繊維
は、更に炭素化二[程に供し、優れた晶質の炭素繊維と
することができる。
That is, the present invention uses acrylonitrile polymer fibers as raw materials to continuously produce flame-resistant fibers in an oxidizing atmosphere in a flame-proofing furnace equipped with a group of multistage rollers.
A separate pretreatment step is provided prior to the flameproofing step, in which the fiber density is pretreated at a temperature of 230 to 270°C in an oxidizing atmosphere until the fiber density is in the range of 1.18 to 1.209/cc, followed by a flameproofing step. The flame-resistant fibers obtained in this way are further subjected to carbonization to obtain excellent crystalline carbon fibers. I can do it.

かXる方法によって耐炎性繊維を製造すると、作業性も
よく、前処理のフィルター的作用によって潜在的な欠陥
を有する原料繊維を予め除去し、耐炎化炉中における繊
維の切断をなくすることかできる。
Producing flame-resistant fibers by this method has good workability, and the filtering action of pre-treatment removes raw fibers with latent defects in advance, eliminating the need to cut fibers in the flame-proofing furnace. can.

本発明においてアクリロニトリル系重合体繊維とは、重
合体成分中にアクリロニl−IJル成分を少くとも95
係含み、共単量体としてアクリル酸メチル、アクリルア
ミド、イタコン酸等の中・1生又はイオン性単量体類と
の重合体又は共重合体からなる繊維であり、特に単繊維
デニール0.5〜1.5d。
In the present invention, acrylonitrile-based polymer fibers refer to at least 95% of the acrylonitrile-IJ component in the polymer component.
It is a fiber made of a polymer or copolymer with intermediate or ionic monomers such as methyl acrylate, acrylamide, itaconic acid, etc. as a comonomer, and especially a single fiber denier of 0.5. ~1.5d.

乾強度39/d以上、伸度5〜20%程度のものが好ま
しい。
It is preferable to have a dry strength of 39/d or more and an elongation of about 5 to 20%.

耐炎性繊維とは、原料繊維を酸化性雰囲気中250℃前
後の温度で熱処理して得られる繊維密度1.3597C
C程度以上の不燃性の繊維をいう。
Flame-resistant fibers have a fiber density of 1.3597C obtained by heat-treating raw fibers at a temperature of around 250°C in an oxidizing atmosphere.
Refers to nonflammable fibers with grade C or higher.

薊処理工程は、耐炎化工程とは独立した温度、張力等の
調整機構を具えた熱処理1:程である。
The heat treatment step is a heat treatment step 1, which is equipped with an adjustment mechanism for temperature, tension, etc., independent of the flameproofing step.

本発明を図面にて説明する。The present invention will be explained with reference to the drawings.

第1図、第2図は、本発明の前処理工程と耐炎化]二程
の結合を示す概念図である。
FIG. 1 and FIG. 2 are conceptual diagrams showing the combination of the pretreatment process and flame resistance of the present invention.

第1図、第2図においてSは被処理繊維束、Rはローラ
ー、Aは前処理工程中(以下A炉という)、B、Cは夫
々多段ローラ一群を有する耐炎化工程中(夫々B炉、C
炉という)である。
In FIGS. 1 and 2, S is a fiber bundle to be treated, R is a roller, A is in a pretreatment process (hereinafter referred to as A furnace), and B and C are in a flameproofing process having a group of multistage rollers (respectively, B furnace). , C
It is called a furnace).

B炉はローラーRを上下に配し、C炉は横に配しである
The B furnace has rollers R arranged above and below, and the C furnace has rollers R arranged horizontally.

このB炉及びC炉の構成自体は既知の連続耐炎化炉であ
る。
The configuration of the B furnace and C furnace itself is a known continuous flameproofing furnace.

本発明の特徴は、このようf、f B炉、C炉の前の位
置に、前処理り程を行うA炉を配し、繊維束を連続的に
処理することにある。
The feature of the present invention is that the A furnace that performs the pretreatment process is disposed in front of the f, f B furnaces, and C furnaces, and the fiber bundles are continuously treated.

この前処理1:程においては、230〜270℃で繊維
密度か118〜1.20.!?/ccとなるまで熱処理
を行う。
In this pretreatment 1:, the fiber density was 118 to 1.20 at 230 to 270°C. ! ? Heat treatment is performed until the temperature reaches /cc.

温度か230℃より低いと繊維密度を1.、18 &
/ ccに至らしめるに長時間を要し、前処理二[程が
長くなる。
When the temperature is lower than 230℃, the fiber density is reduced to 1. , 18 &
It takes a long time to reach /cc, and the pretreatment process takes about 20 minutes.

一方270℃より高くなると急激な熱処理効果によって
繊維か自己発熱し、燃焼切れをおこす。
On the other hand, when the temperature rises above 270°C, the fibers self-heat due to the rapid heat treatment effect, causing burnout.

前処理工程において繊維密度か1.189 /ccを越
えない場合は、1京料繊維の潜在的欠陥が顕在化せず、
そのまX耐炎化工程に持ち込む危険を増す。
If the fiber density does not exceed 1.189/cc in the pre-treatment process, latent defects in the 100 million fibers will not become apparent.
This increases the risk of carrying it directly into the flameproofing process.

方、繊維密度か1.20g/CCを越える場合は、前処
理条件の変動(切断繊維の修復時等)が耐炎性繊維の品
質に大さな変化を起させるので好ましくない。
On the other hand, if the fiber density exceeds 1.20 g/CC, it is not preferable because fluctuations in pretreatment conditions (such as when repairing cut fibers) will cause a large change in the quality of the flame-resistant fibers.

ここで繊維密度とは次式により求められる値である。Here, the fiber density is a value determined by the following equation.

アクリロニトリル系重合体繊維を耐炎化工程を経て後炭
素化し炭素繊維とするとき、耐炎化終了後の繊維密度は
、]、、 35 g/cc程度以上となっていれば炭素
化工程に供給し、良好な性能を有する炭素繊維とするこ
とができる。
When acrylonitrile polymer fibers are subjected to a flame resistant process and then carbonized to produce carbon fibers, the fiber density after the flame resistant process is about 35 g/cc or more, then supplied to the carbonization process, It can be a carbon fiber with good performance.

この而」炭化工程中における熱処理温度、処理時間と繊
維密度との関係を示すと、第3図の通りである。
The relationship between the heat treatment temperature, treatment time, and fiber density during the carbonization step is shown in FIG. 3.

第3図は、アクリロニトリル98%(重量)、アクリル
酸メチル2係との共重合体繊維(繊維密度1.1.7
g/cc )を用いて耐炎化処理し、その結果を示した
ものである。
Figure 3 shows a copolymer fiber of 98% acrylonitrile (by weight) and 2 parts methyl acrylate (fiber density 1.1.7).
The results are shown below.

一方、種々の組成のアクリロニl−1)ル系重合体繊維
を用いて耐炎化処理した場合、工程中に切断した原料繊
維の繊維密度を測定し、切断頻度を示すと第4図の如く
であり、切断の90%までが繊維密度1.20 g/C
Cまで、特に1.18〜1.20g/ccの範囲で大部
分が切断していることが判る。
On the other hand, when acrylonyl l-1) polymer fibers of various compositions are subjected to flame-retardant treatment, the fiber density of the raw material fibers cut during the process is measured, and the cutting frequency is shown in Figure 4. Yes, up to 90% of cutting has a fiber density of 1.20 g/C
It can be seen that most of the cutting occurs up to C, especially in the range of 1.18 to 1.20 g/cc.

この第3図乃第4図の結果から耐炎化工程に先だち前処
理工程において繊維密度1,18〜1.20g/ccの
範囲にまで熱処理を施せば耐炎化工程中での予測される
繊維の切断を、前処理工程中に集中させることができる
From the results shown in Figures 3 and 4, if heat treatment is performed to a fiber density in the range of 1.18 to 1.20 g/cc in the pretreatment process prior to the flame resistance process, the predicted fiber density during the flame resistance process will be reduced. Cutting can be concentrated during the pretreatment step.

耐炎化工程中の繊維の強度は、工程初期急激に低下する
が、処理が進むにつれて再び上昇する。
The strength of the fiber during the flameproofing process decreases rapidly at the beginning of the process, but increases again as the process progresses.

従って、原料繊維の潜在的欠陥の顕在化による繊維の切
断は、工程初期の繊維強度が最低値を示す時に切断する
からである。
Therefore, the fibers are cut due to the emergence of latent defects in the raw fibers, because the fibers are cut when the fiber strength reaches its lowest value at the beginning of the process.

このような前処理工程は、耐炎化工程の前に独立の加熱
機構及び原料繊維の供給、引取り機構とを有する装置に
よって行われる。
Such a pretreatment step is performed before the flameproofing step using an apparatus having an independent heating mechanism and a raw material fiber supply and take-off mechanism.

加熱機構は加熱炉、ヒーターを内蔵したローラー又は赤
外線利用の加熱機構等であり、原料繊維の供給、引取機
構は、張力の微調整及び原料繊維の切断の修復が容易な
ものとする。
The heating mechanism is a heating furnace, a roller with a built-in heater, a heating mechanism using infrared rays, etc., and the raw material fiber supply and take-up mechanism is one that allows fine adjustment of tension and easy repair of cut raw material fibers.

この工程中での繊維にか5る張力は、約101n9/d
程度とすることが望ましい。
The tension on the fiber during this process is approximately 101n9/d.
It is desirable to keep it at a certain level.

このようにしてアクリロニトリル系重合体繊維を前処理
すると、耐炎化工程中での被処理繊維の切断をなくする
ことができ、前処理工程中で切断した繊維は、その工程
が耐炎化工程に比較してはるかに短いものであるため、
容易に修復接合することができ、耐炎化工程の条件変動
をきたすことがない。
By pre-treating acrylonitrile polymer fibers in this way, it is possible to eliminate the cutting of the fibers to be treated during the flame-retardant process, and the fibers cut during the pre-treatment process are compared to the flame-retardant process. and is much shorter,
It can be easily repaired and bonded, and the conditions of the flameproofing process will not change.

特に、本発明は多数の単繊維からなる繊維束を多本束、
並行して耐炎化処理する場合には、非常に有効である。
In particular, the present invention provides a multi-fiber bundle consisting of a large number of single fibers.
It is very effective when flame-retardant treatment is performed in parallel.

以下実施例について示す。Examples will be shown below.

実施例 1 第2図に示す如き構成の前処理炉及び耐炎化処理炉の組
合せにてなる装置を使用した。
Example 1 An apparatus consisting of a combination of a pretreatment furnace and a flameproofing furnace configured as shown in FIG. 2 was used.

前処理装置Aとして開閉可能な繊維巾方向500關、繊
維進行方向2000mmの2枚の長方形加熱板を107
/17ILの間隔をおいて上下に配し、間隔を500m
mまで広げられる機構とした加熱炉とした。
As the pretreatment device A, two rectangular heating plates 107 mm wide, 500 mm wide in the fiber width direction and 2000 mm wide in the fiber traveling direction, can be opened and closed.
Arranged above and below at intervals of /17IL, with an interval of 500m.
The heating furnace has a mechanism that allows it to be expanded up to m.

加熱炉の前後に供給ローラ一群及び引取ローラ一群を配
し、これを耐炎化炉の前に設置する。
A group of supply rollers and a group of take-up rollers are arranged before and after the heating furnace, and these are installed in front of the flameproofing furnace.

この前処理装置に単繊維デニール1.5d、フィラメン
ト数6000本のポリアクリロニトリル繊維束100本
を並行に且つ繊維間隔5mmに並べ、供給ローラー速度
50m/hr1引取ローラー速度45m/hrとし、張
力3m9/dとなるよう保持し、酸素含有雰囲気中25
0℃で前処理した。
In this pretreatment device, 100 polyacrylonitrile fiber bundles with a single fiber denier of 1.5 d and 6,000 filaments were arranged in parallel with a fiber spacing of 5 mm, a supply roller speed of 50 m/hr, a take-up roller speed of 45 m/hr, and a tension of 3 m/hr. d in an oxygen-containing atmosphere.
Pretreatment was performed at 0°C.

この前処理工程を経た繊維の密度は1.19 g/cc
(20℃)であった。
The density of the fiber after this pretreatment process is 1.19 g/cc
(20°C).

次いでこれを240℃に保たれた耐炎化炉Cに連続的に
供給し、酸素含有雰囲気中4時間処理し、耐炎性繊維を
得た。
Next, this was continuously supplied to a flameproofing furnace C kept at 240°C and treated in an oxygen-containing atmosphere for 4 hours to obtain a flameproof fiber.

連続1000時間運転中に前処理工程中での切断は延1
0回発生したが耐炎化工程中での切断はなかった。
During 1,000 hours of continuous operation, cutting during the pretreatment process was extended to 1
This occurred 0 times, but there was no cutting during the flameproofing process.

前処理工程中での切断の修復は、加熱板間隔を500m
mに開き、雰囲気温度を50℃とし、切断繊維両端を紡
織し、再度加熱板間隔を10mmとした。
For repairing cuts during the pretreatment process, the spacing between heating plates should be set to 500 m.
m, the atmosphere temperature was set to 50°C, both ends of the cut fibers were woven, and the heating plate spacing was again set to 10 mm.

この修復のために要した時間は1回当り2分であった。The time required for each repair was 2 minutes.

又耐炎化処理終了後の繊維で前処理温度変動時に通過し
たものと、正常運転時のものの繊維密度は1.35 E
llCC±0.03の範囲であり問題はなかった。
In addition, the fiber density of the fibers after flame-retardant treatment that passed through the pretreatment temperature fluctuations and that during normal operation was 1.35 E.
It was within the range of llCC±0.03 and there was no problem.

比較例 実施例1で、前処理工程を除き他は同様にして耐炎化処
理をしたところ、運転開始から50時間後に最初の繊維
の切断があった。
Comparative Example When the flameproofing treatment was carried out in the same manner as in Example 1 except for the pretreatment step, the first fiber breakage occurred 50 hours after the start of operation.

切断端を修復処理し、隣接する繊維束を料理し正常運転
にもどるまでに10時間を要した。
It took 10 hours to repair the cut end, cook the adjacent fiber bundle, and return to normal operation.

この間約500m分が不良品となった。During this period, approximately 500m of the product became defective.

また105時間目に耐炎化炉入口を炉内に入ったところ
で切断が起った。
Further, at 105 hours, a cut occurred at the entrance of the flameproofing furnace into the furnace.

その切断端が隣接の繊維にからみつき更に20本が切断
した。
The cut ends became entangled with adjacent fibers and 20 more fibers were cut.

このため炉の運転をストップした。正常に繊維を通して
運転するまでに15時間がか\つた。
As a result, the furnace operation was stopped. It took 15 hours to successfully run the fiber through.

又、実施例、前処理工程で温度を200℃に設定し処理
したところ繊維密度は1.175 g/ccでありこの
ま5耐炎化工程に供したところ、5時間後に切断があっ
た。
Further, in the example, when the temperature was set at 200° C. in the pre-treatment step, the fiber density was 1.175 g/cc, and when the fiber was subjected to the flame-retardant step, breakage occurred after 5 hours.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の前処理工程と耐炎化工程の組
合せを示す装置の概念図である。 第3図は耐炎化処理工程中における処理温度、処理時間
と繊維密度の関係を示したものである。 第4図は、耐炎化処理工程中における繊維密度と繊維束
の切断頻度を示したものである。
FIGS. 1 and 2 are conceptual diagrams of an apparatus showing a combination of the pretreatment step and the flameproofing step of the present invention. FIG. 3 shows the relationship between the treatment temperature, treatment time, and fiber density during the flameproofing treatment process. FIG. 4 shows the fiber density and the cutting frequency of fiber bundles during the flameproofing process.

Claims (1)

【特許請求の範囲】[Claims] 1 アクリロニトリル系重合体繊維を原料として多段ロ
ーラ一群を有する耐炎化炉にて、酸化性雰囲気中で連続
的に耐炎性繊維を製造するに当り、耐炎化工程に先だち
、別個の前処理工程を設け、繊維密度が1.18〜1.
209/CCの範囲となるまで酸化性雰囲気中230〜
270℃の温度で前処理し、次いで前記耐炎化炉に供給
し耐炎化処理することを特徴とする耐炎性繊維の製造法
1. When producing flame-resistant fibers continuously in an oxidizing atmosphere using acrylonitrile-based polymer fibers as a raw material in a flame-proofing furnace equipped with a group of multistage rollers, a separate pretreatment process is provided prior to the flame-proofing process. , fiber density is 1.18-1.
230~ in an oxidizing atmosphere until the range of 209/CC is reached.
A method for producing flame-resistant fibers, which comprises pre-treating at a temperature of 270°C, and then supplying the flame-proofing furnace to the flame-proofing furnace.
JP51118266A 1976-10-01 1976-10-01 Method for producing flame-resistant fibers Expired JPS5853086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51118266A JPS5853086B2 (en) 1976-10-01 1976-10-01 Method for producing flame-resistant fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51118266A JPS5853086B2 (en) 1976-10-01 1976-10-01 Method for producing flame-resistant fibers

Publications (2)

Publication Number Publication Date
JPS5345425A JPS5345425A (en) 1978-04-24
JPS5853086B2 true JPS5853086B2 (en) 1983-11-26

Family

ID=14732370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51118266A Expired JPS5853086B2 (en) 1976-10-01 1976-10-01 Method for producing flame-resistant fibers

Country Status (1)

Country Link
JP (1) JPS5853086B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012246596A (en) * 2012-07-24 2012-12-13 Toho Tenax Co Ltd Precursor fiber and method for producing precursor fiber, flameproof fiber and carbon fiber

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5836216A (en) * 1981-08-22 1983-03-03 Toho Rayon Co Ltd Production of bundle of preoxidized fiber
DE3685480D1 (en) * 1985-11-18 1992-07-02 Toray Industries METHOD FOR THE PRODUCTION OF CARBON FIBERS WITH HIGH STRENGTH AND HIGH ELASTICITY MODULE.
KR101457736B1 (en) * 2010-12-31 2014-11-03 코오롱인더스트리 주식회사 The polyacrylonitrile precursor for carbon fiber and the method of produce it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012246596A (en) * 2012-07-24 2012-12-13 Toho Tenax Co Ltd Precursor fiber and method for producing precursor fiber, flameproof fiber and carbon fiber

Also Published As

Publication number Publication date
JPS5345425A (en) 1978-04-24

Similar Documents

Publication Publication Date Title
CA1095206A (en) Process for producing carbon fibers
EP3227479B1 (en) Continuous carbonization process and system for producing carbon fibers
EP0159365B1 (en) Carbon fibers with high strength and high modulus, and process for their production
US3533743A (en) Process for the manufacture of continuous high modulus carbon yarns and monofilaments
KR870000704B1 (en) Method and system for producing carbon fibers
JPS5853086B2 (en) Method for producing flame-resistant fibers
US2988783A (en) Method of producing elongated structures of isotactic polystyrene
US4534920A (en) Process for producing carbonizable oxidized fibers and carbon fibers
JPS6238444B2 (en)
US4552743A (en) Process for producing carbon fiber
JP2011127264A (en) Method for producing flame-proof fiber
EP0125905A2 (en) Process for the stabilisation of acrylic fibres
JPS62257422A (en) Production of carbon fiber
JPS58144128A (en) Preparation of carbon fiber having high performance
WO1987002391A1 (en) Process for producing carbon fibers
JPH06294020A (en) Production of carbon fiber
JP2000160435A (en) Continuous thermal treatment of acrylic fiber bundle
JPS62215018A (en) Production of carbon fiber
JP3033960B2 (en) Novel carbon fiber production method using pre-drawing
JPS61174423A (en) Production of flameproofed fiber
JPH0551686B2 (en)
JPS58214529A (en) Production of carbon fiber
JPS62257424A (en) Production of carbon fiber having high strength and elastic modulus
JPS6250574B2 (en)
JPH02139425A (en) Production of carbon fiber