JPH0551686B2 - - Google Patents

Info

Publication number
JPH0551686B2
JPH0551686B2 JP59099758A JP9975884A JPH0551686B2 JP H0551686 B2 JPH0551686 B2 JP H0551686B2 JP 59099758 A JP59099758 A JP 59099758A JP 9975884 A JP9975884 A JP 9975884A JP H0551686 B2 JPH0551686 B2 JP H0551686B2
Authority
JP
Japan
Prior art keywords
flame
stage
fibers
retardant treatment
retardant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59099758A
Other languages
Japanese (ja)
Other versions
JPS60246821A (en
Inventor
Jinko Izumi
Yoshitaka Imai
Soji Nakatani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP59099758A priority Critical patent/JPS60246821A/en
Priority to KR1019850002754A priority patent/KR870000533B1/en
Priority to US06/733,797 priority patent/US4609540A/en
Priority to EP85105947A priority patent/EP0165465B1/en
Priority to DE8585105947T priority patent/DE3584539D1/en
Publication of JPS60246821A publication Critical patent/JPS60246821A/en
Publication of JPH0551686B2 publication Critical patent/JPH0551686B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔技術分野〕 本発明はアクリロニトリル系重合体繊維を特定
条件下で耐炎化処理した後、炭素化する高性能炭
素繊維の製造方法に関するものである 〔従来技術〕 一般にアクリル系繊維から炭素繊維を製造する
には、200〜400℃の酸化性雰囲気中で熱処理を行
い、耐炎化構造を形成せしめた後、次いで400℃
以上の不活性雰囲気中で炭素化する方法が用いら
れている。その際、耐炎化工程における張力の付
与あるいは伸長が、強度ならびに弾性率の優れた
炭素繊維を製造するのに効果的である。例えば、
特開昭第49−54632号公報には、耐炎化処理時の
伸長を初期領域と後期領域とで配分することによ
り高性能炭素繊維を製造するという方法が開示さ
れている。 しかし、アクリル系繊維においては、その初期
の分子配向度または分子凝集力の差異によつて耐
炎化処理過程で伸長するより、むしろ収縮させた
方が、優れた性能を有する炭素繊維が得られるこ
とがある。従つて、上記の方法においては、過度
な伸長を行うと毛羽の発生や構造的な欠陥を助長
することも起こり得る。このように、耐炎化での
最適伸長率もしくは収縮率は、そのブレカーサー
によつて異なり、また、雰囲気温度によつても左
右されることから、その最適化を図ることは極め
て困難な現状にある。 〔発明の目的〕 そこで本発明者等は、耐炎化工程において複数
個の駆動ローラーを設け、各ローラー間の伸縮率
を、その間の供給側ローラー点での繊維について
予めバツチ実験によつて求められた値に設定する
ことにより極めて優れた性能を有する炭素繊維が
得られることを見い出し、本発明を完成した。 〔発明の構成〕 本発明の要旨は、複数個の駆動ローラーを有す
る耐炎化炉を用いて200〜400℃の酸化性雰囲気中
でPAN系重合体繊維を多段伸張して多段耐炎化
処理するに際し、各段の耐炎化処理毎に、先ずバ
ツチ耐炎化処理によつて各段の耐炎化処理時間
Tn(nはn段目の耐炎化処理検工程を示す。以下
同様。)に対応する荷重−伸張率曲線並びにその
曲線の変曲点における荷重Pn及び伸張率Enを順
次求め、この測定値に基づいて多段耐炎化処理に
おけるn段目の伸張率をEn±3%以内に設定し
て耐炎化処理し、その後炭素化することを特徴と
する炭素繊維の製造方法であり、より効果的には
多段伸張の各駆動ローラー間に繊維が滞在する時
間が20分以内であるものである。 本発明における複数個の駆動ローラーを有する
耐炎化炉の一例を第1図に示した。第2図は出発
原系であるアクリル系繊維の240℃、空気中にお
ける各定荷重下での時間に対する伸縮挙動の一例
を示したものである。 本発明における製造方法を以下に記す。 第1図においてローラーR0からR1までの炉内
に繊維が滞在する時間T1が10分で、その雰囲気
温度が240℃であるとする。次に第2図から同じ
時間T110分における伸縮率及びそ荷重をプロツ
トすると、第3図の如く近似的にP1になる変曲
点を有する直線関係が得られる。ただし一般には
焼成工程における耐炎化炉とバツチ炉とでは同じ
雰囲気温度でも、その装置特性の違いにより、繊
維の物性変化の温度時間依存性が異なるのが通常
である。 そこで、上述のように炉内に滞在する時間を同
じにするよりも、物性パラメーター、特に耐炎化
の進行度を示す一つの尺度である繊維の密度を同
じにした方が良い場合もある。かくして変曲点
P1に対応する伸長率E1を求める。広角X線回析
より求まる配向度によると、伸長率E1までは伸
長の増加につれて配向度は増加するが、E1以上
ではその増加は頭打ちになり、毛羽の発生も見ら
れる。即ち、この伸長率E1がローラーR0とR1
間の最適伸長等となる。 次にローラーR1とR2の間の伸長率の設定であ
るが、この場合は、供給側ローラーR1での繊維、
つまり240℃、10分(T1)処理で伸長E1を付与さ
せたた繊維について前述と同様に第2段目の耐炎
化処理時間(T2)に対応するバツチ実験で第4
図のような荷重と伸長率の関係をプロツトし、伸
長率E2を求める。 以下、同様に各ローラー間の伸長率を決定す
る。このように決定され伸長率En(n=1.2……)
は、アクリル系繊維によつて収縮側に最適点が現
われるものもある。この際、各ローラー間に繊維
が滞在する時間は20分以内、好ましくは2〜15分
が望ましい。20分より多いと、伸長領域の長さが
増大し、それに応じてそのローラー間の伸長率も
増大するため、伸長斑が生じ、かつ次のローラー
間との張力差が大きくなるために、その境のロー
ラーでスリツプ等も生じ、毛羽の発生の頻度が増
大する。2分以下になるとローラーとの接触回数
が増え、これもまた毛羽の発生の原因となり、ま
たローラーの個数が極めて膨大になるため装置内
にメリツトはない。 〔実施例〕 以下、実施例により本発明を具体的に説明す
る。 ストランド強度、ストランド弾性率は
JISR7601の方法に従い測定した。 実施例 1 アクリロニトリル98wt%、アクリル酸メチル
wt%、メタクリル酸1wt%の組成を有するアクリ
ル系繊維(全デニール4360、3000フイラメント、
単繊維強度5.0g/d、伸度13.0%)を220−240−
260℃の3段階の温度プロフアイルを有する熱風
循環型耐炎化炉において熱処理する際、耐炎化第
1ゾーン、第2ゾーン及び第3ゾーンの各々の境
に駆動ローラーを設け、その駆動ローラー間即ち
各ゾーン間に繊維が滞在する時間が20分というこ
とから、バツチ炉で本発明による手法により伸長
率E1,E2およびE3を求めた。その結果、第1ゾ
ーンの伸長率が15.0±1.0%以下、第2ゾーン、
第3ゾーンの伸長率が各々5.2±0.6%、0.0±1.2
%であつた。以上の条件により耐炎化処理を行つ
た後、次にその耐炎化繊維をN2気流中600℃の第
1炭素化炉中に3分間通過せしめるに際して5%
の伸長を加え、さらに同雰囲気中1200℃の第2炭
素化炉中においいて400mg/デニールの張力下に
熱処理を行つた。得られた炭素繊維のストランド
強度、ストランド弾性率を第1表に示した。 実施例 2 実施例1と同じ耐炎化炉における各駆動ローラ
ー間において、その中央に位置するフリーローラ
ーを駆動ローラーに変え、各駆動ローラー間に繊
維が滞在する時間を10分とした。同様の方法で伸
長率E1,E2……E6を求めた結果、E1から順に12.0
±1.2%、5.4±0.6%、3.4±0.9%、2.0±1.0%、
0.8±1.0%、−0.8±0.8%であつた。この耐炎化伸
長条件以外は全て実施例1と同様の条件により炭
素繊維を得た。その性能を第1表に示した。 比較例 1 実施例1において伸長率E1,E2およびE3を10.0
%、2.0%および0%とし、その他の条件は全て
実施例1と同様で炭素繊維を得た。その性能を第
1表に示した。 比較例 2 実施例1において、耐炎化工程中の駆動ローラ
ーを全てフリーローラーに変え、耐炎化炉の入口
と出口のゴデツトローラーだけで20%の伸長を加
えた。その性能を第1表に示した。
[Technical field] The present invention relates to a method for producing high-performance carbon fibers in which acrylonitrile polymer fibers are subjected to flame-retardant treatment under specific conditions and then carbonized. [Prior art] Generally, carbon fibers are produced from acrylic fibers. To do this, heat treatment is performed in an oxidizing atmosphere at 200 to 400°C to form a flame-resistant structure, and then heat treatment is performed at 400°C.
The above method of carbonization in an inert atmosphere is used. At that time, applying tension or elongation in the flameproofing process is effective in producing carbon fibers with excellent strength and elastic modulus. for example,
JP-A No. 49-54632 discloses a method of producing high-performance carbon fibers by distributing the elongation during flameproofing treatment between an early region and a late region. However, in the case of acrylic fibers, carbon fibers with superior performance can be obtained by shrinking the acrylic fibers rather than elongating them during the flame-retardant treatment process due to differences in the initial degree of molecular orientation or molecular cohesion. There is. Therefore, in the above method, excessive elongation may promote fuzzing and structural defects. As described above, the optimum elongation or shrinkage rate for flame resistance differs depending on the breaker and is also affected by the ambient temperature, so it is currently extremely difficult to optimize it. . [Purpose of the Invention] Therefore, the present inventors provided a plurality of drive rollers in the flameproofing process, and determined the expansion/contraction ratio between each roller by performing a batch experiment on the fibers at the supply roller point between them. The inventors have discovered that carbon fibers with extremely excellent performance can be obtained by setting the carbon fiber to a certain value, and have completed the present invention. [Structure of the Invention] The gist of the present invention is to apply a multi-stage flame-retardant treatment by stretching PAN-based polymer fibers in multiple stages in an oxidizing atmosphere at 200 to 400°C using a flame-retardant furnace having a plurality of driving rollers. , for each stage of flame-retardant treatment, first perform batch flame-retardant treatment to reduce the flame-retardant treatment time of each stage.
The load-elongation rate curve corresponding to Tn (n indicates the n-th flame retardant treatment inspection process. The same applies hereinafter), the load Pn and the elongation rate En at the inflection point of the curve are sequentially determined, and the measured values are This is a method for producing carbon fiber, which is characterized in that the elongation rate of the nth stage in multi-stage flameproofing treatment is set within En±3% based on the flameproofing process, and then carbonized. The time the fibers stay between each drive roller of multi-stage stretching is 20 minutes or less. An example of a flameproofing furnace having a plurality of driving rollers according to the present invention is shown in FIG. Figure 2 shows an example of the expansion/contraction behavior of the starting acrylic fiber at 240°C in air under various constant loads over time. The manufacturing method in the present invention will be described below. In FIG. 1, it is assumed that the time T 1 that the fiber stays in the furnace from rollers R 0 to R 1 is 10 minutes, and the ambient temperature is 240°C. Next, when the expansion/contraction rate and its load at the same time T 1 10 minutes are plotted from FIG. 2, a linear relationship with an inflection point approximately at P 1 is obtained as shown in FIG. 3. However, in general, even if the ambient temperature is the same in the flameproofing furnace and the batch furnace used in the firing process, the temperature-time dependence of changes in the physical properties of the fibers usually differs due to differences in the equipment characteristics. Therefore, rather than making the stay time in the furnace the same as described above, it may be better to make the physical property parameters, especially the fiber density, which is one measure of the progress of flame resistance, the same. Thus the inflection point
Find the elongation rate E 1 corresponding to P 1 . According to the degree of orientation determined by wide-angle X-ray diffraction, the degree of orientation increases as the elongation increases up to an elongation rate of E 1 , but the increase reaches a plateau at E 1 or higher, and fuzz is also observed. That is, this elongation rate E 1 becomes the optimum elongation between rollers R 0 and R 1 . Next is the setting of the elongation rate between rollers R 1 and R 2. In this case, the fibers at supply roller R 1 ,
In other words, in the same manner as mentioned above, the fibers which were given elongation E 1 by treatment at 240°C for 10 minutes (T 1 ) were subjected to the fourth batch experiment corresponding to the second flame-retardant treatment time (T 2 ).
Plot the relationship between load and elongation rate as shown in the figure to find the elongation rate E2 . Hereinafter, the elongation rate between each roller is determined in the same manner. Determined in this way, the elongation rate En (n=1.2...)
In some cases, the optimum point appears on the contraction side depending on the acrylic fiber. At this time, it is desirable that the time the fibers stay between each roller is within 20 minutes, preferably 2 to 15 minutes. If it is longer than 20 minutes, the length of the stretching region will increase and the stretching rate between the rollers will increase accordingly, resulting in uneven stretching and the tension difference between the next roller will increase. Slips may also occur on the border rollers, increasing the frequency of fluff. When the time is less than 2 minutes, the number of times of contact with the rollers increases, which also causes the generation of fuzz, and the number of rollers becomes extremely large, so there is no benefit in the apparatus. [Example] Hereinafter, the present invention will be specifically explained with reference to Examples. Strand strength and strand elastic modulus are
Measured according to the method of JISR7601. Example 1 Acrylonitrile 98wt%, methyl acrylate
Acrylic fiber (total denier 4360, 3000 filament,
Single fiber strength 5.0g/d, elongation 13.0%) 220−240−
When performing heat treatment in a hot air circulation flame retardant furnace having a three-stage temperature profile of 260°C, drive rollers are provided at the borders of each of the first, second and third flame retardant zones, and between the drive rollers, i.e. Since the time that the fibers stayed between each zone was 20 minutes, the elongation ratios E 1 , E 2 and E 3 were determined using the method according to the present invention in a batch furnace. As a result, the elongation rate of the first zone was 15.0±1.0% or less, the second zone,
The elongation rate of the third zone is 5.2±0.6% and 0.0±1.2, respectively.
It was %. After flame-retardant treatment under the above conditions, the flame-retardant fibers were then passed through a first carbonization furnace at 600°C in a N2 stream for 3 minutes.
, and then heat-treated under a tension of 400 mg/denier in a second carbonization furnace at 1200° C. in the same atmosphere. Table 1 shows the strand strength and strand elastic modulus of the obtained carbon fibers. Example 2 In the same flameproofing furnace as in Example 1, the free roller located at the center was changed to a driving roller between each driving roller, and the time the fibers stayed between each driving roller was set to 10 minutes. The elongation ratios E 1 , E 2 ...E 6 were calculated in the same way, and the results were 12.0 in order from E 1 .
±1.2%, 5.4±0.6%, 3.4±0.9%, 2.0±1.0%,
They were 0.8±1.0% and -0.8±0.8%. Carbon fibers were obtained under the same conditions as in Example 1 except for this flame-resistant elongation condition. Its performance is shown in Table 1. Comparative Example 1 In Example 1, the elongation rates E 1 , E 2 and E 3 were set to 10.0.
%, 2.0% and 0%, and all other conditions were the same as in Example 1 to obtain carbon fibers. Its performance is shown in Table 1. Comparative Example 2 In Example 1, all drive rollers during the flameproofing process were changed to free rollers, and 20% elongation was applied only to the godet rollers at the entrance and exit of the flameproofing furnace. Its performance is shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

本発明方法を採用することにより、強度、弾性
率が共に大きく向上したものが得られる。
By employing the method of the present invention, products with significantly improved strength and elastic modulus can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明を実施するのに用いた耐炎化
炉の一例である。第2図は、アクリル系繊維の空
気中240℃での各荷重下での伸縮を、横軸を時間、
縦軸を収縮率で示したものである。デニールは、
ブレカーサーのデニールを使用した。第3図は、
第2図での時間10分における伸縮率を各荷重に対
してプロツトしたものである。第4図は、供給側
ローラーR1での繊維について第3図と同様のプ
ロツトをしたものである。
FIG. 1 is an example of a flameproofing furnace used to carry out the present invention. Figure 2 shows the expansion and contraction of acrylic fibers in air at 240°C under various loads, with the horizontal axis representing time and
The vertical axis shows the shrinkage rate. The denier is
I used breaker denier. Figure 3 shows
The expansion/contraction rate at 10 minutes in Figure 2 is plotted against each load. FIG. 4 shows a plot similar to FIG. 3 for the fibers at supply roller R1 .

Claims (1)

【特許請求の範囲】 1 複数個の駆動ローラーを有する耐炎化炉を用
いて200〜400℃の酸化性雰囲気中でPAN系重合
体繊維を多段伸張して多段耐炎化処理するに際
し、各段の耐炎化処理毎に、先ずバツチ耐炎化処
理によつて各段の耐炎化処理時間Tn(nはn段目
の耐炎化処理工程を示す。以下同様。)に対応す
る荷重−伸張率曲線並びにその曲線の変曲点にお
ける荷重Pn及び伸張率Enを順次求め、この測定
値に基づいて多段耐炎化処理におけるn段目の伸
張率をEn±3%以内に設定して耐炎化処理し、
その後炭素化することを特徴とする炭素繊維の製
造方法。 2 多段伸張の各駆動ローラー間に繊維が滞在す
る時間が20分以内であることを特徴とする特許請
求の範囲第1項記載の炭素繊維の製造方法。
[Claims] 1. When PAN-based polymer fibers are stretched in multiple stages and subjected to flame-retardant treatment in an oxidizing atmosphere at 200 to 400°C using a flame-retardant furnace having a plurality of driving rollers, each stage is For each flame-retardant treatment, first, the load-extension rate curve corresponding to the flame-retardant treatment time Tn (n indicates the nth stage flame-retardant treatment step; the same applies hereinafter) of each stage by batch flame retardant treatment and its The load Pn and the elongation rate En at the inflection point of the curve are sequentially determined, and based on these measured values, the elongation rate of the nth stage in the multi-stage flameproofing treatment is set within En ± 3%, and the flameproofing process is performed.
A method for producing carbon fiber, which comprises carbonizing the fiber thereafter. 2. The method for producing carbon fibers according to claim 1, wherein the time the fibers stay between each drive roller of the multi-stage stretching is 20 minutes or less.
JP59099758A 1984-05-18 1984-05-18 Preparation of carbon yarn Granted JPS60246821A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59099758A JPS60246821A (en) 1984-05-18 1984-05-18 Preparation of carbon yarn
KR1019850002754A KR870000533B1 (en) 1984-05-18 1985-04-24 Carbon fiber's making method
US06/733,797 US4609540A (en) 1984-05-18 1985-05-14 Process for producing carbon fibers
EP85105947A EP0165465B1 (en) 1984-05-18 1985-05-14 Process for producing carbon fibers
DE8585105947T DE3584539D1 (en) 1984-05-18 1985-05-14 METHOD FOR THE PRODUCTION OF CARBON FIBERS.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59099758A JPS60246821A (en) 1984-05-18 1984-05-18 Preparation of carbon yarn

Publications (2)

Publication Number Publication Date
JPS60246821A JPS60246821A (en) 1985-12-06
JPH0551686B2 true JPH0551686B2 (en) 1993-08-03

Family

ID=14255880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59099758A Granted JPS60246821A (en) 1984-05-18 1984-05-18 Preparation of carbon yarn

Country Status (1)

Country Link
JP (1) JPS60246821A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250228A (en) * 1986-04-18 1987-10-31 Mitsubishi Rayon Co Ltd Carbon fiber of high strength and high elasticity
WO1990010101A1 (en) * 1989-02-23 1990-09-07 Mitsubishi Rayon Co., Ltd. Flameproofing apparatus
US7749479B2 (en) 2006-11-22 2010-07-06 Hexcel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49526A (en) * 1972-03-10 1974-01-07
JPS4993615A (en) * 1972-10-31 1974-09-05
JPS5742925A (en) * 1980-08-22 1982-03-10 Toho Rayon Co Ltd Production of high-performance carbon fiber strand
JPS58136834A (en) * 1982-02-03 1983-08-15 Mitsubishi Rayon Co Ltd Production of carbon fiber of high performance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49526A (en) * 1972-03-10 1974-01-07
JPS4993615A (en) * 1972-10-31 1974-09-05
JPS5742925A (en) * 1980-08-22 1982-03-10 Toho Rayon Co Ltd Production of high-performance carbon fiber strand
JPS58136834A (en) * 1982-02-03 1983-08-15 Mitsubishi Rayon Co Ltd Production of carbon fiber of high performance

Also Published As

Publication number Publication date
JPS60246821A (en) 1985-12-06

Similar Documents

Publication Publication Date Title
EP2233616A1 (en) Processes for producing flameproof fiber and carbon fiber
US5051216A (en) Process for producing carbon fibers of high tenacity and modulus of elasticity
JPH0551686B2 (en)
JPS58136838A (en) Production of high-performance carbon fiber
EP3931381B1 (en) Method of ionizing irradiation of textile polyacrylonitrile fibres and use thereof as carbon fibre precursor
US4009991A (en) Process for producing carbon fibers
JPS62257422A (en) Production of carbon fiber
EP0242401B1 (en) Process for producing carbon fibers
JPS62215018A (en) Production of carbon fiber
CN111088558A (en) Preparation method of polyacrylonitrile-based carbon fiber
JPS58214525A (en) Production of carbon fiber
DE2211639C3 (en) Process for the production of carbon threads
JPH0323651B2 (en)
CN110685041B (en) Preparation method of polyacrylonitrile-based carbon fiber
JPH04222229A (en) Production of graphite fiber
JPS61119719A (en) Production of carbon fiber of high strength
JPS6127487B2 (en)
JP4307233B2 (en) Flame resistant fiber and carbon fiber manufacturing method
JPS62257424A (en) Production of carbon fiber having high strength and elastic modulus
JPS62110924A (en) Production of high performance carbon fiber
JPS62231026A (en) Production of carbon fiber
JP2001192937A (en) Method of producing carbon fiber
JPH06158435A (en) Production of flame-resistant fiber
JPS62250227A (en) High-performance carbon fiber from acrylic fiber
DE3686715T2 (en) METHOD FOR THE PRODUCTION OF CARBON FIBERS.

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term