JPS5823452B2 - Softening resistant copper alloy - Google Patents

Softening resistant copper alloy

Info

Publication number
JPS5823452B2
JPS5823452B2 JP51062445A JP6244576A JPS5823452B2 JP S5823452 B2 JPS5823452 B2 JP S5823452B2 JP 51062445 A JP51062445 A JP 51062445A JP 6244576 A JP6244576 A JP 6244576A JP S5823452 B2 JPS5823452 B2 JP S5823452B2
Authority
JP
Japan
Prior art keywords
alloy
softening
present
copper alloy
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51062445A
Other languages
Japanese (ja)
Other versions
JPS52145328A (en
Inventor
義治 篠原
輝久 畑中
賢治 佐田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Metals Co Ltd
Original Assignee
Furukawa Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Metals Co Ltd filed Critical Furukawa Metals Co Ltd
Priority to JP51062445A priority Critical patent/JPS5823452B2/en
Publication of JPS52145328A publication Critical patent/JPS52145328A/en
Publication of JPS5823452B2 publication Critical patent/JPS5823452B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 本発明は熱伝導性、加工性、耐食性に優れ、熱交換器な
どの管材として好適な銅合金に関し、とくに溶接後にお
いても機械的強度が高い耐軟化性銅合金を得んとするも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a copper alloy that has excellent thermal conductivity, workability, and corrosion resistance, and is suitable as a pipe material for heat exchangers, etc. The present invention relates to a copper alloy that has excellent thermal conductivity, workability, and corrosion resistance, and is suitable for pipe materials such as heat exchangers. It's something you're trying to gain.

従来から熱交換器の管材として用いられる銅合金として
は熱伝導性、加工性に優れたリン脱酸銅がある。
As a copper alloy conventionally used as a tube material for heat exchangers, there is phosphorus-deoxidized copper, which has excellent thermal conductivity and workability.

しかしこのリン脱酸銅は高温加熱した後に軟化傾向が著
しく、この合金からなる管材を銀ろう等で溶接した場合
800℃程度に加熱されこの溶接個所の強度低下が著し
い欠点があった。
However, this phosphorus-deoxidized copper has a remarkable tendency to soften after being heated to high temperatures, and when pipe materials made of this alloy are welded with silver solder, etc., the welded parts are heated to about 800° C., resulting in a significant drop in strength at the welded portions.

とくに近時熱交換器の小型化、軽量化にともなって管の
薄肉化が要求されているが、薄肉化した場合には溶接個
所の強度低下の問題はとくに深刻になる。
In particular, as heat exchangers have become smaller and lighter in recent years, there has been a demand for thinner tubes, but when the tubes are made thinner, the problem of reduced strength at welded areas becomes particularly serious.

このようなことから溶接後の強度を高めるためにCu−
8nP−Fe合金、Cu −Zr合金などが開発されて
いるが、このような合金においても必ずしも十分な耐軟
化性を有しておらず更に改善が望まれていた。
For this reason, in order to increase the strength after welding, Cu-
Although 8nP-Fe alloy, Cu-Zr alloy, etc. have been developed, even such alloys do not necessarily have sufficient softening resistance, and further improvement has been desired.

本発明は上記事情に鑑みてなされたもので、その目的と
するところは高温加熱後の機械的強度を高めることがで
きる耐軟化性銅合金を提供するものである。
The present invention has been made in view of the above circumstances, and its purpose is to provide a softening-resistant copper alloy that can increase its mechanical strength after being heated at high temperatures.

すなわち本発明はSn0.01〜2.0重量%、Cr
O,004〜0.7重量%、Po、003〜0.04重
量%、残部Cuからなる耐軟化性銅合金を第1の要旨と
し、さらに上述したSn、Cr、PとともにB、Ca、
Mg、Mn、Ni 、Si 、Sb、Ti。
That is, in the present invention, Sn0.01 to 2.0% by weight, Cr
The first aspect is a softening-resistant copper alloy consisting of O, 004 to 0.7% by weight, Po, 003 to 0.04% by weight, and the balance Cu, and in addition to the above-mentioned Sn, Cr, and P, B, Ca,
Mg, Mn, Ni, Si, Sb, Ti.

In、Asのうち1種または2種以上を0.005〜0
.4重量%含有し、残部Cuからなる耐軟化性鋼合金を
第2の要旨とするものである。
0.005 to 0 of one or more of In and As
.. The second aspect is a softening-resistant steel alloy containing 4% by weight of Cu and the remainder being Cu.

次に本発明合金を構成する合金成分の添加理由と、その
限定理由を説明する。
Next, the reasons for adding the alloy components constituting the alloy of the present invention and the reasons for their limitations will be explained.

Snは本発明合金の軟化温度を高める作用をなす元素で
あり、その添加量が0,01重量%(以下%は重量%を
示す)未満の場合は軟化温度を高める効果は得られず、
2.0%を越えると熱伝伝導性の低下が著しいためであ
る。
Sn is an element that has the effect of increasing the softening temperature of the alloy of the present invention, and if the amount added is less than 0.01% by weight (hereinafter % indicates weight%), the effect of increasing the softening temperature cannot be obtained.
This is because if it exceeds 2.0%, the thermal conductivity will drop significantly.

またCrは本発明合金の高温加熱時における結晶粒度の
粗大化を防止して高温加熱後の軟化を阻止する作用をな
すものであり、その添加量が0.004%未満ではこの
効果は得られず、また0、7%を越えると溶解時におけ
る損失が多くなり耐食性改善効果が低下するためである
Furthermore, Cr acts to prevent coarsening of the grain size of the alloy of the present invention during high-temperature heating and to prevent softening after high-temperature heating, and this effect cannot be obtained if the amount added is less than 0.004%. Moreover, if it exceeds 0.7%, loss during dissolution increases and the effect of improving corrosion resistance decreases.

さらにPは添加元素Sn及びCrの酸化を防止するため
の脱酸剤として添加されるとともに加熱後の耐軟化性を
向上させる作用をなすものであり、その添加量が0.0
03%未満では脱酸効果は得られず、0.04%を越え
ると熱伝導性が著しく低下するのみならず応力腐食割れ
を生じやすくなるためである。
Furthermore, P is added as a deoxidizing agent to prevent the oxidation of the additive elements Sn and Cr, and also has the effect of improving the softening resistance after heating, and the amount added is 0.0
If it is less than 0.03%, no deoxidizing effect will be obtained, and if it exceeds 0.04%, not only will thermal conductivity be markedly lowered, but stress corrosion cracking will likely occur.

またB、Ca、Mg、Mn 、Ni 、Si 、Sb、
Ti 。
Also B, Ca, Mg, Mn, Ni, Si, Sb,
Ti.

In + Asは本発明合金の耐食性を阻害することな
く鋳造性を改善する作用をなすものであり、0.005
%未満ではその効果は得られず、0.4%を越えて含む
と加工性が低下するためである。
In + As acts to improve the castability without inhibiting the corrosion resistance of the alloy of the present invention, and has a content of 0.005
This is because if the content is less than 0.4%, the effect will not be obtained, and if the content exceeds 0.4%, the processability will decrease.

本発明銅合金の製造法について簡単に述べるとつぎのと
おりである。
The method for producing the copper alloy of the present invention will be briefly described below.

その溶解法は通常の銅基谷金の溶解法と格別具なるとこ
ろはなく、銅溶湯中にPを添加して予め溶湯中の酸素を
除去した後Sn 、 Cr及びB、Ca。
The melting method is no different from the usual melting method for copper base metal, and after adding P to the molten copper and removing oxygen from the molten metal, Sn, Cr, B, and Ca are melted.

Mg、Mn、Ni 、Si 、Sb、Ti 、In、A
sなどの単体又は母合金の形で添加し、さらに鋳造直前
に再度Pを添加して所要のP含有量に調製した後鋳造す
ることによりなされる。
Mg, Mn, Ni, Si, Sb, Ti, In, A
This is done by adding s alone or in the form of a master alloy, and then adding P again just before casting to adjust the required P content, and then casting.

この場合本発明合金は大気中または不活性雰囲気など何
れの雰囲気中でも溶製できるが、大気中で溶製する場合
は酸化を防止するために木炭被覆下でCuを溶解するの
が望ましい。
In this case, the alloy of the present invention can be melted in any atmosphere such as the air or an inert atmosphere, but when melted in the air, it is desirable to melt Cu under charcoal coating to prevent oxidation.

次に第1表に示すように本発明の組成をもつCu−8n
−Cr −P系鋼合金の実施例(A 1〜尻4 )とC
u−8n −Cr−P−(B 、 Ca 、Mg 、M
n、Ni 。
Next, as shown in Table 1, Cu-8n having the composition of the present invention
Examples of -Cr-P steel alloys (A1 to A4) and C
u-8n-Cr-P-(B, Ca, Mg, M
n, Ni.

Si 、Sb、Ti 、In、As)系銅合金の実施例
(A5〜羨15)をあげ、同時に従来のリン脱酸銅(A
16)、Cu−Zr系合金(A17)及びCu−Fe−
P系合金(A18)を比較のために挙げ、各供試材を8
00℃で30分加熱し、冷却後の引張強さ、伸び、結晶
粒度、電気伝導度(熱伝導船及び耐食性を測定し、その
結果を第1表に併記する。
Examples (A5 to 15) of Si, Sb, Ti, In, As)-based copper alloys are listed, and at the same time conventional phosphorus-deoxidized copper (A
16), Cu-Zr alloy (A17) and Cu-Fe-
P-based alloy (A18) was listed for comparison, and each sample material was
After heating at 00°C for 30 minutes, tensile strength, elongation, grain size, electrical conductivity (thermal conductivity and corrosion resistance) were measured after cooling, and the results are also listed in Table 1.

この場合耐食性の試験は供試材を水中に浸漬して、腐食
された厚さを測定したもので、第1表には1年間に換算
した値を示している。
In this case, the corrosion resistance test was carried out by immersing the test material in water and measuring the corroded thickness, and Table 1 shows the values calculated over one year.

なお各供試材(従来合金A17を除く)は予め木炭被覆
下で大気溶解された銅の溶湯中にPを添加して脱酸素を
行った後、Sn 、 Cr及びB 、 Ca 。
Each sample material (excluding conventional alloy A17) was deoxidized by adding P to a molten copper melted in the atmosphere while covered with charcoal, and then containing Sn, Cr, B, and Ca.

Mg 、Mn 、Ni 、 Si 、 Sb 、Ti
、 In 、Asなどの合金成分を添加して温度を12
00℃まで下げ、さらにPを再添加して所望の化学組成
とした後鋳造し、ついでこの鋳塊を900℃で熱間圧延
して10mmの厚さの板材とした後、これを650℃で
焼鈍し、さらに90%の冷間圧延を行って厚さ1門とし
たものである。
Mg, Mn, Ni, Si, Sb, Ti
, In, As, etc. are added to lower the temperature to 12
After cooling the ingot to 00℃ and re-adding P to obtain the desired chemical composition, the ingot was then hot-rolled at 900℃ to form a plate material with a thickness of 10mm, which was then heated at 650℃. It was annealed and further cold rolled by 90% to have a thickness of one layer.

なお従来合金の供試材A17は溶湯中にZrを添加して
これを鋳造した後これを上述した方法と同様の方法で圧
延して厚さ1rIrInとしたものである。
The conventional alloy sample A17 was made by adding Zr to a molten metal, casting it, and then rolling it to a thickness of 1rIrIn in the same manner as described above.

第1表に示す測定結果によれば本発明合金(A1〜A
15 )は引張強さが27〜32に7ArtlrL程度
で結晶粒度が0.01〜0.02rImL程度であるの
に対し従来合金(A I 6〜& 18 )は高々26
k7/mm程度で結晶粒度が0.1rImL程度であ
り本発明合金が高温加熱後における優れた耐軟化性を有
していることを示している。
According to the measurement results shown in Table 1, the alloys of the present invention (A1 to A
15) has a tensile strength of about 27 to 32 to 7 ArtlrL and a grain size of about 0.01 to 0.02 rImL, whereas conventional alloys (AI 6 to & 18) have a tensile strength of about 26 to 7 ArtlrL.
The crystal grain size is about k7/mm and about 0.1 rImL, indicating that the alloy of the present invention has excellent softening resistance after high-temperature heating.

また本発明合金は伸びが30〜50%有し優れた曲げ加
工性を有しているとともに熱伝導度も良好に維持されて
いる。
Further, the alloy of the present invention has an elongation of 30 to 50%, excellent bending workability, and maintains good thermal conductivity.

とくに本発明合金のうちB、Ca、Mg、Mn、Ni
、Si、Sb。
In particular, among the alloys of the present invention, B, Ca, Mg, Mn, Ni
, Si, Sb.

Ti 、 In 、 Asなどを添加したもの(A、!
5〜A15)は耐軟化性、加工性、熱伝導性を低下させ
ることなく耐食性が改善されていることが示されている
Those to which Ti, In, As, etc. are added (A,!
5 to A15) have been shown to have improved corrosion resistance without deteriorating softening resistance, workability, and thermal conductivity.

また本発明合金は表記しないが鋳造性も良好であった。The alloy of the present invention also had good castability, although not shown.

以上の結果から明らかなように本発明合金は加熱後の耐
軟化性に優れているのでこの合金を熱交換器類の管材な
どに用いてこの管材を溶接しても溶接部の強度を維持す
ることができ、管材の薄肉化を図ることができるととも
に、またB 、 Ca 、 Mg。
As is clear from the above results, the alloy of the present invention has excellent resistance to softening after heating, so even if this alloy is used for pipe materials such as heat exchangers and the pipe materials are welded, the strength of the welded part is maintained. It is possible to reduce the thickness of the tube material, and also to reduce the thickness of B, Ca, and Mg.

Mn 、Ni 、 Si 、 Sb 、Ti 、 In
、Asなどをさらに添加したものは耐食性及び鋳造性
が向上するなどの顕著な効果を奏する。
Mn, Ni, Si, Sb, Ti, In
, As, etc., have remarkable effects such as improved corrosion resistance and castability.

Claims (1)

【特許請求の範囲】 1Sn 0.01〜2.0重量%、Cr O,004〜
0.7重量%、Po、003〜004重量%、残部Cu
からなる耐軟化性銅合金。 2 Sn O,01〜2.0重量%、Cr O,00
4〜0.7重量%、PO1003〜0.04重量%、B
、 Ca 、 Mg。 Mn 、Ni 、 Si 、 Sb 、Ti 、 In
、Asのうち1種または2種以上を0.005〜0.
4重量%、残部Cuからなる耐軟化性銅合金。
[Claims] 1Sn 0.01~2.0% by weight, CrO, 004~
0.7% by weight, Po, 003-004% by weight, balance Cu
A softening-resistant copper alloy consisting of 2 Sn O, 01-2.0% by weight, Cr O, 00
4-0.7% by weight, PO1003-0.04% by weight, B
, Ca, Mg. Mn, Ni, Si, Sb, Ti, In
, As, one or more types of As are present in the range of 0.005 to 0.
A softening-resistant copper alloy consisting of 4% by weight and the balance being Cu.
JP51062445A 1976-05-31 1976-05-31 Softening resistant copper alloy Expired JPS5823452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51062445A JPS5823452B2 (en) 1976-05-31 1976-05-31 Softening resistant copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51062445A JPS5823452B2 (en) 1976-05-31 1976-05-31 Softening resistant copper alloy

Publications (2)

Publication Number Publication Date
JPS52145328A JPS52145328A (en) 1977-12-03
JPS5823452B2 true JPS5823452B2 (en) 1983-05-16

Family

ID=13200403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51062445A Expired JPS5823452B2 (en) 1976-05-31 1976-05-31 Softening resistant copper alloy

Country Status (1)

Country Link
JP (1) JPS5823452B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5547338A (en) * 1978-10-02 1980-04-03 Hitachi Cable Ltd Softening resisting copper alloy
JPS5893860A (en) * 1981-11-30 1983-06-03 Nippon Telegr & Teleph Corp <Ntt> Manufacture of high strength copper alloy with high electric conductivity
JPS6067635A (en) * 1983-09-20 1985-04-18 Sumitomo Light Metal Ind Ltd Heat pipe material
JPH0717977B2 (en) * 1986-04-10 1995-03-01 古河電気工業株式会社 Copper alloy for electronic devices
JPS63317635A (en) * 1988-05-19 1988-12-26 Furukawa Electric Co Ltd:The Copper alloy for electronic equipment and its production
JPH01312047A (en) * 1988-06-13 1989-12-15 Yazaki Corp High tensile and high-conductivity copper alloy having excellent continuous castability
JP4630323B2 (en) * 2007-10-23 2011-02-09 株式会社コベルコ マテリアル銅管 Copper alloy tube for heat exchangers with excellent fracture strength
JP4629080B2 (en) * 2007-11-05 2011-02-09 株式会社コベルコ マテリアル銅管 Copper alloy tube for heat exchanger
JP5107841B2 (en) * 2008-09-10 2012-12-26 株式会社神戸製鋼所 Copper alloy tube for heat exchangers with excellent bending workability
US20110005739A1 (en) * 2009-07-10 2011-01-13 Finney M Parker Copper Alloy for Heat Exchanger Tube

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50147420A (en) * 1974-05-20 1975-11-26

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50147420A (en) * 1974-05-20 1975-11-26

Also Published As

Publication number Publication date
JPS52145328A (en) 1977-12-03

Similar Documents

Publication Publication Date Title
TWI739362B (en) Copper alloy strip and its manufacturing method, resistance material for resistor using the copper alloy strip and resistor
JPS6252464B2 (en)
JPH09104956A (en) Production of high strength and high electric conductivity copper alloy
JP3896422B2 (en) Copper alloy for backing plate and manufacturing method thereof
JPS5823452B2 (en) Softening resistant copper alloy
JPH02221344A (en) High strength cu alloy having hot rollability and heating adhesiveness in plating
JPS6245301B2 (en)
JPS6231059B2 (en)
JPH10130754A (en) Heat resistant copper base alloy
JPS6215619B2 (en)
JPS5832220B2 (en) Softening resistant copper alloy
JPH032341A (en) High strength and high conductivity copper alloy
JPH0765131B2 (en) Heat-resistant copper alloy for heat exchangers with excellent hard brazing properties
JPH0210212B2 (en)
JPH01102297A (en) Aluminum alloy compound fin material for heat exchanger suitable for brazing and corrosion resistance
JPH0210213B2 (en)
JPS6142772B2 (en)
JP3519863B2 (en) Phosphor bronze with low surface cracking susceptibility and method for producing the same
JP2534917B2 (en) High strength and high conductivity copper base alloy
JPS6144930B2 (en)
JPS6017039A (en) Copper alloy with superior heat resistance, mechanical characteristic, workability and electric conductivity
JP2002003966A (en) Copper alloy for electronic and electric apparatus excellent in solder weldnability
JP2000273562A (en) High strength and high electrical conductivity copper alloy excellent in stress relaxation resistance
JPS63149B2 (en)
JPS6338560A (en) Al and al alloy sheet as fin material for aluminum heat exchanger having superior zn solderability