JPS5843869B2 - How to convert thermal energy into electrical energy - Google Patents

How to convert thermal energy into electrical energy

Info

Publication number
JPS5843869B2
JPS5843869B2 JP53101898A JP10189878A JPS5843869B2 JP S5843869 B2 JPS5843869 B2 JP S5843869B2 JP 53101898 A JP53101898 A JP 53101898A JP 10189878 A JP10189878 A JP 10189878A JP S5843869 B2 JPS5843869 B2 JP S5843869B2
Authority
JP
Japan
Prior art keywords
electrode
temperature
metal
electrode system
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53101898A
Other languages
Japanese (ja)
Other versions
JPS5530110A (en
Inventor
紀男 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP53101898A priority Critical patent/JPS5843869B2/en
Publication of JPS5530110A publication Critical patent/JPS5530110A/en
Publication of JPS5843869B2 publication Critical patent/JPS5843869B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Hybrid Cells (AREA)

Description

【発明の詳細な説明】 本発明は特別の電池を用いて熱エネルギーを直接的に電
気エネルギーに変換する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for converting thermal energy directly into electrical energy using a special battery.

熱エネルギーを電気エネルギーへ変換する方法としては
、周知の如く、火力発電や原子力発電などに見られるよ
うに、熱エネルギーを先ず機械エネルギーに変換し、次
に電気エネルギーとして取出す方法が採られている。
As is well known, the method of converting thermal energy into electrical energy is to first convert thermal energy into mechanical energy and then extract it as electrical energy, as seen in thermal power generation and nuclear power generation. .

しかしながら、この方法によると、エネルギー効率は最
高でも約40%と低く、エネルギー資源の欠乏が世界的
に深刻な問題としてとりあげられている現在、熱源によ
る既存の発電方法の根本的な改善ないし新規な発電方法
の開発が強く望まれている。
However, this method has a low energy efficiency of about 40% at best, and at a time when the lack of energy resources is being raised as a serious problem worldwide, it is necessary to fundamentally improve existing power generation methods using heat sources or develop new methods. There is a strong desire to develop a method of generating electricity.

このような観点から、従来より種々の検討がなされてい
るが、未だ既存の技術を凌駕するものは見出されていな
い。
From this point of view, various studies have been made in the past, but nothing superior to existing techniques has yet been found.

エネルギー変換効率を高める方法の一つとして水を熱化
学的に分解し、燃料としても利用され得る水素を製造す
る方法が提供されているが、工業的に実用するには至っ
ていない。
As one method of increasing energy conversion efficiency, a method of thermochemically decomposing water to produce hydrogen that can also be used as fuel has been proposed, but it has not yet been put into practical use industrially.

本発明者は、熱エネルギーを連続的に電気エネルギーに
変換する方法について、工学的に極めて簡単な系で、操
作条件が穏やかである上、エネルギー変換効率が高く、
源料を必要とせず加えて無公害化の観点からクローズド
、システムでの実施が可能な基本プロセスを開発すべく
鋭意研究を重ねた結果、特別の電極系を用いて温度差の
ある高温で作動する電池を構成すれば、両電極系を交互
に加熱冷却して、両電極系の温度関係を交互に逆転させ
るだけで、絶えず放電を行なわせて電力を得るとともに
、放電により変化した両電極系物質の再生を行なうこと
ができることを見出し、この知見に基づいて本発明を完
成するに到った。
The present inventor has developed a method for continuously converting thermal energy into electrical energy, which is an extremely simple system from an engineering point of view, has mild operating conditions, and has high energy conversion efficiency.
As a result of intensive research to develop a basic process that does not require raw materials and can be implemented in a closed system from the perspective of non-polluting, we have developed a process that uses a special electrode system to operate at high temperatures with temperature differences. By constructing a battery that can generate electric power by constantly discharging, simply by alternately heating and cooling both electrode systems and alternately reversing the temperature relationship between the two electrode systems. They discovered that it is possible to regenerate substances, and based on this knowledge, they completed the present invention.

すなわち、本発明によれば、金属電極と電解質溶融塩か
らなる電極系Aと金属電極と電解質溶融塩からなる電極
系Bとを用い、かつそれら電極系A、Bにおける電解質
溶融塩の少なくとも一方に電極金属に対応する金属を陽
イオンとする電解質を共存させることによって電池を構
成するとともに、電極系A及びB電極を周期的にかつ交
互に加熱冷却し、電極系A及びBの再生を同時に行ない
ながら熱エネルギーを電気エネルギーに変換する方法が
提案される。
That is, according to the present invention, an electrode system A consisting of a metal electrode and an electrolyte molten salt and an electrode system B consisting of a metal electrode and an electrolyte molten salt are used, and at least one of the electrolyte molten salts in the electrode systems A and B is A battery is constructed by coexisting an electrolyte with a metal corresponding to the electrode metal as a cation, and electrode systems A and B are periodically and alternately heated and cooled to simultaneously regenerate electrode systems A and B. However, a method for converting thermal energy into electrical energy is proposed.

本発明で用いる電池は、金属電極と電解質溶融塩からな
る電極系Aと、金属電極と電解質溶融塩からなる電極系
Bとを含み、かつそれら電極系A。
The battery used in the present invention includes an electrode system A consisting of a metal electrode and a molten electrolyte salt, and an electrode system B consisting of a metal electrode and a molten electrolyte salt, and the electrode system A.

Bにおける電解質溶融塩の少なくとも一方に、その電極
金属に対応する金属を陽イオンとする電解質を共存させ
るものである。
At least one of the electrolyte molten salts in B is made to coexist with an electrolyte whose cation is a metal corresponding to the electrode metal.

本発明で電解液として用いる電解質溶融塩としては、種
々のものが使用され、たとえば、ZnCA2KCl、K
Cl−AlCl3.ZnC12−KCl−NaC# 、
LiBr−NaBr−KBr 、LiI−KINaI、
Na0H−KOH,Li0H−NaOH,KNO3−N
aNO3,LiNo3−KNO3−NaNO3などが挙
げられる。
Various electrolyte molten salts are used as the electrolyte in the present invention, such as ZnCA2KCl, K
Cl-AlCl3. ZnC12-KCl-NaC#,
LiBr-NaBr-KBr, LiI-KINaI,
Na0H-KOH, Li0H-NaOH, KNO3-N
Examples include aNO3, LiNo3-KNO3-NaNO3, and the like.

また、本発明で電極として使用するとしては、種々のも
のが適用され、たとえば、Cu。
Furthermore, various materials can be used as electrodes in the present invention, such as Cu.

Ni 、Ag、Fe 、Cd、Sb、Se、Bi 、P
b。
Ni, Ag, Fe, Cd, Sb, Se, Bi, P
b.

Sn、Co、Mn、Cr、V、Ti、Zrなどが挙げら
れる。
Examples include Sn, Co, Mn, Cr, V, Ti, and Zr.

本発明により適用される電極金属の組合せを例示すると
、たとえば、N i /Ni 、 Ni/CuNi/A
g Cd/Cu Cd/Ag Fe/PbFe/
Cu Fe/Ag Sn/Ag Sn/Cu5b
、”cct Sb/Sn Mn/Cu Mn/A
gSe/Ni Se/Fe Co/Cu Co/
AgCo/Pb Co/Se Cr/Cu Cr
/AgTi/Cu Ti/Ag Zr/Cu Z
r/Agなどが挙げられる。
Examples of combinations of electrode metals applied according to the present invention include, for example, N i /Ni, Ni/CuNi/A
g Cd/Cu Cd/Ag Fe/PbFe/
Cu Fe/Ag Sn/Ag Sn/Cu5b
,”cct Sb/Sn Mn/Cu Mn/A
gSe/Ni Se/Fe Co/Cu Co/
AgCo/Pb Co/Se Cr/Cu Cr
/AgTi/Cu Ti/Ag Zr/Cu Z
Examples include r/Ag.

本発明において電解液中に共存させる金属電解質は、当
該電極に対応する金属を陽イオンとするものであれば任
意であり、たとえば、次の式で表わされるものが適用さ
れる。
In the present invention, any metal electrolyte can be used to coexist in the electrolytic solution as long as the metal corresponding to the electrode is a cation, and for example, one represented by the following formula is applicable.

−X (式中、Mは電極金属陽イオン、Xはハロゲン、NO3
−、OH−などの陰イオンである)本発明は、前記のよ
うにして構成された電池に関し、電極系Aと電極系Bを
周期的にかつ交互に加熱冷却し、両電極系A、B間に温
度差を与えることによって、その際の熱エネルギーを電
気エネルギーに変換するものである。
-X (where M is an electrode metal cation, X is a halogen, NO3
-, OH-, etc.) The present invention relates to a battery configured as described above, in which electrode system A and electrode system B are periodically and alternately heated and cooled, and both electrode systems A and B By applying a temperature difference between them, the thermal energy at that time is converted into electrical energy.

この場合、電極系の加熱温度は電極金属や共存させる電
極金属を陽イオンとする電解質の種類によって異なるが
、一般的には、350℃以上、通常、350〜700℃
の範囲である。
In this case, the heating temperature of the electrode system varies depending on the electrode metal and the type of electrolyte in which the coexisting electrode metal is a cation, but is generally 350°C or higher, usually 350 to 700°C.
is within the range of

一方、冷却温度は、加熱温度よりも低められたものであ
ればよく、通常、加熱温度よりも少なくとも50℃、好
ましくは、250〜500℃低められた温度が採用され
る。
On the other hand, the cooling temperature may be lower than the heating temperature, and is usually at least 50° C., preferably 250 to 500° C. lower than the heating temperature.

本発明で適用する加熱と冷却の組合せの1例を示すと、
たとえば、一方の加熱電極系の温度を350〜700℃
に保持し、他方の冷却電極系の温度を150〜300℃
に保持する。
An example of the combination of heating and cooling applied in the present invention is as follows:
For example, set the temperature of one heating electrode system to 350 to 700°C.
and keep the temperature of the other cooling electrode system at 150-300℃.
to hold.

次に、本発明におげろ熱エネルギーを電気エネルギーに
変換する原理を反応式及び図面により説明する。
Next, the principle of converting thermal energy into electrical energy according to the present invention will be explained using reaction formulas and drawings.

まず、本発明における電極系Aと電極系Bよりなる電池
において放電又は充電(再生)時に起る反応は次の式に
よって表わされる。
First, the reaction that occurs during discharging or charging (regeneration) in a battery consisting of electrode system A and electrode system B in the present invention is expressed by the following equation.

Ma+MbXjMaX+Mb (1)(
式中、Maは電極系Aの電極金属、Mbは電極系Bの電
極金属、MbXは電極系Bの電解液中に共存させた電極
金属を陽イオンとする電解質であり、Xは陰イオンを示
す) この反応において、MaとMbはいずれも金属単体であ
るから、それぞれ異なる温度下にあっても、それらの化
学ポテンシャルは、たとえMaとMbが異なっていても
、それ程の差異はなく、近似的に等しいものとすること
ができる。
Ma+MbXjMaX+Mb (1)(
In the formula, Ma is the electrode metal of electrode system A, Mb is the electrode metal of electrode system B, MbX is an electrolyte whose cation is the electrode metal coexisting in the electrolyte of electrode system B, and X is an anion. In this reaction, since both Ma and Mb are elemental metals, their chemical potentials do not differ much even if Ma and Mb are different, and are approximated. can be made equal to each other.

したがって、前記反応はMaXとMbXの化学ポテンシ
ャルの間の差異によって進行すると考えることができる
Therefore, it can be considered that the reaction proceeds due to the difference between the chemical potentials of MaX and MbX.

今、図面において、MaXとMbXの化学ポテンシャル
μ(T(a))及びμ(T(b) )を温度Tに対して
プロットする。
Now, in the drawing, the chemical potentials μ(T(a)) and μ(T(b)) of MaX and MbX are plotted against temperature T.

この場合、それらの化学ポテンシャルは温度上昇により
増大するものとする。
In this case, it is assumed that their chemical potential increases with increasing temperature.

電極系Aの温度T、が電極系Bの温度T2より大きい時
(T1〉T2)のMaXとMbXの化学ポテンシャルの
差h1−Δμ〔T1(a)−T2(b)〕は、図面から
明らかなように、電極系A、Bがともに等しい温度T1
における化学ポテンシャルの差り。
The difference h1-Δμ [T1(a)-T2(b)] between the chemical potentials of MaX and MbX when the temperature T of electrode system A is higher than the temperature T2 of electrode system B (T1>T2) is clear from the drawing. As shown, both electrode systems A and B have the same temperature T1.
Difference in chemical potential at .

−Δμ(T 1 (a) T s (b) :)より
も太きい。
-Δμ(T 1 (a) T s (b) :) is thicker.

すなわち、Δμ〔T1(a)−T2(b)〕〉△μ(T
1(a)−TI(b)) (2)一方、化学ポテンシ
ャルの差Δμと起電力Eとの間には、周知のように次の
式が成立する。
That is, Δμ[T1(a)-T2(b)]>Δμ(T
1(a)-TI(b)) (2) On the other hand, as is well known, the following equation holds between the chemical potential difference Δμ and the electromotive force E.

ΔμニーIZIFE (3)(式中、
Zは電荷、Fはファラデ一定数、Eは起電力を表わす) したがって、電極系A、Bにより生起されるその起電力
Eは、式(2)と式(3)を関係させることによりバ電
極系A、Bの温度差が大きい程より大きな起電力が得ら
れることがわかる。
Δμ knee IZIFE (3) (in the formula,
(Z is electric charge, F is Faraday's constant, and E is electromotive force) Therefore, the electromotive force E generated by electrode system A and B can be calculated by relating equations (2) and (3) to It can be seen that the greater the temperature difference between systems A and B, the greater the electromotive force can be obtained.

次に、電極系Aの温度をT2、電極系Bの温度をT1に
逆転させた時のMaXとMbXの化学ポテンシャルの差
h2=Δμ(’r2(a)−、’r1(b) )も同様
に温度T1における両電極系A、Bの化学ポテンシャル
の差り。
Next, when the temperature of electrode system A is reversed to T2 and the temperature of electrode system B is reversed to T1, the difference in chemical potential between MaX and MbX, h2=Δμ('r2(a)-,'r1(b)), is also Similarly, the difference in chemical potential between both electrode systems A and B at temperature T1.

よりも大きい。したがって、この場合にも大きい起電力
を得ることができる。
larger than Therefore, a large electromotive force can also be obtained in this case.

なお、この場合には、化学ポテンシャルの差h2−Δμ
(T 2 (a) T t (b) 、lは、前記h
1−Δμ(T s (a) −T2(b)〕とはその正
負の符号が逆になるので、電流は逆方向に流れる。
In this case, the difference in chemical potential h2−Δμ
(T 2 (a) T t (b), l is the h
Since the positive and negative signs are opposite to 1-Δμ(T s (a) −T2(b)), the current flows in the opposite direction.

ところで、図面に示すように、温度T。By the way, as shown in the drawing, the temperature T.

(T2〈To<T1)において、MaXとMbXの化学
ポテンシャルが等しくなるようなMaXとMbXを選べ
ば、電極系Aと電極系Bの温度をそれぞれ’r1(>T
o ) 、 ’r2(<−To )のように関係すげ、
それらの温度を交互に逆転させる、すなわち、電極系A
をT1、電極系BをT2に一定時間保持した後、逆に電
極系AをT2、電極糸BをT1に保持する操作を繰返す
ことによって、常により高い電力を得ることができ、し
かも同時に電池を再生することができる。
If you choose MaX and MbX such that the chemical potentials of MaX and MbX are equal in (T2<To<T1), the temperatures of electrode system A and electrode system B can be set to 'r1(>T
o), 'r2(<-To), which are very related,
alternately reversing their temperatures, i.e. electrode system A
By repeating the operation of holding the electrode system A at T1 and the electrode system B at T2 for a certain period of time, and then holding the electrode system A at T2 and the electrode thread B at T1, it is possible to always obtain higher power, and at the same time, the battery can be played.

換言すれば、電極系A、Bを交互に加熱冷却するだけで
、力1)の反応を正逆両方向に進める、すなわち放電し
ながら電池を再生していることとなる。
In other words, by simply heating and cooling the electrode systems A and B alternately, the reaction of force 1) proceeds in both forward and reverse directions, that is, the battery is regenerated while discharging.

以上のことは、MaXもMbXともにそれらの化学ポテ
ンシャルが温度の上昇に応じて増大するということを前
提としたが、この逆の場合も同様のことがいえる。
The above is based on the premise that the chemical potentials of both MaX and MbX increase as the temperature increases, but the same holds true in the opposite case.

また、本発明の場合、図面から明らかなように、MaX
とMbXの化学ポテンシャルの温度変化を表わす直線μ
(T(a) )とμCT(b) )は、全く同一、すな
わち、金属MaとMbとは同一であることができ、さら
に、はぼ類似の関係を有するものであってもよい。
Furthermore, in the case of the present invention, as is clear from the drawings, MaX
and the straight line μ representing the temperature change in the chemical potential of MbX.
(T(a)) and μCT(b)) may be exactly the same, that is, the metals Ma and Mb may be the same, and furthermore, they may have a similar relationship.

μ(T(a))とμ(T(b))との関係が類似する場
合、実用性の高い電池を得るには、その差μ(T(a)
−μ(T(b))はIKcal/r11ol!以下、殊
に0.5KcaA以下になるような電極系A、Bを選ぶ
のがよい。
If the relationship between μ(T(a)) and μ(T(b)) is similar, the difference μ(T(a)) must be
-μ(T(b)) is IKcal/r11ol! Hereinafter, it is particularly preferable to select electrode systems A and B that have a value of 0.5 KcaA or less.

本発明においては、電極系A、Bにおける電極金属Ma
、Mb及び電解液中に共存させる電極金属を陽極とする
金属電解質は、前記したような本発明の本質を充分に考
慮した上、プロセスコストや実施容易性との関係で適当
に選択される。
In the present invention, the electrode metal Ma in the electrode systems A and B
, Mb, and the metal electrolyte whose anode is an electrode metal coexisting in the electrolytic solution are appropriately selected in relation to process cost and ease of implementation, after fully considering the essence of the present invention as described above.

なお、電解液の両方あるいは一方に共存させる対応電極
金属を陽イオンとする電解質の量は、所望する電力及び
変換効率にもよるが、一般的には、0.1〜30重量饅
である。
The amount of the electrolyte in which the corresponding electrode metal is a cation, which is coexisting in both or one of the electrolyte solutions, depends on the desired power and conversion efficiency, but is generally 0.1 to 30% by weight.

本発明においては、電池を構成する反応槽を熱源に対し
て熱を効率的に伝えることができるように設置し、熱源
からの熱の量を制御することによって、電極槽の温度を
適宜に上昇、降下させると。
In the present invention, the reaction tank constituting the battery is installed so that heat can be efficiently transferred to the heat source, and the temperature of the electrode tank is increased appropriately by controlling the amount of heat from the heat source. , when lowered.

いう操作のみで熱エネルギーを直接的に高いエネルギー
変換効率、たとえば50%の効率をもって電気エネルギ
ーに変換することができるのである。
With just this operation, thermal energy can be directly converted into electrical energy with high energy conversion efficiency, for example, 50% efficiency.

なお、本発明における加熱とは、電極系の温度を上昇さ
せる操作を言い、また冷却とは電極系の温度を降下させ
る操作を言い、冷却の場合、強制冷却、自然冷却の他に
、熱量の供給を制限した冷却も包含される。
Note that heating in the present invention refers to an operation that increases the temperature of the electrode system, and cooling refers to an operation that decreases the temperature of the electrode system. Cooling with limited supply is also included.

なお、この場合の電極系の加熱は、電極系の温度を上昇
させ得る方法であれは直接及び間接加熱を問わず任意に
採用され、例えば、電熱による加熱や、赤外線等の熱線
による加熱、高温流体(ガスや液体)を利用した加熱等
が採用される。
The heating of the electrode system in this case may be any method that can raise the temperature of the electrode system, whether direct or indirect heating.For example, heating with electric heat, heating with hot rays such as infrared rays, high temperature Heating using fluid (gas or liquid) is used.

このように、本発明の方法は、操作が簡単であり、しか
もエネルギー変換方法としては、完全にクローズド・シ
ステムとすることが可能であり、従来実施されている熱
源に基づくエネルギー変換方法に比して、電力を著しく
低減された価格でかつ無公害的に得ることを可能にし、
その産業的価値は著しく高い。
As described above, the method of the present invention is easy to operate, and can be used as a completely closed system as an energy conversion method, compared to conventional energy conversion methods based on heat sources. making it possible to obtain electricity at significantly reduced prices and pollution-free,
Its industrial value is extremely high.

次に本発明を実施例によりさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例 銅を陰極とし、ニッケルを陽極とし、及び塩化カリウム
と塩化亜鉛(モル比で1対1.174)の混合溶融塩を
電解液として用いるが、この場合、陽極電解液中には溶
融塩化ニッケルを共存(1重量%)させて電池を構成し
た。
Example: Copper is used as the cathode, nickel is used as the anode, and a mixed molten salt of potassium chloride and zinc chloride (molar ratio of 1:1.174) is used as the electrolyte. In this case, the anode electrolyte contains molten chloride. A battery was constructed by coexisting nickel (1% by weight).

次に、この電池において、加熱手段として赤外線を用い
、陰極系を強く加熱し、陽極系を弱く加熱することによ
って、陰極系を550℃及び陽極系を250℃に保った
とごろ、平均0.36ボルト、]、、3mAの電力を得
た。
Next, in this battery, the cathode system was kept at 550°C and the anode system at 250°C by using infrared rays as a heating means to strongly heat the cathode system and weakly heat the anode system. A power of 3 mA was obtained.

約30分間電力を得た後、今後は逆に、陰極系を250
℃及び陽極系を550℃に保ったところ、平均0.10
ボルト、0.45mAの電力を約30分間得ることがで
きた。
After obtaining power for about 30 minutes, from now on, reverse the cathode system to 250
℃ and the anode system was kept at 550℃, the average was 0.10
Volt, 0.45 mA of power could be obtained for about 30 minutes.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の詳細な説明するための電極系の化学ポテ
ンシャルμと温度Tとの関係を示すグラフの一例である
The drawing is an example of a graph showing the relationship between the chemical potential μ and temperature T of the electrode system for explaining the present invention in detail.

Claims (1)

【特許請求の範囲】[Claims] 1 金属電極と電解質溶融塩からなる電極系Aと金属電
極と電解質溶融塩からなる電極系Bとを用い、かつそれ
ら電極系A、Bにおける電解質溶融塩の少なくとも一方
に電極金属に対応する金属を陽イオンとする電解質を共
存させることによって電池を構成するとともに、電極系
A及び電極Bを周期的にかつ交互に加熱冷却し、電極系
A及びBの再生を同時に行ないながら熱エネルギーを電
気エネルギーに変換する方法。
1. Using an electrode system A consisting of a metal electrode and a molten electrolyte salt and an electrode system B consisting of a metal electrode and a molten electrolyte salt, and using a metal corresponding to the electrode metal in at least one of the molten electrolyte salts in the electrode systems A and B. A battery is constructed by coexisting an electrolyte with positive ions, and electrode system A and electrode B are periodically and alternately heated and cooled to simultaneously regenerate electrode systems A and B while converting thermal energy into electrical energy. How to convert.
JP53101898A 1978-08-23 1978-08-23 How to convert thermal energy into electrical energy Expired JPS5843869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53101898A JPS5843869B2 (en) 1978-08-23 1978-08-23 How to convert thermal energy into electrical energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53101898A JPS5843869B2 (en) 1978-08-23 1978-08-23 How to convert thermal energy into electrical energy

Publications (2)

Publication Number Publication Date
JPS5530110A JPS5530110A (en) 1980-03-03
JPS5843869B2 true JPS5843869B2 (en) 1983-09-29

Family

ID=14312730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53101898A Expired JPS5843869B2 (en) 1978-08-23 1978-08-23 How to convert thermal energy into electrical energy

Country Status (1)

Country Link
JP (1) JPS5843869B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7993768B2 (en) * 2007-12-20 2011-08-09 General Electric Company Energy storage device and method
CN104372380B (en) * 2014-11-18 2016-08-24 辽宁石化职业技术学院 A kind of low-temperature molten salt method prepares High Pure Chromium
US10511061B2 (en) 2016-01-13 2019-12-17 University Of Kentucky Research Foundation Low temperature liquid metal batteries for energy storage applications
CN112877038A (en) * 2021-01-13 2021-06-01 中盐金坛盐化有限责任公司 Chloride-based molten salt heat transfer and storage medium and preparation method and application thereof

Also Published As

Publication number Publication date
JPS5530110A (en) 1980-03-03

Similar Documents

Publication Publication Date Title
Ohta Solar-hydrogen energy systems: An authoritative review of water-splitting systems by solar beam and solar heat: Hydrogen production, storage and utilisation
Gratzel Energy resources through photochemistry and catalysis
CN111573787A (en) Method for electrochemical continuous desalting by using thermoelectric power generation technology
Licht et al. High solubility pathway for the carbon dioxide free production of iron
CN105888994A (en) Light-gathering solar power storage generating device
JPS5843869B2 (en) How to convert thermal energy into electrical energy
Ashurov et al. Solving the problem of energy storage for solar photovoltaic plants
CN105006601A (en) Liquid metal battery
Vassel et al. Electrochemical way of converting low-grade heat energy into electricity based on crystalline hydrate melting and crystallization
JP3001659B2 (en) Method for producing vanadium-based electrolyte
JPS60148068A (en) Manufacture of electrolyte in redox cell
JPH0541236A (en) Electric power storage
deBethune Fuel cell thermodynamics
JP2703685B2 (en) Storage type temperature difference battery
JPH04349356A (en) Electric power storage system by hydrogen energy
Bowman Fundamental aspects of systems for the thermochemical production of hydrogen from water
Jorné Flow Batteries: Rechargeable batteries with circulating electrolyte are being developed for use in electric vehicles and to meet fluctuating demand at power stations
US3907980A (en) Thermo-electrochemical process for producing hydrogen and oxygen from water
JPH0423387B2 (en)
Cnobloch et al. Redox ion flow cell for solar energy storage
Too et al. Potential value and technical gaps of CSP/T-assisted high temperature electrolysis
CN109756184B (en) Solar cell-solar fuel co-production circulating system
Lewis et al. An assessment of the efficiency of the hybrid copper-chloride thermochemical cycle
CN106848229A (en) A kind of metallo-organic compound cathode material preparation method
Liu Aqueous electrochemical system of Prussian blue analogue for low-grade thermal energy harvesting