JPH0423387B2 - - Google Patents

Info

Publication number
JPH0423387B2
JPH0423387B2 JP58250809A JP25080983A JPH0423387B2 JP H0423387 B2 JPH0423387 B2 JP H0423387B2 JP 58250809 A JP58250809 A JP 58250809A JP 25080983 A JP25080983 A JP 25080983A JP H0423387 B2 JPH0423387 B2 JP H0423387B2
Authority
JP
Japan
Prior art keywords
gas diffusion
heat
electricity
gas
metal hydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58250809A
Other languages
Japanese (ja)
Other versions
JPS60143575A (en
Inventor
Tadayasu Mitsumata
Kimimasa Myazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58250809A priority Critical patent/JPS60143575A/en
Publication of JPS60143575A publication Critical patent/JPS60143575A/en
Publication of JPH0423387B2 publication Critical patent/JPH0423387B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/182Regeneration by thermal means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、熱エネルギーを直接電気エネルギー
に効率よく変換する載置に関するものであり、こ
の装置は、エネルギー変換、センサなど熱エネル
ギーの存在するところで広く利用できるものであ
る。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a device that efficiently converts thermal energy directly into electrical energy, and this device is widely used in energy conversion, sensors, etc. where thermal energy is present. It is available.

従来例の構成とその問題点 熱エネルギーを電気エネルギーに変換する方法
として、機械的エネルギーを介して変換する火力
発電、原子力発電、地熱発電、海洋温度差発電な
どがあり、これらは広くは実用化されているもの
が多い。しかし、これらのエネルギー変換効率は
最高40%程度であり、一層の高効率化が望まれて
いる。
Conventional configurations and their problems Methods for converting thermal energy into electrical energy include thermal power generation, nuclear power generation, geothermal power generation, ocean temperature difference power generation, etc., which convert thermal energy through mechanical energy, and these have not been widely put into practical use. There are many things that are done. However, these energy conversion efficiencies are only around 40% at most, and even higher efficiency is desired.

一方、機械的エネルギーを介さない直接電気に
変換する方式として、熱電発電、熱電子発電、
MND発電などが古くから研究されているが、実
用的規模で工業的に実施できるほど高効率のもの
はまだ得られていない。
On the other hand, methods for converting directly into electricity without using mechanical energy include thermoelectric power generation, thermionic power generation,
Although MND power generation has been researched for a long time, it has not yet been achieved with high efficiency enough to be implemented industrially on a practical scale.

また、別の方式として、電気化学電池がある。 Another method is an electrochemical cell.

これは通常の二次電池と異なり、電気による充
電の代りに、加熱あるいは冷却などの熱エネルギ
ーを加えることによつて、放電可能な状態に再生
するものである。
Unlike ordinary secondary batteries, this battery is regenerated into a dischargeable state by applying thermal energy such as heating or cooling instead of being charged electrically.

この種の電池として、リチウムなどのアルカリ
金属と水素の組合せの高温作動型電池、Fe3+
Fe2+あるいはFe(CN)3+ 6−Fe(CN)4+ 6の酸化還元
対を用いた水溶液電池などがある。しかし前者に
おいては、開路電圧が0.2V/セルと比較的低く、
熱エネルギー変換効率は10%以下と低い。さらに
後者については0.05〜0.07V/セル、変換効率0.1
%と非常に低い。
This type of battery is a high-temperature operating battery that combines hydrogen and an alkali metal such as lithium, Fe 3+
There are aqueous batteries that use Fe 2+ or Fe(CN) 3+ 6 −Fe(CN) 4+ 6 redox pairs. However, in the former case, the open circuit voltage is relatively low at 0.2V/cell;
Thermal energy conversion efficiency is low at less than 10%. Furthermore, for the latter, 0.05 to 0.07V/cell, conversion efficiency 0.1
% is very low.

発明の目的 本発明は、比較的簡単な構成で熱エネルギーを
効率よく電気エネルギーに間けつ的にあるいは連
続的に変換する装置を提供することを目的とす
る。
OBJECTS OF THE INVENTION An object of the present invention is to provide a device that efficiently converts thermal energy into electrical energy intermittently or continuously with a relatively simple configuration.

発明の構成 本発明の装置は、プロトンイオン伝導体の両面
にそれぞれ独立したガス拡散電極を設け、これら
のガス拡散電極に水素を供給あるいはガス拡散電
極で生じた水素ガスを貯蔵するためのガス室を設
け、少なくとも一方のガス室内に金属水素化物を
収納し、この金属水素化物を必要により加熱ある
いは放熱させるための熱交換器を備えたものであ
る。そして、この金属水素化物を加熱して水素ガ
スをこれに連通するガス拡散電極に供給すること
により、前記ガス拡散電極が正極、他方のガス拡
散電極が負極となり、この両者間で電力を取出す
ものである。
Structure of the Invention The device of the present invention includes independent gas diffusion electrodes on both sides of a proton ion conductor, and a gas chamber for supplying hydrogen to these gas diffusion electrodes or storing hydrogen gas generated by the gas diffusion electrodes. A metal hydride is housed in at least one of the gas chambers, and a heat exchanger is provided to heat or radiate heat from the metal hydride as necessary. Then, by heating this metal hydride and supplying hydrogen gas to a gas diffusion electrode communicating with it, the gas diffusion electrode becomes a positive electrode and the other gas diffusion electrode becomes a negative electrode, and electric power is extracted between the two. It is.

各々のガス室に金属水素化物を収納すれば、一
方向の水素ガスが移動し終つた後反対側の金属水
素化物を加熱し、他方を冷却すると、電池の正負
極が逆になるが、同じく電力が得られる。
If metal hydride is stored in each gas chamber, after the hydrogen gas has moved in one direction, the metal hydride on the opposite side is heated and the other side is cooled, and the positive and negative electrodes of the battery are reversed, but the same effect occurs. You can get electricity.

また、電力は間けつ的に得られることになる
が、水素を元の方向へ戻す通路として、両室間に
バイパスを設けてもよい。この時の特徴として、
正極側の金属水素化物の平衡圧力を、負極側より
低くすることにより、より高電圧で、また1サイ
クルで得られる電気量が増大する。
Further, although electric power is obtained intermittently, a bypass may be provided between both chambers as a path for returning hydrogen to its original direction. As a characteristic of this time,
By lowering the equilibrium pressure of the metal hydride on the positive electrode side than on the negative electrode side, the amount of electricity that can be obtained at a higher voltage and in one cycle increases.

正負極で生じる反応式は次のとおりである。 The reaction formula occurring at the positive and negative electrodes is as follows.

負極(高圧側) H2→2H++2e 正極(低圧側) 2H++2e→H2 ここで、プロトンは電解質を通つて負極側から
正極側へ移動する。
Negative electrode (high pressure side) H 2 →2H + +2e Positive electrode (low pressure side) 2H + +2e→H 2Here , protons move from the negative electrode side to the positive electrode side through the electrolyte.

実施例の説明 第1図は本発明による装置の構成例を示す。1
は正極端子を兼ねる上ケース、2は負極端子を兼
ねる下ケースであり、両者の開口縁に設けた鍔部
は絶縁体3を介してボルト4により一体に結合さ
れて装置の外筐を形成している。5はスルホン基
を有するフツ素樹脂系イオン交換膜で構成した厚
さ0.5mmのプロトンイオン伝導体であり、外筐の
中央に配置されている。6はプロトンイオン伝導
体5の一方の面に密着して設けたガス拡散電極、
7は他方の面に密着して設けたガス拡散電極であ
り、これらの電極の背面にはそれぞれガス室8,
9が設けてある。10,11はケース1,2と一
体に設けた熱交換器を構成するひれであり、ここ
には金属水素化物12,13が収納されている。
DESCRIPTION OF THE EMBODIMENTS FIG. 1 shows an example of the configuration of an apparatus according to the present invention. 1
2 is an upper case that also serves as a positive electrode terminal, and 2 is a lower case that also serves as a negative electrode terminal, and the flanges provided at the opening edges of both are integrally connected by bolts 4 through an insulator 3 to form the outer casing of the device. ing. 5 is a 0.5 mm thick proton ion conductor made of a fluororesin ion exchange membrane having sulfone groups, and is placed in the center of the outer casing. 6 is a gas diffusion electrode provided in close contact with one surface of the proton ion conductor 5;
7 is a gas diffusion electrode provided in close contact with the other surface, and gas chambers 8 and 7 are provided on the back side of these electrodes, respectively.
9 is provided. Reference numerals 10 and 11 indicate fins constituting a heat exchanger provided integrally with the cases 1 and 2, and metal hydrides 12 and 13 are housed here.

この装置を図のように、熱せられた金属板14
上に載せると、装置の下半分が高圧側(負極側)、
上半分が低圧側(正極側)となり、水素ガスは下
部から上部へ移動しながら電力が得られる。放電
終了したら、この装置の上下を逆にすると、水素
の移動方向が逆となり再び電力が得られる。
This device is connected to a heated metal plate 14 as shown in the figure.
When placed on top, the lower half of the device is on the high pressure side (negative side),
The upper half becomes the low-pressure side (positive electrode side), and electricity is obtained while hydrogen gas moves from the bottom to the top. When the discharge ends, turning the device upside down reverses the direction of hydrogen movement and generates electricity again.

第2図の列は、ひれ10の代わりに油などの熱
媒を流して金属水素代物と熱交換させるための熱
交換器10′を設けるとともに、両ガス室間にバ
イパス管15を設け、ここに逆止弁またはバルブ
16を設けたものである。そして、下半分を加熱
し、上半分を冷却することによつて、第1図と同
様に電力を取出した後、今度は逆に上半分を加熱
し、下半分を冷却することによつて、水素圧力は
上部が高くなる。このとき逆止弁またはバルブ1
6を通つて水素は下部へ移動する。移動終了後、
再び下半分を加熱すると電力が取れることにな
り、このサイクルをくりかえす。
In the row of FIG. 2, a heat exchanger 10' is provided in place of the fin 10 for flowing a heat medium such as oil to exchange heat with the metal hydrogen substitute, and a bypass pipe 15 is provided between both gas chambers. A check valve or valve 16 is provided in the valve. Then, by heating the lower half and cooling the upper half, electricity is extracted in the same way as in Fig. 1, and then conversely, by heating the upper half and cooling the lower half, Hydrogen pressure is higher at the top. At this time, the check valve or valve 1
6, hydrogen moves to the bottom. After moving,
By heating the bottom half again, electricity can be obtained, and the cycle repeats.

次に、第1図において、Mg−MgH2系金属水
素化物を上方および下方にそれぞれ100gずつ入
れ、下方を400℃(10atm)、上方は77℃
(0.0001atm)とすると、その時の両電極の開路
電圧は約300mVとなつた。この値は、10倍の圧
力差当り約60mVの理論値(60mV×5=
300mV)と一致する。
Next, in Fig. 1, 100 g of Mg-MgH 2 metal hydride is placed in the upper and lower parts, and the temperature is 400°C (10 atm) in the lower part and 77°C in the upper part.
(0.0001 atm), the open circuit voltage of both electrodes at that time was approximately 300 mV. This value is the theoretical value of approximately 60 mV per 10 times pressure difference (60 mV x 5 =
300mV).

第3図は各種金属水素化物の温度と平衡水素圧
の関係を示す。また第4図には、この電池の電流
−電圧特性を示し、上記の実験結果を曲線Aに示
す。この曲線より、性能はイオン伝導体の電気抵
抗が律則になつていると推察できる。また1回の
放電可能電気容量は100A/cm2の条件で約60Ah
(理論値110Ah)となり、熱入力に対する変換効
率は約43%(カルノーサイクル効率48%)が得ら
れ、いずれもすぐれた値といえる。前記の放電が
終了装置の上下を逆にすると、再び上記の特性で
電力が得られた。
Figure 3 shows the relationship between temperature and equilibrium hydrogen pressure for various metal hydrides. Further, FIG. 4 shows the current-voltage characteristics of this battery, and curve A shows the above experimental results. From this curve, it can be inferred that performance is determined by the electrical resistance of the ionic conductor. Also, the electric capacity that can be discharged once is approximately 60Ah under the condition of 100A/cm 2
(Theoretical value: 110Ah), and the conversion efficiency against heat input was approximately 43% (Carnot cycle efficiency: 48%), both of which can be said to be excellent values. When the discharge was terminated and the device was turned upside down, power was again obtained with the above characteristics.

また別の例として、第2図の下方にはMg−
MgH2、上方にはこれより平衡圧の低いNa−
NaHをそれぞれ入れた場合について示す。Mg−
MgH2を400℃に加熱し、Na−NaHを77℃に冷
却すると、両室間は108の圧力比となり、開路電
圧は450mVと高くなつた。また、電流−電圧曲
線を第4図の曲線Bに示す。この場合には再生時
には電流が得られないが、放電時には曲線Aの場
合よりも高い電圧が得られた。
As another example, the lower part of Figure 2 shows Mg−
MgH 2 , above which Na− has a lower equilibrium pressure.
The cases in which NaH is added are shown below. Mg−
When MgH 2 was heated to 400°C and Na-NaH was cooled to 77°C, the pressure ratio between the two chambers was 10 8 and the open circuit voltage was as high as 450 mV. Further, the current-voltage curve is shown as curve B in FIG. In this case, no current was obtained during regeneration, but a higher voltage than in the case of curve A was obtained during discharge.

さらに一層の高電圧を一つの装置から得るため
に、両極とも2つづつに分割し、しかもこれらを
互いに直列に結線した以外は曲線Aの装置とを全
く同一の装置を組立てた。開路電圧は2倍の
600mVとなつた。第4図の曲線Cはこの放電特
性を示す。曲線AおよびBに比べ高電圧である。
In order to obtain even higher voltage from one device, we assembled a device that was exactly the same as the device of curve A, except that both poles were divided into two parts and these were connected in series with each other. Open circuit voltage is twice
It became 600mV. Curve C in FIG. 4 shows this discharge characteristic. The voltage is higher than curves A and B.

なお、使用可能な金属水素化物として、上記の
ほかに、Ca−CaH2、Ti−TiH2、K−KH、V−
VH3、La−LaH2などがあり、作動温度により適
当な平衡圧力を有するものを選択することができ
る。また2種類以上を必要により混合したり、熱
伝導を向上させるために金属片などを加えてもよ
い。
In addition to the above, usable metal hydrides include Ca-CaH 2 , Ti-TiH 2 , K-KH, and V-
There are VH3 , La- LaH2, etc., and one with an appropriate equilibrium pressure can be selected depending on the operating temperature. Moreover, two or more types may be mixed if necessary, or metal pieces may be added to improve heat conduction.

プロトンイオン伝導体には、高い伝導度を示
し、耐熱性、耐圧性などが要求される。機械的強
度を補うためには金属メツシユ、セラミツク多孔
体などを用いてもよい。また耐熱性を補う手段と
して金属水素物と膜の間の距離を大きくすること
もできる。
Proton ion conductors are required to exhibit high conductivity, heat resistance, pressure resistance, etc. In order to supplement mechanical strength, metal mesh, porous ceramic material, etc. may be used. Furthermore, as a means of supplementing heat resistance, the distance between the metal hydride and the film can be increased.

また、装置の容器などを伝つて熱の伝導損失が
あり、これを抑制するために容器の一部を金属以
外の熱伝導度の低い材料で構成するとか、または
両容器間に断熱材をはさんで固定するなどの工夫
をするのは望ましい。
In addition, there is a conduction loss of heat through the equipment container, etc., and to suppress this, it is necessary to construct a part of the container with a material other than metal that has low thermal conductivity, or to install a heat insulating material between the two containers. It is advisable to take measures such as securing it with clamps.

ガス拡散電極は、性能を高めるための白金、パ
ラジウムなどの触媒や、炭素粉末を加えてもよ
い。また出力特性を高めるために、イオン伝導体
や電極をある程度温度を上げた状態で作動させて
もよい。
A catalyst such as platinum or palladium or carbon powder may be added to the gas diffusion electrode to improve performance. Further, in order to improve the output characteristics, the ion conductor and the electrodes may be operated with the temperature raised to some extent.

発明の効果 以上のように、本発明によれば、比較的簡単な
構成で効率よく、熱エネルギーを電気エネルギー
に変換することができ、作動音が静かで、小型化
が可能であるなどの特徴を有する。
Effects of the Invention As described above, according to the present invention, thermal energy can be efficiently converted into electrical energy with a relatively simple configuration, the operation noise is quiet, and miniaturization is possible. has.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明によるエネルギー変
換装置の構成例を示す縦断面図、第3図は代表的
な金属水素化物の平衡圧力特性図、第4図は本発
明による装置の特性図である。 1……上ケース、2……下ケース、4……プロ
トンイオン伝導体、6,7……ガス拡散電極、
8,9……ガス室、10,10′,11,11′…
…熱交換器、12,13……金属水素化物、15
……管、16……バルブ。
FIGS. 1 and 2 are longitudinal cross-sectional views showing an example of the configuration of an energy conversion device according to the present invention, FIG. 3 is an equilibrium pressure characteristic diagram of a typical metal hydride, and FIG. 4 is a characteristic diagram of the device according to the present invention. It is. 1... Upper case, 2... Lower case, 4... Proton ion conductor, 6, 7... Gas diffusion electrode,
8, 9... Gas chamber, 10, 10', 11, 11'...
...Heat exchanger, 12,13...Metal hydride, 15
...Tube, 16...Valve.

Claims (1)

【特許請求の範囲】 1 プロトンイオン伝導体の両面にそれぞれ独立
したガス拡散電極を設けるとともに、各々のガス
拡散電極と連通するガス室を設け、これらのガス
室の少なくとも一方に、外部と熱交換が可能な熱
交換器と接触した金属水素化物を内臓させたこと
を特徴とする熱を電気に変換する装置。 2 前記の各ガス室間を逆止弁またはバルブを介
して連結した特許請求の範囲第1項記載の熱を電
気に変換する装置。 3 前記の各ガス拡散電極を複数個に分離し、こ
れらを直列に結合した特許請求の範囲第1項また
は第2項記載の熱を電気に変換する装置。
[Claims] 1. Independent gas diffusion electrodes are provided on both sides of the proton ion conductor, and gas chambers communicating with each gas diffusion electrode are provided, and at least one of these gas chambers is provided with a heat exchanger with the outside. A device for converting heat into electricity, characterized by containing a metal hydride in contact with a heat exchanger capable of converting heat into electricity. 2. The device for converting heat into electricity according to claim 1, wherein each of the gas chambers is connected via a check valve or a valve. 3. The device for converting heat into electricity according to claim 1 or 2, wherein each of the gas diffusion electrodes is separated into a plurality of parts and these are connected in series.
JP58250809A 1983-12-28 1983-12-28 Conversion device of heat to electricity Granted JPS60143575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58250809A JPS60143575A (en) 1983-12-28 1983-12-28 Conversion device of heat to electricity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58250809A JPS60143575A (en) 1983-12-28 1983-12-28 Conversion device of heat to electricity

Publications (2)

Publication Number Publication Date
JPS60143575A JPS60143575A (en) 1985-07-29
JPH0423387B2 true JPH0423387B2 (en) 1992-04-22

Family

ID=17213366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58250809A Granted JPS60143575A (en) 1983-12-28 1983-12-28 Conversion device of heat to electricity

Country Status (1)

Country Link
JP (1) JPS60143575A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5643689A (en) * 1996-08-28 1997-07-01 E.C.R.-Electro-Chemical Research Ltd. Non-liquid proton conductors for use in electrochemical systems under ambient conditions
US6737180B2 (en) * 2000-04-10 2004-05-18 Johnson Electro Mechanical Systems, Llc Electrochemical conversion system
JP4736095B2 (en) * 2007-02-27 2011-07-27 Tbカワシマ株式会社 Sewing product and sewing machine jig for sewing
US10522862B2 (en) 2014-08-11 2019-12-31 Johnson Ip Holding, Llc Thermo-electrochemical converter
US10749232B2 (en) * 2015-03-09 2020-08-18 Johnson Ip Holding Llc Thermo-electrochemical converter with integrated energy storage

Also Published As

Publication number Publication date
JPS60143575A (en) 1985-07-29

Similar Documents

Publication Publication Date Title
JP6453480B2 (en) Thermoelectrochemical converter with integrated energy storage
US6737180B2 (en) Electrochemical conversion system
US4677038A (en) Gas concentration cells for utilizing energy
US6899967B2 (en) Electrochemical conversion system
US9236627B1 (en) Solid oxide redox flow battery
JPH04280484A (en) Solid electrolytic type fuel cell
WO2012070487A1 (en) Secondary battery type fuel cell system
Bae et al. Take it to the Carnot limit: perspectives and thermodynamics of dual-cell electrochemical heat engines
JPH0423387B2 (en)
US6949303B1 (en) Electromechanical conversion system
US3445292A (en) Thermally regenerable hydrogen halide fuel cell
US11566853B2 (en) Metal hydride heat exchanger and method of use
JP5683656B2 (en) Internal current collecting structure and manufacturing method of thermal conversion power generation cell
JPH05225990A (en) Fuel cell system
JP2004349029A (en) Fuel cell system
JP7428829B2 (en) Halogen thermoelectrochemical converter
Han et al. Performance Assessment and Parametric Design of a Combined System Consisting of High-Temperature Proton Exchange Membrane Fuel Cell and Absorption Refrigerator
JP2001148251A (en) Solid electrolyte and fuel cell using it
JPH0730155A (en) Electrochemical power generation element
Weissbart Fuel cells—Electrochemical converters of chemical to electrical energy
RU2074460C1 (en) Heat-to-electric power converter
JPS5923423B2 (en) Heat-renewable batteries
JP2003187823A (en) Fuel-enclosed regenerating hydrogen/oxygen fuel cell applying rectifying action of p-n junction diode, based on principle of electric double-layer formation by chemical reaction of active materials of hydrogen electrode and oxygen electrode with electrolytic solution
JP3142093B2 (en) Storage type temperature difference battery
RU2158048C1 (en) Solar-to-electric energy converter