JPS5834870A - Composite powder composition - Google Patents

Composite powder composition

Info

Publication number
JPS5834870A
JPS5834870A JP13253981A JP13253981A JPS5834870A JP S5834870 A JPS5834870 A JP S5834870A JP 13253981 A JP13253981 A JP 13253981A JP 13253981 A JP13253981 A JP 13253981A JP S5834870 A JPS5834870 A JP S5834870A
Authority
JP
Japan
Prior art keywords
powder
melting point
coating film
epoxy resin
silicone resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13253981A
Other languages
Japanese (ja)
Inventor
Takeshi Yokota
健 横田
Ryukichi Usui
臼井 隆吉
Yukio Endo
幸雄 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP13253981A priority Critical patent/JPS5834870A/en
Publication of JPS5834870A publication Critical patent/JPS5834870A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Paints Or Removers (AREA)

Abstract

PURPOSE:To provide a composite powder compsn. consisting of silicone resin powder, epoxy resin powder, low-melting glass powder with a specified particle size and heat-resistant inorganic substance in powder, and forming a coating film excellent in adhesion, heat resistance and insulating property. CONSTITUTION:5-50wt% powdered silicone resin, 5-50wt% powdered epoxy resin, 20-80wt% low-melting glass powder with a particle size of 80 mesh or smaller and a melting point of 300-600 deg.C (e.g., borosilicate glass) and 0.2- 15wt% heat-resistant inorganic substance in powder with a melting point of 600 deg.C or higher (e.g., alumina) are mixed together. EFFECT:The compsn. forms a strongly adherent coating film at a relatively low temperature which stands continuous use and, upon exposure to violent temperature rise under abnormal conditions, is converted to a strong ceramic film with high heat resistance and insulating properties. It is useful for protective and insulating coating of various electrical apparatuses.

Description

【発明の詳細な説明】 この発明は各種電気機器の保曖塗装あるいは絶縁塗装に
使用される耐熱性を有する粉体組成物に関し、通常の使
用温度では比較的低温で、過負荷等によシ急速に温度上
昇するような用途に好適に対応できるような塗膜を与え
る粉体組成物に係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat-resistant powder composition used for insulation coating or insulation coating of various electrical equipment, which is relatively low at normal usage temperature and is resistant to overload etc. The present invention relates to a powder composition that provides a coating film that can be suitably used in applications where the temperature rises rapidly.

粉体塗料は溶剤を使用しない無公害塗料として最近大い
に注目されているが塗膜の強度、接着性、耐熱性、作業
性などを配慮した塗料の出現が待望されている。
Powder coatings have recently attracted a lot of attention as non-polluting paints that do not use solvents, but the emergence of paints that take into account film strength, adhesion, heat resistance, workability, etc. is eagerly awaited.

本発明者らはこのような事情に基づき鋭意研究の結果比
較的低温の状態で高い塗膜の密着性を有し、長時間連続
して使用することができ、かつ異常状態で激しい温度上
昇に曝された場合に強固なセラミック皮膜に変化し、高
い耐熱特性、絶縁特性を与える粉本組成物として、シリ
コン樹脂、エポキシ樹脂、低融点ガ→ス及び耐熱性無機
物からなる複合粉本を開発した。
Based on these circumstances, the inventors of the present invention have conducted intensive research and found that the coating film has high adhesion at relatively low temperatures, can be used continuously for a long time, and can withstand severe temperature rises under abnormal conditions. We have developed a composite powder composition consisting of silicone resin, epoxy resin, low-melting gas, and heat-resistant inorganic material, which transforms into a strong ceramic film when exposed to heat and provides high heat resistance and insulation properties. .

このような複合粉体はシリコン樹脂及びエポキシ樹脂が
常態では基材への密着性と必要な樹脂絶縁皮膜を与・え
るとともに、600〜700℃という異常高温で樹脂が
分解したときは、低融点ガラスが熔融して基材と密着す
るとと本に、シリコン樹脂の熱分解により生成された8
103等の酸化物がガラスと反応して高融点のセラミッ
ク層を形成し耐熱絶縁皮膜を形成するものである。
In such a composite powder, silicone resin and epoxy resin normally provide adhesion to the substrate and the necessary resin insulation film, but when the resin decomposes at an abnormally high temperature of 600 to 700°C, it has a low melting point. When the glass melts and comes into close contact with the base material, 8.
An oxide such as 103 reacts with glass to form a high melting point ceramic layer, thereby forming a heat-resistant insulating film.

本発明者らは更にこの粉体組成物について追求の結果粉
体組成物中低融点ガラスの粒径を80メツシユ以下にす
ることが塗膜の平滑性と耐熱性を向転勤流動法もしくは
スプレードライ法等で製造しているが、従来は塗膜の平
滑性及び高温時の耐熱性を高めるためには低融点ガラス
の粒径を微細化する方が好ましいのではないかと考えて
複合粉体を製造していたが、低融点ガラス粉体の粒径は
大きい方が塗膜の平滑性を高め、耐熱性もよくなること
を見い出した。
The present inventors further investigated this powder composition and found that the particle size of the low melting point glass in the powder composition should be 80 mesh or less to improve the smoothness and heat resistance of the coating film using the transfer flow method or spray drying method. However, in order to improve the smoothness of the coating film and the heat resistance at high temperatures, we thought that it would be better to make the particle size of low-melting point glass finer, so we developed composite powder. However, it was discovered that the larger the particle size of the low-melting point glass powder, the smoother the coating film and the better the heat resistance.

アクリロニトリル等の重合性モノマーとの共重合物も使
用することができ、その場合シリコン樹脂成分の含量は
少くも30嘔以上あることが望ましい。
A copolymer with a polymerizable monomer such as acrylonitrile can also be used, and in that case, it is desirable that the content of the silicone resin component is at least 30 mm.

更にはslとTi 、 B 、 A/、 P、 Go、
 As、 8b等の元素を1種以上と酸素とを骨格に持
つもの、或はSlとTi、B。
Furthermore, sl and Ti, B, A/, P, Go,
Those having one or more elements such as As and 8b and oxygen in the skeleton, or Sl, Ti, and B.

)J 、 P 、 Go、 As、 sb 等の元素を
1種以上と酸素と炭素とを骨格に持つ構造のものなど使
用可能である。
) Those having a structure having one or more elements such as J, P, Go, As, and sb, oxygen, and carbon in their skeletons can be used.

エポキシ樹脂は異常高温等で樹脂の分解温度で分解し消
失するが、5重量%より少ない場合は最初の塗膜の平滑
性及び密着性が不充分であり、(資)重量嗟を越えた場
合には異常高温によりエポキシ樹脂が分解した場合に皮
膜に急激な脆化を来たし。
Epoxy resin decomposes and disappears at the decomposition temperature of the resin at abnormally high temperatures, etc., but if it is less than 5% by weight, the smoothness and adhesion of the initial coating film are insufficient, and if it exceeds the weight When the epoxy resin decomposes due to abnormally high temperatures, the coating suddenly becomes brittle.

基材から皮膜が剥離するおそれがある。There is a risk that the film may peel off from the base material.

このエポキシ樹脂としては、ヘテロ環、ベンゼン環を含
み基材との密着性に優れた耐熱性樹脂を添加することが
できる。
As this epoxy resin, a heat-resistant resin containing a hetero ring and a benzene ring and having excellent adhesion to the base material can be added.

低融点フリットは温度上昇によりシリコン樹脂、エポキ
シ樹脂が熱分解した際に約400℃以上の温度で軟化流
動して基材との密着性を保持しながら、前述のシリコン
樹脂の分解生成物である810 mと反応して高融点セ
ラミック皮膜を形成する亀ので、通常、融点が300〜
600℃のホウケイ酸ガラス又は含鉛ガラス誹ん酸ガラ
ス等が用いられ、また高温における金属基材との密着性
を更に向上させるためには低融点ガ゛ラスにCo、ML
、 P、 Mn、Ti、 Zr、 Gq IJo等の金
属の酸化物や化合物或はホウ酸塩更Kaこれらの元素を
含む複合酸化物やその他の化合物等を1種又は2種以上
添加混合したものを用いることが望ましい。
Low melting point frit is a decomposition product of the aforementioned silicone resin that softens and flows at a temperature of about 400°C or higher when silicone resin or epoxy resin thermally decomposes due to temperature rise, maintaining adhesion to the base material. Since it reacts with 810 m to form a high melting point ceramic film, it usually has a melting point of 300 to 300 m.
Borosilicate glass, lead-containing glass, silicate glass, etc. at 600°C are used, and in order to further improve the adhesion to the metal substrate at high temperatures, Co, ML, etc. are added to the low melting point glass.
, P, Mn, Ti, Zr, Gq, metal oxides or compounds such as IJo, or borates, complex oxides or other compounds containing these elements, etc., added and mixed one or more. It is desirable to use

低融点ガラスは異常温度上昇により、樹脂が分解した際
に強固表セラミック皮膜を生成する上で重要な役割を果
すが、この低融点ガラスの粒子を80メツシエ以下とし
た場合には20− mo型重量が好ましく20重量%よ
シ少ない場合には塗膜の耐熱性が悪く、80重量%を越
えると塗膜の平滑性が悪゛くまり、接着性等が悪くなる
Low melting point glass plays an important role in forming a strong surface ceramic film when the resin decomposes due to abnormal temperature rise, but if the particles of this low melting point glass are 80 meshier or less, the 20-mo type If the weight is preferably less than 20% by weight, the heat resistance of the coating film will be poor, and if it exceeds 80% by weight, the smoothness of the coating film will be poor and the adhesion properties will be poor.

高融点無機質微粉末は、樹、脂成分が分解するに至る昇
温過程に於て塗膜の収縮による亀裂発生で基材からの剥
離現象を来たすのを防止し、強固カセラミック皮膜を形
成するために必要なもので、0.2〜15重量−が好ま
しい範囲である。その添加量が15重量%よシ多過ぎれ
ばセラミック皮膜の密着力が低下し、02重量係より少
ない場合にけ昇温時に大きな亀裂を発生し易い。
The high melting point inorganic fine powder prevents peeling from the base material due to cracks caused by shrinkage of the coating film during the heating process that leads to the decomposition of resin and resin components, and forms a strong ceramic coating. The preferred range is 0.2 to 15% by weight. If the amount added is too large, such as 15% by weight, the adhesion of the ceramic film will decrease, and if it is less than 0.2% by weight, large cracks will easily occur when the temperature is increased.

又、この高融点無機物微粉末はエポキシ樹脂、シリコン
樹脂、低融点ガラス微粉末の間に介在して相互の反応を
抑制し、塗膜の平滑性を良くする作用も果たす。
Further, the high melting point inorganic fine powder is interposed between the epoxy resin, the silicone resin, and the low melting point glass fine powder to suppress mutual reactions and improve the smoothness of the coating film.

高融点無機質微粉末としては、少くも低融点ガラス微粉
末より高い融点のもので、通常600 ℃以上好ましく
は800℃以上の融点のもの、が用いられる。具体的に
はアルミナ(4110m) 、シリカ(81(h)、ベ
リリア(Bed)、ジルコニア(ZrOm) sマグネ
シア(M、fol、酸化チタン(TiO*)、酸゛化鉄
(Fed、 Few On)、チタン酸バリウム(Ba
TiOs) *チタン酸カルシウム(0aTi Os 
)、チタン酸鉛(PbTi O,s )、ジルコン(Z
rSiO4)、ジルコン酸バリウム(Bairns)、
ステアタイト(utsios)、タルク、フレ11モン
皐すロナイト、ベントナイが使用される。なお、これら
の無機微粉末は、ビニル基、エポキシ基、アルキルアミ
ノ基、アルコキシ基、アセトキシ基、ハロゲン原子外ど
を有するシラン系処理剤やシリルパーオキサイド々どの
変性シラン或はアルキルチタネートなどの有機チタン系
物質更にはリン酸エステル、亜すン酸エステル轡の有機
リン化合物などの処理剤によってシリコン系樹脂と親和
性もしくは反応性の状態になるよう表面処理しておいて
も良い。即ちこのような表面処理は粉体塗装時の加熱に
よって流動性が良好となシ塗膜を平滑化し易く、かつ無
機物粉末とシリコン系樹脂との密着性が良好となり強1
東な塗膜が得られるものである。
The high melting point inorganic fine powder has a melting point at least higher than that of the low melting point glass fine powder, and usually has a melting point of 600° C. or higher, preferably 800° C. or higher. Specifically, alumina (4110m), silica (81 (h), beryllia (Bed), zirconia (ZrOm), magnesia (M, fol), titanium oxide (TiO*), iron oxide (Fed, Few On), Barium titanate (Ba
TiOs) *Calcium titanate (0aTiOs)
), lead titanate (PbTiO,s), zircon (Z
rSiO4), barium zirconate (Bairns),
Steatite (utsios), talc, fluorite, and bentonite are used. These inorganic fine powders may be treated with silane-based treatment agents having vinyl groups, epoxy groups, alkylamino groups, alkoxy groups, acetoxy groups, halogen atoms, etc., modified silanes such as silyl peroxide, or organic compounds such as alkyl titanates. The surface may be treated with a titanium-based material or a treatment agent such as an organic phosphorus compound such as a phosphoric acid ester or a sulfuric acid ester to make it compatible with or reactive with the silicon-based resin. In other words, this type of surface treatment provides good fluidity when heated during powder coating, making it easy to smooth the coating film, and also improves the adhesion between the inorganic powder and silicone resin, resulting in a strong
This will give you a beautiful coating film.

又、無機物微粉末はあらかじめその粒子表面にエポキシ
樹脂、シリコン樹脂或はこれらの樹脂と相容性の良い樹
脂を被覆した複合粉体としても良く、この場合にも塗膜
の平滑性が改善され、基材への密着性屯改善される。
In addition, the inorganic fine powder may be a composite powder whose particle surface is coated with epoxy resin, silicone resin, or a resin that is compatible with these resins, and in this case also, the smoothness of the coating film is improved. , the adhesion to the substrate is improved.

本発明ではこのような粉体組成物中特に低融点ガラスの
粒径を80メツシユ以下という比較的大きい吃のとする
ことにより、塗膜の平滑性と耐熱性を向上するものであ
る。
In the present invention, the smoothness and heat resistance of the coating film are improved by making the particle size of the low melting point glass in the powder composition relatively large, 80 mesh or less.

即ち、低融点ガラスの粒径は小さい程シリコン樹脂およ
びエポキシ樹脂との反応が大きく、塗膜形成に際して流
動性を阻害し、平滑性が悪いが、粒径が大きくなるに従
いシリコン樹脂およびエポキシ樹脂との反応は少なくな
り、粒径が大きいことは表面積が小さくなることを意味
するのでこの点からも流動性がよくなり、塗膜が平滑化
されるのである。又、樹脂の熱分解する高温では、樹脂
の分解ガスの脱気状態を考えると低融点ガラスの粒径の
大きい程、粒子間隔も広く、その数屯少ないので、分解
ガスが塗膜め表面に脱出し易くなりこれによって分解ガ
スを皮膜中に内臓した場合に生成し勝ちなふくれやとび
が無く、耐熱性を良くすることができ、粉体塗料として
の塗装性その他を考え併せた結果低融点ガラスは80メ
ツシユ以下が最も好ましいものであることを見出した。
In other words, the smaller the particle size of low-melting point glass, the greater the reaction with silicone resin and epoxy resin, inhibiting fluidity and poor smoothness during coating film formation, but as the particle size increases, the reaction with silicone resin and epoxy resin increases. Since the particle size is large, the surface area is small, and from this point of view as well, fluidity is improved and the coating film is smoothed. In addition, at high temperatures where the resin thermally decomposes, considering the degassing state of the decomposed gas of the resin, the larger the particle size of the low melting point glass, the wider the particle spacing, and the smaller the number of particles, so the decomposed gas does not reach the coating surface. It becomes easier to escape, and as a result, there is no blistering or spattering that can occur when decomposition gas is incorporated into the film, and it has good heat resistance.As a result of considering paintability as a powder coating, etc., it has a low melting point. It has been found that the most preferable glass is 80 meshes or less.

次に本発明の実施例について述べる。Next, embodiments of the present invention will be described.

メチルフェニル系シリコン樹脂(東芝シリコン社製YR
3168)の粒径20メツシユ以下の粉末26重量俤、
エポキシ樹脂(チバガイギー社製7004)の粒径20
メツシユ以下の粉末14重量%、80メツシユ以下の低
融点ガラス粉末(鉛系)57重量%、平均粒径1μ以下
のベンガラ3重量%をV型ミキサーで均一に混合した後
60℃で加熱ロールで混練し、ついでハンマーミル粉砕
機で80メツシ為以下に粉砕して耐熱性粉体とした。
Methylphenyl silicone resin (YR manufactured by Toshiba Silicon Co., Ltd.)
3168) powder with a particle size of 20 mesh or less,
Particle size of epoxy resin (Ciba Geigy 7004): 20
14% by weight of a powder with a mesh size or less, 57% by weight of a low melting point glass powder (lead-based) with a mesh size or less, and 3% by weight of red iron glass with an average particle size of 1μ or less were mixed uniformly in a V-type mixer, and then heated at 60°C with a heating roll. The mixture was kneaded and then ground to a size of 80 mesh or less using a hammer mill to obtain a heat-resistant powder.

これを200℃に予熱した鋼板上にスプレー塗装して融
着させ、厚さ250 #nの塗膜を形成した。
This was spray-painted and fused onto a steel plate preheated to 200°C to form a coating film with a thickness of 250 #n.

実施例2 メチルフェニル系シリコン[脂(東芝シリコン社製YR
3370)の粒径20メツシユ以下の粉末36重量%、
エポキシ樹脂(チバガイギー社製GT 7004)の粒
径20メツシユ以下の粉末17重量%、低融点ガラス粉
末(融点400℃リン酸系)80メツシユ以下、44重
量−1平均粒径lμ以下のベンガラ3重量%をV型ミキ
サーで均一に混合した後60℃で加熱ロールで混練し、
ついぞq−ミル粉砕機で80メクシー以下に粉砕して耐
熱性粉体とした。
Example 2 Methylphenyl silicone [fat (YR manufactured by Toshiba Silicon Co., Ltd.)]
3370) powder with a particle size of 20 mesh or less, 36% by weight,
17% by weight of powder of epoxy resin (GT 7004 manufactured by Ciba Geigy) with particle size of 20 mesh or less, low melting point glass powder (phosphoric acid type with melting point of 400°C) of 80 mesh or less, 44 weight - 3 weight of red iron with average particle size of 1 μ or less % were mixed uniformly with a V-type mixer, then kneaded with heated rolls at 60°C,
The powder was then ground to a size of 80 Mexie or less using a Q-mill grinder to obtain a heat-resistant powder.

これを230℃に予熱した鋼板上にスプレー塗装して融
着させ厚さ300μmの塗膜を形成した。
This was spray-painted and fused onto a steel plate preheated to 230° C. to form a coating film with a thickness of 300 μm.

比較例 低融点ガラス粉末を200メツシユ以下及び325メツ
シ為以下とし、その他は実施例4と全く同一とした複合
粉体により同じ方法で250μmの塗膜を形成し九。
Comparative Example A coating film of 250 μm was formed in the same manner using the same composite powder as in Example 4 except that the low melting point glass powder was 200 mesh or less and 325 mesh or less.

実施例及び比較例の塗膜の平滑性・密着性及び500℃
に於ける耐熱性を比較試験した結果は次表のとおりであ
る。
Smoothness and adhesion of coating films of Examples and Comparative Examples and 500°C
The results of a comparative heat resistance test are shown in the table below.

(注)  ◎優  O良゛  Δ可 試験方法  平滑性 表面粗さ針(小板研究所)密着性
 デエポン式(衝撃試験法)30(!II特許出願人 
藤倉電曽株式会社 代理人 1士竹 内 守 手続補正書(自発) 昭和56年9月30日 特許庁長官 島 1)春 樹 殿 1、事件の表示 昭和56年特許願第132^号 2、発明の名称 3、補正をする者 事件との関係 特許出願人 住 所  東京都江東区木場−丁目5番1号名 称  
(518)藤倉電線株式会社代表者河村勝夫 4、代理人 居 所  郵便番号101 東京都千代田区内神田二丁目15番13号南   部 
  ビ   ル を挿入する。
(Note) ◎Excellent O Good Δ Acceptable Test method Smoothness Surface roughness Needle (Koita Research Institute) Adhesion Depon method (Impact test method) 30 (!II patent applicant
Fujikura Denso Co., Ltd. Agent 1 Shitake Uchi Procedural Amendment (Voluntary) September 30, 1980 Director General of the Patent Office Shima 1) Haruki Tono1, Indication of Case Patent Application No. 132^2 of 1982, Title of the invention 3, relationship with the case of the person making the amendment Patent applicant address 5-1 Kiba-chome, Koto-ku, Tokyo Name
(518) Fujikura Electric Cable Co., Ltd. Representative Katsuo Kawamura 4, Agent Address: 101 South, 2-15-13 Uchikanda, Chiyoda-ku, Tokyo
Insert Bill.

よ如詳細に説明すれば、前記し九本発明のオ夏舎粉体の
組成物中シリコン樹脂はエポキシ樹脂同様に通常の粉体
塗料の焼付温度領域で流動し平滑な塗装面を得る為の流
動剤としての働きA点フリット粉末および高融点無機物
粉末に対するバインダーとしての働きを持って居り、か
つ塗膜が熱分解温度以上の高温に曝されたときには、熱
分解により生成される810mが低融点フリットと反応
して高融点のセラミックー質となシ、耐熱性に優れた絶
縁皮膜を形成するものである。そのためシリコン樹脂を
5重量%より少くした場合には温度上昇時の塗膜の脆化
が充分に防止できず又、低融点フリットと反応して高温
特性に優れたセラミック絶縁皮膜を形成するための81
01が不足する。逆にシリコン樹脂を50重量−よシ多
くした場合は高温で分解して生成する5108が過剰と
なシ、生成するセラミック絶縁皮膜にクラックを生じ易
くかつその皮膜の密着性も低下するので、前述のように
シリコン樹脂は5重量S〜50重量−が好ましい。
To explain in more detail, the silicone resin in the Onatsusha powder composition of the present invention flows in the baking temperature range of ordinary powder coatings, similar to epoxy resin, and has the ability to obtain a smooth painted surface. Function as a flow agent: It functions as a binder for the A-point frit powder and the high melting point inorganic powder, and when the coating film is exposed to a high temperature above the thermal decomposition temperature, the 810M produced by thermal decomposition has a low melting point. It reacts with the frit to form a ceramic material with a high melting point and an insulating film with excellent heat resistance. Therefore, if the silicone resin content is less than 5% by weight, it will not be possible to sufficiently prevent the coating film from becoming brittle when the temperature rises, and it will react with the low melting point frit to form a ceramic insulation film with excellent high temperature properties. 81
01 is insufficient. On the other hand, if the amount of silicone resin is increased by 50% by weight, the amount of 5108 that is decomposed and produced at high temperatures will be excessive, which will easily cause cracks in the resulting ceramic insulation film and reduce the adhesion of the film. As shown in the figure, the silicone resin preferably has a weight of 5 to 50 weight.

Claims (2)

【特許請求の範囲】[Claims] (1)シリコン樹脂粉体、エポキシ樹脂粉体、低融点ガ
ラス粉体及び耐熱性無機物粉体からなる複合粉体にして
、低融点ガラスを80メツシユ以下の粉体としたことを
特徴とする複合粉体組成物。
(1) A composite powder consisting of silicone resin powder, epoxy resin powder, low melting point glass powder, and heat-resistant inorganic powder, and the low melting point glass is made into a powder with a mesh size of 80 mesh or less. Powder composition.
(2)シリコン樹脂粉体5〜50重量%、エポキシ樹脂
粉体5〜50重量%、低融点ガラス粉体20〜80重量
嘔、高融点無機物粉体0,2〜15重量嗟重量外る複合
粉体にして、低融点ガラスを80メツシユ以下の粉体と
し九ことを特徴とする複合粉体組成物。
(2) A composite containing 5-50% by weight of silicone resin powder, 5-50% by weight of epoxy resin powder, 20-80% by weight of low-melting point glass powder, and 0.2-15% by weight of high-melting point inorganic powder. A composite powder composition characterized in that the powder has a low melting point glass of 80 mesh or less.
JP13253981A 1981-08-24 1981-08-24 Composite powder composition Pending JPS5834870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13253981A JPS5834870A (en) 1981-08-24 1981-08-24 Composite powder composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13253981A JPS5834870A (en) 1981-08-24 1981-08-24 Composite powder composition

Publications (1)

Publication Number Publication Date
JPS5834870A true JPS5834870A (en) 1983-03-01

Family

ID=15083638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13253981A Pending JPS5834870A (en) 1981-08-24 1981-08-24 Composite powder composition

Country Status (1)

Country Link
JP (1) JPS5834870A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01152169A (en) * 1987-12-09 1989-06-14 Sumitomo Bakelite Co Ltd Epoxy resin powder coating composition
JPH01185320A (en) * 1988-01-18 1989-07-24 Matsushita Electric Works Ltd Epoxy resin molding material
DE19507400A1 (en) * 1995-03-03 1996-09-12 Kulmbacher Klimageraete Thermal insulation material
WO2006033775A1 (en) * 2004-09-17 2006-03-30 Dow Corning Corporation Siloxane composition, agglomerate, and method of preparing agglomerate
CN104962169A (en) * 2015-06-25 2015-10-07 安徽华辉塑业科技有限公司 High-temperature-resistant epoxy resin powder coating
CN112334545A (en) * 2018-06-27 2021-02-05 日东电工株式会社 Flame-retardant material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01152169A (en) * 1987-12-09 1989-06-14 Sumitomo Bakelite Co Ltd Epoxy resin powder coating composition
JPH01185320A (en) * 1988-01-18 1989-07-24 Matsushita Electric Works Ltd Epoxy resin molding material
DE19507400A1 (en) * 1995-03-03 1996-09-12 Kulmbacher Klimageraete Thermal insulation material
DE19507400C2 (en) * 1995-03-03 1998-04-09 Kulmbacher Klimageraete Thermal insulation material and process for its manufacture
WO2006033775A1 (en) * 2004-09-17 2006-03-30 Dow Corning Corporation Siloxane composition, agglomerate, and method of preparing agglomerate
JP2008513572A (en) * 2004-09-17 2008-05-01 ダウ・コーニング・コーポレイション Siloxane composition, aggregate, and method for producing aggregate
US7737082B2 (en) 2004-09-17 2010-06-15 James Alan Rabe Siloxane composition, agglomerate, and method of preparing
JP2012092353A (en) * 2004-09-17 2012-05-17 Dow Corning Corp Siloxane composition, agglomerate, and method of preparing the agglomerate
CN104962169A (en) * 2015-06-25 2015-10-07 安徽华辉塑业科技有限公司 High-temperature-resistant epoxy resin powder coating
CN112334545A (en) * 2018-06-27 2021-02-05 日东电工株式会社 Flame-retardant material
CN112352022A (en) * 2018-06-27 2021-02-09 日东电工株式会社 Flame-retardant coating film

Similar Documents

Publication Publication Date Title
US4447492A (en) Articles having an electrically conductive surface
JPS62110202A (en) Conductor element
US4074010A (en) Ceramic-paint coatings
EP0426485B1 (en) Powder coating compositions
JP2003203522A (en) Silver compound paste
US4410598A (en) Process for preparation of insulating coatings upon steel
JPS5834870A (en) Composite powder composition
US2943951A (en) Flame spraying method and composition
JPS62114205A (en) Manufacture of thick film electronic parts
US2900276A (en) Cermet composition and method of coating therewith
JPS5836447A (en) Heat-resisting coating structure
JPS59126772A (en) Melt spraying material having build-up resistance
JPS5836987A (en) Heat-resistant composite material
JP2540535B2 (en) Heat resistant paint
JPS5832665A (en) Preparation of heat-resistant composite powder coating material
JPS5927553A (en) Substrate used for electronic device
JPS626594B2 (en)
JP2520900B2 (en) Undercoat composition
JPS5837062A (en) Heat-resistant powder composition
JPS5837063A (en) Heat-resistant powder composition
JPS5834069A (en) Formation of paint film by composite powdery body
JPS58117261A (en) Corrosion-resistant paint for high-temperature melting metal
JPH01230451A (en) Electrically conductive crystallized glass
JPH0463105B2 (en)
JPS63182237A (en) Mold release agent composition