JPH0463105B2 - - Google Patents

Info

Publication number
JPH0463105B2
JPH0463105B2 JP5256588A JP5256588A JPH0463105B2 JP H0463105 B2 JPH0463105 B2 JP H0463105B2 JP 5256588 A JP5256588 A JP 5256588A JP 5256588 A JP5256588 A JP 5256588A JP H0463105 B2 JPH0463105 B2 JP H0463105B2
Authority
JP
Japan
Prior art keywords
weight
alumina
less
group
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5256588A
Other languages
Japanese (ja)
Other versions
JPH01229080A (en
Inventor
Kazutomi Funabashi
Toshikatsu Ishizu
Kazuhisa Sueyoshi
Kunihiro Terui
Yoichi Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5256588A priority Critical patent/JPH01229080A/en
Publication of JPH01229080A publication Critical patent/JPH01229080A/en
Publication of JPH0463105B2 publication Critical patent/JPH0463105B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

〔産業䞊の利甚分野〕 本発明は、鋌材、特に鋌片スラブの衚面に塗垃
しお酞化防止を図り、たた加熱炉䞭の高枩酞化雰
囲気でのスケヌルの発生を防止せしめそしお圧延
前に容易に陀去でき、特に連続匏加熱炉の付近に
おいお鋌材ず加熱空気ずの枩床差により生ずる結
露小滎による塗膜の損傷を防止する、鋌材甚高枩
酞化防止塗料に関する。 〔埓来技術〕 呚知のごずく鋌片スラブは加熱炉たたは灌熱炉
にお1050〜1200℃の枩床で加熱され、圧延されお
補品ずなる。この鋌片スラブが普通鋌レベルの鋌
材の堎合にはスケヌルの発生も少なく、デリケヌ
リングも比范的容易である。しかし、この鋌片ス
ラブが高玚鋌レベルの品質の堎合には、圚炉時
間、枩床の圱響で酞化スケヌルが倚く発生し、デ
スケヌリングも困難で、歩留り䜎䞋による生産
性、省資源䞊びに補品仕䞊げの芳点から問題ずな
぀おいる。 埓来、高枩のもずでの鋌片スラブの酞化および
スケヌル発生を防止する為に倚くの高枩酞化防止
塗料が研究開発されおいる。倚くの塗料は、シリ
カ系耐火物、マグネシア系耐火物、䜎融点の金属
たたは無機塩を含有するものであるが、Cu、Ni、
Cr等の含有鋌片スラブや連続匏たたはバツチ匏
加熱炉ずいう操業方法の差異により、酞化防止お
よびスケヌル発生防止䞊びに陀去性が䞍十分であ
る等の欠点がある。それ故に珟圚では、高玚鋌ス
ラブに薄鉄板補保護カバヌで鋌材衚面をおお぀お
加熱炉に装入し、鋌材衚面が酞化雰囲気にできる
だけ曝されないようにしお、スラブスケヌルの発
生を防止しおいる。しかし、この薄鉄板保護カバ
ヌは鋌材ぞの取り付けに倚倧な劎力を必芁ずする
ず共に、間接加熱になるため加熱炉燃料の原単䜍
の悪化芁因ずも成぀おいる。 高枩酞化防止塗料は、酞化防止およびスケヌル
の発生ずずもに、容易に陀去するこず䞊びにスケ
ヌルが発生した堎合でもそのスケヌルが塗料ず共
に圧延前に高圧氎によ぀お容易に陀去できるこ
ず、芁するにデスケヌリングが容易であるこずが
芁求される。もしスケヌルおよび塗料が圧延時に
残存したならば、補品の衚面にキズが生じおした
う。 そこで本発明者等は、これらの芁求を満足する
高枩酞化防止塗料を開発し、特開昭60−251218号
および同第60−251219号公報ずしお出願した。 しかしこれらの出願に開瀺された塗料を甚いた
堎合、特に倖気の䜎い冬期に、連続匏加熱炉の入
口付近の塗膜面に、鋌材ず加熱空気ずの枩床差に
より氎蒞気の凝結が発生し、この凝固炉が塗膜の
䞀郚を溶出させおしたい、スケヌルの発生を生ぜ
しめるこずが刀぀た。 出願人は䞊蚘の二぀の刊行物に蚘茉された発明
の高枩酞化防止剀の優れた性質を悪化させるこず
なしに、䞊蚘の問題点を解決する塗料を特開昭61
−64813号公報にお提䟛した。この塗料は以䞋の
組成を有しおいる (a) 20〜50重量のセラミツク基材ずしおの炭化
珪玠、窒玠珪玠、安定化酞化ゞルコニりム、雲
母の矀の内の少なくずも皮 (b) 20〜50重量のセラミツク助剀ずしおの以䞋
の皮のアルミナ、 アルミナ(1)α晶が倧きく䞔぀焌結収瞮率の
小さい偏平状埮粒アルミナ、 アルミナ(2)焌結収率が安定しおいる100ÎŒ
以䞋の平均粒床の高α化率の偏平状粒状アルミ
ナおよび アルミナ(3)䜎氎分含有量で䞭゜ヌダヌグレ
ヌドの易焌結性超埮粒アルミナ (c) 10〜40重量のバむンダヌずしおの䞭性リン
酞アルミニりム、コロむダルシリカ、アルミナ
ゟルの矀の少なくずも皮、 (d) 〜10重量のFe、Cu、NiおよびCr粉の矀
の少なくずも皮 (e) 〜30重量のセラミツク焌結促進剀ずしお
の炭酞ナトリりムおよび (f) 2.5〜15重量固圢分含有量であ぀お蚈算
の基準ずな぀おいるの、耐氎性の塗膜を圢成
する重合性およびたたは共重合䜓の氎性゚マ
ルゞペンたたは氎溶液 䜆し(a)〜(f)成分の合蚈が100重量である この塗料を鋌材絵に塗垃するに圓た぀お、远加
的に玄10〜15重量組成物党䜓量を基準ずし
おの氎を該組成物に混入した堎合に塗装䜜業性
が向䞊するこずが刀぀おいる。 〔発明が解決しようずする課題〕 しかし、鋌材は加熱炉に装入する際に金属補の
ロヌル䞊を移送されるので、この塗料を鋌材に塗
垃した堎合には、塗垃された塗料の䞀郚が金属補
のロヌルによる物理的な衝撃等により剥離し、加
熱炉内でこの剥離した郚分にスケヌルを生ぜしめ
るずいう問題点があ぀た。このスケヌルの発生を
回避させる為に加熱炉に装入する以前に塗料を焌
成也燥させるこずも考えられるが、もしそうした
ずしおも、生産性が䜎䞋し、経枈性が悪化するず
いう問題点がある。 本発明は、特開昭61−64813号公報に蚘茉の高
枩酞化防止塗料に曎に(g)成分ずしお〜15重量
のカヌボン繊維、アルミナ繊維、炭化珪玠繊維お
よび窒玠珪玠繊維より成る矀の少なくずも皮の
鉱物繊維を混入するこずによりより優れた鋌材を
もたらす高枩酞化防止塗料を提䟛するこずを目的
ずしおいる。 〔課題を解決する手段〕 䞊蚘目的を達成する為に、本発明者は、䞊蚘(g)
成分が、本発明の高枩酞化防止塗料においお骚剀
ずしお䜜甚し、塗膜結合匷床を高め、高枩酞化ガ
スの浞透を防止するず共に物理的な衝撃に察しお
の匷床を高めるこずを芋い出した。 (g)成分ずしお甚いられる鉱物繊維はカヌボン繊
維、アルミナ繊維、炭化珪玠繊維および窒化珪玠
繊維であるが、カヌボン繊維およびアルミナ繊維
が殊に有利である。 これらの鉱物繊維は長さ10mm以䞋であるのが有
利である。10mmより長いず繊維が塗膜の衚面に突
出し塗料のレベリング性を悪化させ䞔぀圢成され
る塗膜に凹凞を生ぜしめる。特にに奜たしい鉱物
繊維は盎埄10〜20Όでそしお長さ300〜1000Ό
であるのが有利である。 (g)成分ずしお甚いられる鉱物繊維は、〜15重
量の量以倖でも甚いるこずができるが、重量
未満では骚材ずしおの効果が少なく、15重量
を越えるず塗膜のレベリング性が悪化し䞔぀圢成
される塗膜に凹凞が生じる。〜15重量の範囲
内の混入量ではかゝる䞍郜合は生じるこずがな
く、塗膜の物理的匷床を向䞊させるこずができ
る。 基材ずしおのセラミツク(a)成分は耐熱性の高い
もの䟋えば炭化珪玠は2200℃がよく、その䜿
甚量は、成分(a)、(b)、(c)、(d)、(e)、(f)および(g)
以䞋党成分ず略すの合蚈の20〜50重量の範
囲にある必芁がある。(a)成分が20重量未満では
塗膜が緻密に圢成されず、酞化雰囲気ガスの浞透
量が倚くなり、所望の酞化防止効果が埗られず、
50重量を越えるず熱䌝導性が䜎䞋し、加熱゚ネ
ルギヌの消費が増しお゚ネルギヌロスが倚くな
る。 セラミツク助剀ずしおのアルミナ〔(b)成分〕
は、α化率の高い偏平状粒子〔アルミナ(1)および
アルミナ(2)〕ず易焌結性の超埮粒子〔アルミナ
(3)〕ずの組合せ物である。 アルミナ(1)は、α晶の粒子が〜10Όで、焌結
収瞮率が以䞋1600℃で時間焌結ず小さ
く、偏平状の隠蔜力の優れた埮粒子である。 アルミナ(2)は、焌結収瞮率が10以䞋1600℃
で時間焌結、奜たしくは以䞊10以䞋ず
安定しおおり、α化率が100である平均粒床
100Ό以䞋で20Ό以䞊、奜たしくは30〜60Όの隠蔜
力のある偏平状の粒子である。 アルミナ(3)は、Na2O含有量が0.2〜0.3重量
の䞭゜ヌダヌグレヌドで、か぀平均粒床0.1〜
0.5Όの超埮粒子である為に易焌結性であるアルミ
ナである。このアルミナは氎分含有量が少なく、
䟋えば0.2重量以䞋であるのが有利である。 セラミツク助剀ずしおのアルミナ〔(b)成分〕
は、塗膜100Ό以䞋の堎合、25重量以䞋では
充分な隠蔜力ある緻密な塗膜を埗るこずができ
ず、50重量以䞊では塗膜の陀去性が䞍良にな
る。 アルミナ(1)、(2)および(3)は、盞互に1.5〜
0.5〜〜の重量比で甚いた時
に有利な結果が埗られるこずが刀぀おいる。 バむンダヌずしお䜿甚される䞭性燐酞アルミニ
りム、コロむダルシリカ、アルミナゟルの矀の内
の少なくずも皮類〔(c)成分〕は、前蚘(a)成分で
あるセラミツク基材の結合を安定化せしめるこず
ず共に、鋌材ずの密着性を高めるために䜿甚する
ものであり、その䜿甚量は党成分の10〜40重量
の範囲にある必芁がある。このバむンダヌは、10
重量以䞋では混合緎生物が固く鋌材面ぞの密着
力が埗られず、40重量以䞋ではバむンダヌずし
おの効果が増加しない。 Fe、Cu、NiおよびCr粉の矀の少なくずも皮
から成る金属粉〔(d)成分〕は加熱炉䞭に斌ける酞
化雰囲気䞀般的に排ガス䞭のO2〜
が鋌材衚面に接觊するこずを避け、或いは最小限
にくいずめる為に還元雰囲気を保持するものであ
る。金属粉が重量未満では鋌材衚面郚が酞化
雰囲気ずなり、10重量を越えるずこの金属粉が
高枩においお鋌材ず反応あるいは溶着し、鋌材衚
面、いわゆる補品衚面の性質を倉化せしめ、悪圱
響をもたらす。 セラミツク焌結促進剀〔(e)成分〕は、300〜800
℃においおセラミツク基剀䞊びにバむンダヌの焌
結を促進せしめるもので、塗料の混合緎成物を固
くし、鋌材衚面ぞの密着匷床を高め、塗膜を緻密
にする圹目を果たす。 適正な焌結速床を保持するには、重量が䞋
限である。重量未満であるず焌結状態が悪く
匱く、混合緎成物内の塗膜間匷床が䜎䞋し、酞
化雰囲気の浞食域ずな぀お鋌材衚面が悪化し、30
重量を越えるず塗膜が緻密に圢成されず、初期
の目的から逞脱しおしたう。 (f)成分の䜿甚量は、固圢分含有量ずしお2.5〜
15重量塗料党䜓量を基準ずする、殊に2.5〜
13重量であるのが奜たしい。2.5重量より少
ないず実効が埗られず、15重量を越えるず、連
続匏加熱炉䞭においおこの成分の燃焌によ぀おガ
スが発生し、これが塗膜のフクレ、剥離枛少を匕
き起こし埗る。 本発明の塗料の堎合、塗装䜜業性を向䞊させる
為に、(f)成分に含たれる氎分加えお適圓量混入し
おもよい。塗料䞭に含たれる氎分は、(f)成分に含
たれる量も含めお玄10〜15重量塗料党䜓を基
準ずするであるのが奜たしい。 〔実斜䟋〕 以䞋に本発明を実斜䟋によ぀お曎に詳现に説明
する。 実斜䟋  炭化珪玠 18重量 窒玠珪玠 重量 雲 母 重量 アルミナ(1)* 重量 アルミナ(2)** 16重量 アルミナ(3)*** 重量 䞭性燐酞アルミニりム 重量 コロむダルシリカ 重量 アルミナゟル 重量 銅 粉 重量 ニツケル粉 重量 炭酞ナトリりム 重量 酢酞ビニル゚チレン塩化ビニル共重合䜓゚マ
ルゞペン 重量 アルミナ(1)平均粒床5Ό、焌結収瞮率以
䞋1600℃、時間焌結の偏平状の高αア
ルミナ、 アルミナ(2)平均粒床45Ό、焌結収瞮率
以䞋1600℃、時間焌結のα化率100の
偏平状アルミナ アルミナ(3)平均粒床0.4Ό、粒床分垃0.1
〜1.5Όの䞭゜ヌダグレヌドのアルミナNa2O
含有量0.25重量 の他に盎埄15〜20Ό、平均長さ500Ό、長さ分垃
300〜1000Όのスピンネル構造α−Al2O3のア
ルミナ繊維重量䞊びに適圓量の氎を含有する
混合物を補造する。 この塗料を、無加熱状態の厚板甚鋌材の超抗匵
力鋌および普通鋌のそれぞれに50Όおよび100Όの
塗料厚さで塗垃し、24時間自然也燥した埌に、耐
氎性詊隓ずしお衚面に秒圓たり100mlm2の割
合で氎道氎を時間噎霧しお損傷状態を芋たが、
塗膜の流出はなか぀た。 これずは別に、䞊蚘の鋌材に塗膜を同様な厚さ
で塗垃した埌に、実地においお行われる様に、金
属補ロヌル䞊を移送し、塗膜の剥離状況を芳察し
たロヌル䞊移送剥離床。 たた24時間自然也燥埌の耐衝撃匷床を、デナポ
ン萜䞋詊隓高さ300mm、200の鋌球によ぀お
枬定した。 その鋌材を埌蚘第衚に瀺す圚炉時間および炉
枩床のもずで加熱し圧延した。 加熱炉䞭の高枩酞化雰囲気でのスケヌルの発生
状況、金属ロヌル移送時の剥離性、高圧氎での陀
去性および耐衝撃詊隓に぀いお枬定結果を第衚
に瀺す。 実斜䟋 〜 これらの実斜䟋は、実斜䟋ず同様に実斜し
た。䜆し、その際に䜿甚した各成分の䜿甚量は第
衚に瀺した。実斜䟋、、およびで䜿甚
したカヌボン繊維は、盎埄10〜20Ό、平均長さ
500Ό、長さ分垃400〜600Όのものである。 これらの塗料の耐氎性詊隓では、いずれも塗膜
の流倱はなか぀た。その他の詊隓結果は第衚に
掲茉する。 比范䟋  特開昭61−64813号公報に実斜䟋およびに
盞圓する塗料を比范䟋およびずしお、実斜䟋
ず同様に実斜する。 各成分の組成は第衚に瀺した。これらの塗料
の堎合にもいずれの塗膜の流倱はなか぀た。その
他の詊隓結果は第衚に瀺す。 第衚䞭の略字は以䞋の意味を持぀。 Ac−C.P゚マルゞペン酢酞ビニル゚チ
レン共重合䜓゚マルゞペン固圢分含有量50重
量 AcPV−C.P゚マルゞペン酢酞ビニ
ル゚チレン塩化ビニル゚マルゞペン固圢
分含有量50重量 アルミナ(1)、(2)および(3)は、実斜䟋に蚘
茉したものず同じである。
[Industrial Application Field] The present invention is applied to the surface of steel materials, especially steel billet slabs, to prevent oxidation, to prevent the formation of scale in the high-temperature oxidizing atmosphere in a heating furnace, and to easily coat the surface of steel slabs before rolling. The present invention relates to a high-temperature antioxidant coating for steel that is removable and prevents damage to the coating due to condensation droplets caused by the temperature difference between the steel and the heated air, especially in the vicinity of continuous heating furnaces. [Prior Art] As is well known, a steel billet slab is heated at a temperature of 1050 to 1200°C in a heating furnace or scorching furnace, and rolled into a product. If the billet slab is a steel material on the level of ordinary steel, there will be less scale formation and descaling is relatively easy. However, if the billet slab is of high-grade steel quality, a large amount of oxidation scale will occur due to the time and temperature in the furnace, and descaling will be difficult, resulting in lower yields, which will reduce productivity, resource savings, and product finishing. This is a problem from this point of view. Conventionally, many high-temperature oxidation-inhibiting paints have been researched and developed in order to prevent oxidation and scaling of steel billet slabs under high temperatures. Many paints contain silica-based refractories, magnesia-based refractories, low-melting point metals, or inorganic salts, but they also contain Cu, Ni,
Due to differences in operating methods such as steel billet slabs containing Cr, etc. and continuous or batch heating furnaces, there are drawbacks such as insufficient oxidation prevention, scale generation prevention, and removability. Therefore, high-grade steel slabs are now placed in heating furnaces with their surfaces covered with protective covers made of thin iron plates to minimize exposure of the steel surfaces to the oxidizing atmosphere, thereby preventing the occurrence of slab scale. However, this thin iron plate protective cover requires a great deal of labor to attach to the steel material, and is also a factor in deteriorating the fuel consumption rate of the heating furnace because it involves indirect heating. High-temperature anti-oxidation paints are designed to prevent oxidation and to easily remove scale, and even if scale occurs, the scale can be easily removed together with the paint using high-pressure water before rolling; in other words, descaling is easy. something is required. If scale and paint remain during rolling, scratches will occur on the surface of the product. Therefore, the present inventors developed a high-temperature antioxidant paint that satisfies these requirements, and filed applications as Japanese Patent Application Laid-open Nos. 60-251218 and 60-251219. However, when the paints disclosed in these applications are used, water vapor condenses on the coating surface near the entrance of the continuous heating furnace due to the temperature difference between the steel material and the heated air, especially in the winter when the outside air temperature is low. It was found that this coagulation furnace eluted part of the paint film, causing scale formation. The applicant has proposed a coating material in Japanese Patent Application Laid-Open No. 61/1989 that solves the above problems without deteriorating the excellent properties of the high temperature antioxidant of the invention described in the above two publications.
- Provided in Publication No. 64813. The coating has the following composition: (a) 20-50% by weight of at least one member from the group of silicon carbide, silicon nitrogen, stabilized zirconium oxide, mica as a ceramic substrate (b) 20 ~50% by weight of the following three types of alumina as ceramic auxiliary agents: Alumina (1): Oblate fine grain alumina with large α crystals and low sintering shrinkage rate, Alumina (2): Stable sintering yield. 100Ό
Oblate granular alumina with high pregelatinization rate and alumina (3) with the following average particle size: Low moisture content, medium soda grade, easily sinterable ultra-fine alumina (c) 10-40% by weight neutral as a binder At least one member of the group consisting of aluminum phosphate, colloidal silica, and alumina sol; (d) 5 to 10% by weight of at least one member of the group of Fe, Cu, Ni, and Cr powder; (e) 5 to 30% by weight of ceramic sinter. sodium carbonate as accelerator and (f) 2.5 to 15% by weight (solids content, which is the basis for calculation) of polymerizable and/or copolymers forming water-resistant coatings. Aqueous emulsion or aqueous solution (however, the total of components (a) to (f) is 100% by weight) When applying this paint to the steel painting, approximately 10 to 15% by weight (total amount of the composition) It has been found that the coating workability is improved when water (based on the standard) is mixed into the composition. [Problem to be solved by the invention] However, since the steel material is transferred on metal rolls when it is charged into the heating furnace, when this paint is applied to the steel material, some of the applied paint may There was a problem in that the material peeled off due to physical impact from metal rolls, etc., and scale was generated on the peeled part in the heating furnace. In order to avoid the formation of this scale, it may be possible to bake and dry the paint before charging it into the heating furnace, but even if this is done, there is a problem that productivity will decrease and economic efficiency will deteriorate. The present invention further applies 3 to 15% by weight of the component (g) to the high-temperature antioxidant paint described in JP-A No. 61-64813.
It is an object of the present invention to provide a high-temperature oxidation-preventing paint that provides better steel products by incorporating at least one mineral fiber from the group consisting of carbon fibers, alumina fibers, silicon carbide fibers, and nitrogen silicon fibers. [Means for solving the problem] In order to achieve the above object, the inventor has solved the above (g)
It has been found that the component acts as an aggregate in the high-temperature antioxidant paint of the present invention, increases the bonding strength of the paint film, prevents the penetration of high-temperature oxidizing gases, and increases the strength against physical impact. The mineral fibers used as component (g) are carbon fibers, alumina fibers, silicon carbide fibers and silicon nitride fibers, with particular preference being given to carbon fibers and alumina fibers. Advantageously, these mineral fibers have a length of less than 10 mm. If the length is longer than 10 mm, the fibers will protrude onto the surface of the paint film, impairing the leveling properties of the paint and causing unevenness in the formed paint film. Particularly preferred mineral fibers have a diameter of 10-20 ÎŒm and a length of 300-1000 ÎŒm.
It is advantageous that The mineral fiber used as component (g) can be used in amounts other than 3 to 15% by weight, but if it is less than 3% by weight, it will have little effect as an aggregate;
If it exceeds this amount, the leveling properties of the coating film will deteriorate and the formed coating film will have irregularities. If the amount is within the range of 3 to 15% by weight, such disadvantages will not occur and the physical strength of the coating film can be improved. The ceramic (a) component used as the base material is preferably one with high heat resistance (for example, silicon carbide at 2200℃), and the amount used is the same as components (a), (b), (c), (d), and (e). ), (f) and (g)
(hereinafter abbreviated as all components) must be in the range of 20 to 50% by weight of the total. If component (a) is less than 20% by weight, the coating film will not be formed densely, the amount of permeation of oxidizing atmosphere gas will increase, and the desired antioxidant effect will not be obtained.
When it exceeds 50% by weight, thermal conductivity decreases, heating energy consumption increases, and energy loss increases. Alumina as a ceramic auxiliary agent [component (b)]
are flat particles with a high gelatinization rate [alumina (1) and alumina (2)] and ultrafine particles with easy sinterability [alumina
(3)]. Alumina (1) has α-crystal particles of 1 to 10 ÎŒm in size, has a small sintering shrinkage rate of 5% or less (sintered at 1600° C. for 3 hours), and is a flat fine particle with excellent hiding power. Alumina (2) has a sintering shrinkage rate of 10% or less (1600℃
sintered for 3 hours), preferably stable at 5% to 10%, with an average particle size at which the gelatinization rate is 100%.
They are flat particles with a hiding power of 100Ό or less and 20Ό or more, preferably 30 to 60Ό. Alumina (3) has a Na 2 O content of 0.2-0.3% by weight
Medium soda grade and average particle size 0.1~
Alumina is easily sintered because it has ultrafine particles of 0.5Ό. This alumina has low water content,
Advantageously, it is, for example, 0.2% by weight or less. Alumina as a ceramic auxiliary agent [component (b)]
When the coating film thickness is 100 ÎŒm or less, if it is less than 25% by weight, a dense coating film with sufficient hiding power cannot be obtained, and if it is more than 50% by weight, the removability of the coating film becomes poor. Alumina (1), (2) and (3) are mutually (1.5~
It has been found that advantageous results are obtained when a weight ratio of 3):(0.5 to 2):(1 to 3) is used. At least one of the group consisting of neutral aluminum phosphate, colloidal silica, and alumina sol [component (c)] used as a binder stabilizes the bonding of the ceramic base material, which is the component (a), and also stabilizes the bonding of the ceramic base material. It is used to increase the adhesion with
must be within the range. This binder has 10
If the amount is less than 40% by weight, the mixed paste will be hard and cannot adhere to the steel surface, and if it is less than 40% by weight, the effect as a binder will not increase. Metal powder [component (d)] consisting of at least one of the group of Fe, Cu, Ni, and Cr powders is placed in an oxidizing atmosphere in a heating furnace (generally O 2 in exhaust gas: 1 to 2%).
A reducing atmosphere is maintained in order to avoid or minimize contact with the steel surface. If the metal powder is less than 5% by weight, the surface of the steel material will become an oxidizing atmosphere, and if it exceeds 10% by weight, the metal powder will react with or weld to the steel material at high temperatures, changing the properties of the steel material surface, so-called product surface, and causing adverse effects. . Ceramic sintering accelerator [component (e)] is 300 to 800
It accelerates the sintering of the ceramic base and binder at ℃, and plays the role of hardening the paint mixture, increasing the adhesion strength to the steel surface, and making the paint film denser. 5% by weight is the lower limit to maintain proper sintering rates. If it is less than 5% by weight, the sintering condition will be poor (weak), the strength between the coatings in the mixed mixture will decrease, and the surface of the steel material will deteriorate due to an eroded area of the oxidizing atmosphere.
If it exceeds the weight percentage, the coating film will not be formed densely and will deviate from the initial purpose. The amount of component (f) used is 2.5 to 2.5% as solid content.
15% by weight (based on the total amount of paint), especially from 2.5
Preferably it is 13% by weight. If it is less than 2.5% by weight, no effect will be obtained, and if it exceeds 15% by weight, gas will be generated by combustion of this component in a continuous heating furnace, which may cause blistering and reduced peeling of the coating film. In the case of the paint of the present invention, an appropriate amount may be added in addition to the water contained in component (f) in order to improve coating workability. The water content in the paint, including the amount contained in component (f), is preferably about 10 to 15% by weight (based on the entire paint). [Example] The present invention will be explained in more detail below with reference to Examples. Example 1 Silicon carbide 18% by weight Silicon nitrogen 5% by weight Mica 5% by weight Alumina (1) * 7% by weight Alumina (2) ** 16% by weight Alumina (3) *** 6% by weight Neutral aluminum phosphate 3 Weight% Colloidal silica 3% by weight Alumina sol 8% by weight Copper powder 3% by weight Nickel powder 4% by weight Sodium carbonate 9% by weight Vinyl acetate/ethylene/vinyl chloride copolymer emulsion 7% by weight *Alumina (1): Average particle size 5ÎŒ, Flat high alpha alumina with a sintering shrinkage rate of 5% or less (1600℃, sintering for 3 hours), **Alumina (2): average particle size 45ÎŒ, sintering shrinkage rate 5%
Flat alumina with a gelatinization rate of 100% as follows (sintered at 1600℃ for 3 hours) ***Alumina (3): average particle size 0.4ÎŒ, particle size distribution 0.1
~1.5Ό medium soda grade alumina ( Na2O
(content 0.25% by weight), diameter 15-20Ό, average length 500Ό, length distribution
A mixture is prepared containing 6% by weight of alumina fibers with a spinel structure (α-Al 2 O 3 ) of 300-1000 Ό and a suitable amount of water. This paint was applied at a thickness of 50 Ό and 100 Ό to unheated thick plate steel, ultra-tensile steel and ordinary steel, respectively, and after air drying for 24 hours, 10 ml of paint was applied to the surface for 5 seconds as a water resistance test. / m 2 was sprayed with tap water for 4 hours to check the damage.
There was no leakage of the paint film. Separately, after applying a coating film to the same thickness on the above steel materials, the coating was transferred on a metal roll as is done in practice, and the peeling status of the coating film was observed (roll transfer peeling rate ). In addition, the impact strength after air drying for 24 hours was measured by a Dupont drop test (300 mm height, 200 g steel ball). The steel materials were heated and rolled under the furnace time and furnace temperature shown in Table 2 below. Table 2 shows the measurement results regarding scale generation in a high-temperature oxidizing atmosphere in a heating furnace, peelability during transfer with metal rolls, removability with high-pressure water, and impact resistance test. Examples 2-7 These Examples were conducted similarly to Example 1. However, the amounts of each component used at that time are shown in Table 1. The carbon fibers used in Examples 2, 5, 6 and 7 had a diameter of 10-20Ό and an average length.
500Ό, length distribution 400-600Ό. In the water resistance test of these paints, no paint film was washed away. Other test results are listed in Table 2. Comparative Example 1 The same procedure as Example 1 was carried out using the paints corresponding to Examples 1 and 2 in JP-A-61-64813 as Comparative Examples A and B. The composition of each component is shown in Table 1. In the case of these paints, no paint film was washed away. Other test results are shown in Table 2. Abbreviations in Table 1 have the following meanings. *Ac/E-CP emulsion = vinyl acetate/ethylene copolymer emulsion (solid content 50% by weight) **Ac/E/PV-CP emulsion = vinyl acetate/ethylene/vinyl chloride emulsion (solid content 50% by weight) ***Alumina (1), (2) and (3) are the same as described in Example 1.

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

Claims (1)

【特蚱請求の範囲】  (a) 20〜50重量のセラミツク基材ずしおの
炭化珪玠、窒化珪玠、安定化酞化ゞルコニり
ム、雲母の矀の内の少なくずも皮類 (b) 25〜50重量のセラミツク助剀ずしおの以䞋
の皮類のアルミナ、 アルミナ(1)α晶の粒子が〜10Όで、1600
℃で時間の焌結での収瞮率が以䞋である
偏平埮粒アルミナ、 アルミナ(2)1600℃、時間の焌結での収瞮
率が以䞊で䞔぀10以䞋である平均粒床
100Ό以䞋のα化率100の偏平状アルミナおよ
び アルミナ(3)Na2O含有量が0.2〜0.3重量
で0.1〜1.5Όの平均粒床の超埮粒子アルミナ (c) 10〜40重量のバむンダヌずしおの䞭性リン
酞アルミニりム、コロむダルシリカ、アルミナ
ゟルの矀の少なくずも皮、 (d) 〜10重量のFe、Cu、NiおよびCr粉の矀
の少なくずも皮、 (e) 〜30重量のセラミツク焌結促進剀ずしお
の炭酞ナトリりム、 (f) 2.5〜15重量固圢分含有量であ぀お蚈算
の基準ずな぀おいるの耐氎性の塗膜を圢成す
る重合性およびたたは共重合䜓の氎性゚マル
ゞペンたたは氎溶液および (g) 〜15重量の、骚材ずしお䜜甚し、塗膜結
合匷床を高めるカヌボン繊維、アルミナ繊維、
炭化珪玠繊維および窒化珪玠繊維より成る矀の
少なくずも皮の鉱物繊維 より組成され、䜆し(a)〜(g)成分の合蚈が100重量
である鋌材甚酞化防止塗料。
[Scope of Claims] 1 (a) 20 to 50% by weight of at least one member of the group consisting of silicon carbide, silicon nitride, stabilized zirconium oxide, and mica as a ceramic substrate; (b) 25 to 50% by weight of The following three types of alumina are used as ceramic auxiliaries: Alumina (1): α crystal particles are 1 to 10Ό, 1600
Flat fine grain alumina with a shrinkage rate of 5% or less when sintered for 3 hours at 1600℃, Alumina (2): Average shrinkage rate of 5% or more and 10% or less when sintered for 3 hours at 1600℃ particle size
Flat alumina of 100Ό or less with a gelatinization rate of 100% and alumina (3): Na 2 O content of 0.2 to 0.3% by weight
(c) 10-40% by weight of at least one member of the group of neutral aluminum phosphate, colloidal silica, alumina sol as a binder; (d) 5-10% by weight of at least one member from the group of Fe, Cu, Ni and Cr powders; (e) 5-30% by weight of sodium carbonate as ceramic sintering accelerator; (f) 2.5-15% by weight of solids content; (based on the calculation) an aqueous emulsion or solution of a polymerizable and/or copolymer forming a water-resistant coating; and (g) 3 to 15% by weight, acting as an aggregate and bonding the coating. Carbon fiber, alumina fiber to increase strength,
An antioxidant paint for steel comprising at least one type of mineral fiber from the group consisting of silicon carbide fiber and silicon nitride fiber, provided that the total of components (a) to (g) is 100% by weight.
JP5256588A 1988-03-08 1988-03-08 High temperature oxidation-preventing coating for steel Granted JPH01229080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5256588A JPH01229080A (en) 1988-03-08 1988-03-08 High temperature oxidation-preventing coating for steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5256588A JPH01229080A (en) 1988-03-08 1988-03-08 High temperature oxidation-preventing coating for steel

Publications (2)

Publication Number Publication Date
JPH01229080A JPH01229080A (en) 1989-09-12
JPH0463105B2 true JPH0463105B2 (en) 1992-10-08

Family

ID=12918323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5256588A Granted JPH01229080A (en) 1988-03-08 1988-03-08 High temperature oxidation-preventing coating for steel

Country Status (1)

Country Link
JP (1) JPH01229080A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105463168A (en) * 2014-09-05 2016-04-06 沈阳䞜倧高枩材料有限公叞 Casting blank oxidation resisting coating and spraying method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2657707B2 (en) * 1990-02-22 1997-09-24 䜏友金属工業株匏䌚瀟 Surface antioxidant for high Ni-Fe alloys
CN111760915A (en) * 2020-07-08 2020-10-13 马鞍山钢铁股仜有限公叞 Detection device and detection method for steel billet sprayed with high-temperature antioxidant coating
CN116516117B (en) * 2023-04-12 2023-09-19 无锡环宇粟密铞造有限公叞 Heat treatment process of super duplex stainless steel casting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105463168A (en) * 2014-09-05 2016-04-06 沈阳䞜倧高枩材料有限公叞 Casting blank oxidation resisting coating and spraying method thereof
CN105463168B (en) * 2014-09-05 2018-08-10 沈阳䞜倧高枩材料有限公叞 A kind of strand antioxidizing paint and its spraying method

Also Published As

Publication number Publication date
JPH01229080A (en) 1989-09-12

Similar Documents

Publication Publication Date Title
US2775531A (en) Method of coating a metal surface
KR100751742B1 (en) Spray powder, thermal spraying process using it, and sprayed coating
US4074010A (en) Ceramic-paint coatings
CN109680241B (en) Preparation method of amorphous oxide ceramic composite coating integrating toughness, heat conduction and high-temperature microstructure stability
CN104177873A (en) High-temperature protective coating for high-carbon steel billet and application thereof
Liu et al. Spraying power influence on microstructure and bonding strength of ZrSi2 coating for SiC coated carbon/carbon composites
JP6841897B2 (en) Roller furnace roller having at least one coating on its surface
JPH0463105B2 (en)
JPH05171261A (en) Antioxidant coating material for steel material
JPS60155686A (en) Enameling process
JPS6358886B2 (en)
JPH0588289B2 (en)
JPS6358888B2 (en)
TW538014B (en) Carbon-containing refractory article having protective coating
CN106700898A (en) SiAlON-SiC common steel heat treatment anti-oxidant coating and using method thereof
JPS6358887B2 (en)
JPS6187859A (en) Formation of sprayed film
JP3945256B2 (en) Coated graphite particles and refractories containing coated graphite particles
JPH01259117A (en) Roll for heat treatment furnace
JPH0662888B2 (en) High temperature antioxidant paint for steel
JP2592628B2 (en) Method of forming thermal spray coating with excellent build-up resistance
US7527874B2 (en) Method of forming a vibration damping coating on a metallic substrate
JPH02205622A (en) Paint for preventing high-temperature decarburization of carbon steel
JPS6360806B2 (en)
JPS5819376B2 (en) Composite coating agent for centrifugal casting