JPS5833620B2 - Method for manufacturing magnetic recording media - Google Patents

Method for manufacturing magnetic recording media

Info

Publication number
JPS5833620B2
JPS5833620B2 JP8446678A JP8446678A JPS5833620B2 JP S5833620 B2 JPS5833620 B2 JP S5833620B2 JP 8446678 A JP8446678 A JP 8446678A JP 8446678 A JP8446678 A JP 8446678A JP S5833620 B2 JPS5833620 B2 JP S5833620B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic recording
manufacturing
base material
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8446678A
Other languages
Japanese (ja)
Other versions
JPS5512549A (en
Inventor
紘一 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8446678A priority Critical patent/JPS5833620B2/en
Publication of JPS5512549A publication Critical patent/JPS5512549A/en
Publication of JPS5833620B2 publication Critical patent/JPS5833620B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】 本発明は、金属薄膜形の磁気記録媒体の製造方法の改料
に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in the method of manufacturing a metal thin film type magnetic recording medium.

近年、磁気記録は短波長記録指向が強く、記録方式シス
テム、記録媒体の相互改良が進められている。
In recent years, magnetic recording has been strongly oriented towards short wavelength recording, and mutual improvements in recording systems and recording media have been progressing.

短波長記録に有利な金属薄膜形の磁気記録媒体に必要な
条件は飽和磁束密度が大きい鉄属元素を大きい保磁力の
薄膜となし、かつ残留磁束密度を犬となし、自己減磁を
減少させることである。
The conditions necessary for a metal thin film type magnetic recording medium that is advantageous for short wavelength recording are to use iron elements with a high saturation magnetic flux density as a thin film with a large coercive force, and to have a high residual magnetic flux density to reduce self-demagnetization. That's true.

保磁力を大きくするには、メッキでは公知のOoP系が
あり、Fe、Co、Ni蒸着膜では、特公昭41−19
389号公報に開示された斜方蒸着法によって得た膜が
ある。
To increase the coercive force, there is a well-known OoP system for plating, and for Fe, Co, and Ni vapor deposited films,
There is a film obtained by an oblique evaporation method disclosed in Japanese Patent No. 389.

自己減磁を減らす方法もいくつか提案されている。Several methods have also been proposed to reduce self-demagnetization.

しかし、塗布形の磁気記録媒体の磁場配向によるような
角形比を太きくし、残留磁束密度を高める方法について
は、前記した斜方蒸着以外はあまり知られていない。
However, other than the above-mentioned oblique evaporation, not much is known about methods for increasing the residual magnetic flux density by increasing the squareness ratio of coated magnetic recording media, such as by magnetic field orientation.

パーマロイのような軟磁性材料と異なり、磁場中蒸着に
おける配向効果は殆んど蒸着では期待できない。
Unlike soft magnetic materials such as permalloy, almost no orientation effect can be expected when deposited in a magnetic field.

本発明は、斜方蒸着の蒸着効率の低い欠点を排除し、高
入射角で実施される斜方蒸着と同等の角形比を有する磁
気記録媒体の製造を提供するもので、第1図に本製造方
法の要点を説明するための図を、第2図に後述するe1
/eoと角形比の関係を示し、以下それに沿って詳しく
説明する。
The present invention eliminates the drawback of low deposition efficiency of oblique evaporation and provides the production of a magnetic recording medium having a squareness ratio equivalent to that of oblique evaporation performed at a high incidence angle. A diagram for explaining the main points of the manufacturing method is shown in FIG.
The relationship between /eo and squareness ratio will be shown below, and will be explained in detail below.

第1図において、1は真空雰囲気中の円筒状の回転キャ
ンで必要に応じて加熱または冷却されるよう構成される
In FIG. 1, 1 is a cylindrical rotating can in a vacuum atmosphere and is configured to be heated or cooled as required.

2は高分子成形物基材で前記キャン1の周側面に沿って
移動すると共に、強磁性材料を加熱気化して得られた蒸
気流3に露呈され、目的の強磁性層が形成されるよう配
設される。
2 is a polymer molded base material that moves along the circumferential side of the can 1 and is exposed to a vapor flow 3 obtained by heating and vaporizing a ferromagnetic material, so that a desired ferromagnetic layer is formed. will be placed.

4は蒸発面で基材の進行する方向と直角な方向に伸びた
(基材の幅に応じて適宜選択される)状態で用いられる
ものとする。
4 shall be used with the evaporation surface extending in a direction perpendicular to the direction in which the base material advances (selected appropriately depending on the width of the base material).

蒸発面4の進行方向の幅をWとし、Wの中心Po’にた
てた垂線をq2、それと並行でかつキャン1の中心Oを
通る線をq。
The width of the evaporation surface 4 in the advancing direction is W, the perpendicular line drawn to the center Po' of W is q2, and the line parallel to it and passing through the center O of the can 1 is q.

とする。shall be.

q、とq2が一致する場合が多いが、それにこだわらず
図示したようにqlとq2が一致しない場合にも適用で
きるものである。
Although q and q2 often match, the present invention is not limited to this and can also be applied to the case where ql and q2 do not match, as shown in the figure.

必要なことは、蒸発面4を構成するための照射される電
子ビーム5のおよその包結線と図面において、Wの右端
部P1′より放射された蒸気流が基材に入射角90°で
入射する線分り、と、Po′より放射され基材に入射角
0°で入射する線分L2 とがそれぞれ交錯する点をp
、 t POとした時、P。
What is required is that the vapor flow radiated from the right end P1' of W is incident on the base material at an incident angle of 90° in the drawing and the approximate envelope line of the irradiated electron beam 5 for forming the evaporation surface 4. The point where the line segment L2 intersects with the line segment L2 radiated from Po' and incident on the base material at an incident angle of 0° is defined as p.
When , t PO, P.

P、’(=e、とする)とP。P,' (=e,) and P.

Po′(=eoとする)との比(e1/eo)角と角形
比に重要な相関があることを本発明者は見出した。
The inventors have found that there is an important correlation between the ratio (e1/eo) of Po' (=eo) and the squareness ratio.

以下具体的に説明する。This will be explained in detail below.

ポリエチレンテレフタレートフィルム(5μ厚)ポリエ
チレン2・6ナフタレートフイルム(5μ厚)ポリイミ
ドフィルム(5μ厚) 03種類を基材とし、5X10−5Torr〜lX10
−’Torrの酸素分圧中で0o99%Si1%を蒸発
面位置でのビームスポット径30朋の30KV、1.5
Aの電子ビームe1/eoを変化さセるよう電子ビーム
発生源の位置を移動して照射し、加熱気化させて磁性層
を形成した。
Polyethylene terephthalate film (5μ thickness) Polyethylene 2.6 naphthalate film (5μ thickness) Polyimide film (5μ thickness) 03 types are used as base materials, 5X10-5 Torr ~ lX10
-'Torr of oxygen partial pressure, 0o99%Si1%, beam spot diameter 30mm at evaporation surface position, 30KV, 1.5
The electron beam e1/eo of A was irradiated by moving the position of the electron beam source so as to vary the electron beam e1/eo, and was heated and vaporized to form a magnetic layer.

回転キャン1については直径50CIn、と直径1mの
2種類を用い、1、とz2の距離をOCm、から4Q/
Iまでの範囲可変し、L2を直径50cmの回転キャン
では32crnから48cm、の位置に蒸発面の中心が
設定されるよう条件を選び、直径1mの回転キャンでは
60crnから901までの範囲について蒸発面を移動
した。
For rotary can 1, two types with a diameter of 50CIn and a diameter of 1m are used, and the distance between 1 and z2 is OCm, to 4Q/
For a rotary can with a diameter of 50 cm, the center of the evaporation surface is set at a position between 32 crn and 48 cm, and for a rotary can with a diameter of 1 m, the evaporation surface is set in a range from 60 crn to 901. was moved.

いずれの実施例についても、各基材に0.03〜0.0
4μのOr層をあらかじめ蒸着した上に前記磁性層を形
成した。
For each example, 0.03 to 0.0
The magnetic layer was formed on a 4 μm Or layer that had been deposited in advance.

得られた保磁力は3800e〜7000eの範囲に条件
により異なったが、角形比については、第2図に示すよ
うにe、/e2が2.0以上に選択されれば、90%以
上の優れた角形比が得られることがわかった。
The obtained coercive force varied depending on the conditions in the range of 3800e to 7000e, but as for the squareness ratio, if e and /e2 were selected to be 2.0 or more as shown in Fig. 2, an improvement of 90% or more was achieved. It was found that the following squareness ratio can be obtained.

すなわち、elとe。That is, el and e.

の差は、発生イオンの差で結晶成長の初期過程すなわち
900から徐々に低入射角側へと蒸着が行われるうちで
の高入射角成分におけるイオン量が多くなることの効果
である。
The difference in ions is due to the effect that the amount of ions increases in the high incidence angle component during the initial stage of crystal growth, that is, as the deposition is gradually performed from 900 to the low incidence angle side.

これはキャンの周側に沿ってファラデーカップで測定し
て確認できたことである。
This was confirmed by measuring with a Faraday cup along the circumferential side of the can.

なお、本発明者は、他の鉄属元素、またはそれらの組み
合せ、他元素をそれらに加えたものについても同様の効
果を有することを確認した。
In addition, the present inventor has confirmed that other iron elements, a combination thereof, and those in which other elements are added have similar effects.

以上のように本発明の製造方法により得られた金属薄膜
形の磁気記録媒体は角形比が優れているものであり、ま
た磁性層を多層化しても同等の角形比を遠戚できたもの
であり、その産業性は大きいものである。
As described above, the metal thin film type magnetic recording medium obtained by the manufacturing method of the present invention has an excellent squareness ratio, and even if the magnetic layers are multilayered, the same squareness ratio can be achieved even if the magnetic layer is multilayered. Yes, it has great industrial potential.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の製造方法を説明するための図、第2図
はe、/eoに対する角形比の特性図である。 1・・・・・・円筒状キャン、2・・・・・・高分子成
形物基材、3・・・・・・蒸気流、4・・・・・・蒸発
面、5・・・・・・電子ビーム。
FIG. 1 is a diagram for explaining the manufacturing method of the present invention, and FIG. 2 is a characteristic diagram of the squareness ratio with respect to e and /eo. 1... Cylindrical can, 2... Polymer molded product base material, 3... Vapor flow, 4... Evaporation surface, 5... ...electron beam.

Claims (1)

【特許請求の範囲】 1 真空雰囲気中において円筒状キャンの周側面に沿っ
て移動する高分子成形物基材に磁性材料を加熱気化させ
て得た蒸気流を差し向けて磁性層を形成する磁気記録媒
体の製造方法において、前記基材に90°で入射する蒸
気流が磁性材料を加熱する電子ビームを切る長さをe、
とし蒸発面の長手方向の中心より出て基材に垂直に入射
する蒸気が前記電子ビームを切る長さをe。 とじたとき、e、≧2eoとなる条件で磁性層を形成す
ることを特徴とする磁気記録媒体の製造方法。
[Claims] 1. Magnetism that forms a magnetic layer by directing a vapor flow obtained by heating and vaporizing a magnetic material to a polymer molded base material that moves along the circumferential side of a cylindrical can in a vacuum atmosphere. In the method for manufacturing a recording medium, the length e of a vapor flow incident on the base material at 90° cuts the electron beam that heats the magnetic material is
Let e be the length that the electron beam is cut by the vapor that exits from the longitudinal center of the evaporation surface and enters the substrate perpendicularly. A method for manufacturing a magnetic recording medium, characterized in that a magnetic layer is formed under conditions such that e≧2eo when the medium is closed.
JP8446678A 1978-07-10 1978-07-10 Method for manufacturing magnetic recording media Expired JPS5833620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8446678A JPS5833620B2 (en) 1978-07-10 1978-07-10 Method for manufacturing magnetic recording media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8446678A JPS5833620B2 (en) 1978-07-10 1978-07-10 Method for manufacturing magnetic recording media

Publications (2)

Publication Number Publication Date
JPS5512549A JPS5512549A (en) 1980-01-29
JPS5833620B2 true JPS5833620B2 (en) 1983-07-21

Family

ID=13831395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8446678A Expired JPS5833620B2 (en) 1978-07-10 1978-07-10 Method for manufacturing magnetic recording media

Country Status (1)

Country Link
JP (1) JPS5833620B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59210140A (en) * 1983-05-16 1984-11-28 ハイソ−ル・ジヤパン株式会社 Heat insulating building material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62119476A (en) * 1985-11-20 1987-05-30 Meisei Electric Co Ltd Position measuring system
JP2621578B2 (en) * 1990-05-18 1997-06-18 日本電気株式会社 Proximity placement method of omnidirectional radio beacon

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59210140A (en) * 1983-05-16 1984-11-28 ハイソ−ル・ジヤパン株式会社 Heat insulating building material

Also Published As

Publication number Publication date
JPS5512549A (en) 1980-01-29

Similar Documents

Publication Publication Date Title
US4220117A (en) Apparatus for fabrication of magnetic recording media
US4767516A (en) Method for making magnetic recording media
JPS5833620B2 (en) Method for manufacturing magnetic recording media
GB2129832A (en) Magnetic recording media
JPH0319618B2 (en)
JPS6014408B2 (en) Method for manufacturing magnetic recording media
JPS5922234A (en) Production of vertical magnetic recording medium
JPS6014409B2 (en) Method for manufacturing magnetic recording media
JP2717611B2 (en) Magnetic recording medium and method of manufacturing the same
JPS61242321A (en) Magnetic recording medium
JPS58158030A (en) Magnetic recording medium
JPH01211240A (en) Manufacture of thin film type magnetic recording medium
JPS59175037A (en) Production of magnetic recording medium
JPH0121534B2 (en)
JPS5922235A (en) Production of vertical magnetic recording medium
JPS6018912A (en) Thin film formation by vacuum evaporation
JPH103659A (en) Apparatus for production of magnetic recording medium and processing therefor
JPS63184927A (en) Production of magnetic recording medium
JPS60209927A (en) Magnetic recording medium and its production
JPS60202524A (en) Magnetic recording medium
JPS6031013B2 (en) Method for manufacturing magnetic recording media
JPS5812133A (en) Production of magnetic recording medium
JPS61145730A (en) Production of magnetic recording medium
JPH0411923B2 (en)
JPS5914129A (en) Production of magnetic recording medium