JPS63184927A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPS63184927A
JPS63184927A JP1619987A JP1619987A JPS63184927A JP S63184927 A JPS63184927 A JP S63184927A JP 1619987 A JP1619987 A JP 1619987A JP 1619987 A JP1619987 A JP 1619987A JP S63184927 A JPS63184927 A JP S63184927A
Authority
JP
Japan
Prior art keywords
iron
substrate
magnetic
ion
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1619987A
Other languages
Japanese (ja)
Inventor
Tadashi Yasunaga
正 安永
Akio Yanai
矢内 明郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP1619987A priority Critical patent/JPS63184927A/en
Publication of JPS63184927A publication Critical patent/JPS63184927A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve productivity and the efficiency of utilizing nitrogen ions by projecting the vapor flow of a magnetic material essentially consisting of iron in such a manner as to attain the max. density of the ion beam near the position where the angle between said vapor flow and the normal of a substrate is max. at the time of forming a thin magnetic iron nitride film on the substrate. CONSTITUTION:The substrate 3 is continuously conveyed along a cylindrical drum 2 provided in a vacuum vessel 1 and the magnetic material 4 essentially consisting of iron such as iron or iron alloy is heated and evaporated by and electron gun 5, by which the vapor thereof is diagonally projected to the substrate and the ionized gaseous ions are supplied from an ion gun 6 to form the thin magnetic film layer of iron oxide on the substrate. The ion gun 6 for supplying the ionized gaseous nitrogen is so disposed as to maximize the density of the ion beam in the position where the angle between the vapor flow of the iron, etc., and the normal of the substrate is max. The efficiency of utilizing the ions is thereby improved and the productivity, i.e., thin film forming speed, is increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は窒化鉄磁性薄膜型磁気記録媒体の製造方法に関
する。特に本発明は生産性に優れ、成膜スピードが向上
した窒化鉄磁性薄膜型磁気記録媒体の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing an iron nitride magnetic thin film magnetic recording medium. In particular, the present invention relates to a method for manufacturing an iron nitride magnetic thin film magnetic recording medium with excellent productivity and improved film formation speed.

〔従来の技術〕[Conventional technology]

磁気記録媒体としては強磁性粉末を結合剤中に分散した
磁性層を有するいわゆる塗布型の磁気記録媒体が広く用
いられているが、近年高密度化記録への要求の高まりと
共に真空蒸着、スパッタリング等によるCo、Ni、F
e等の合金の薄膜型磁性層を有する磁気記録媒体が注目
されはじめている。これらの薄膜型磁気記録媒体は、高
密度化のための超薄層化が可能と云う利点があるが、耐
蝕性が悪く、長時間保存、使用すると錆びが生ずるとい
う欠点があった。
So-called coating-type magnetic recording media, which have a magnetic layer in which ferromagnetic powder is dispersed in a binder, are widely used as magnetic recording media, but in recent years, with the increasing demand for high-density recording, vacuum evaporation, sputtering, etc. Co, Ni, F
Magnetic recording media having thin film magnetic layers made of alloys such as E are beginning to attract attention. These thin film magnetic recording media have the advantage of being able to be made into ultra-thin layers for higher density, but have the disadvantage of poor corrosion resistance and rusting when stored and used for long periods of time.

この欠点を除く1つの試みとして、最近、窒化鉄(Fe
χN:χは2〜8)磁性薄膜を形成した磁気記録媒体が
提案されている。
As an attempt to eliminate this drawback, iron nitride (Fe
χN: χ is 2 to 8) A magnetic recording medium in which a magnetic thin film is formed has been proposed.

(例えば、特開昭60−236113号公報)〔発明が
解決しようとする問題点〕 上記の窒化鉄磁性膜を有する磁気記録媒体は良好な磁気
特性を有するお共に耐蝕性にもすぐれ高密度磁気記録媒
体として適しているが、生産性に難点があった。すなわ
ち、上記公報に開示された磁気記録媒体の製造方法では
、鉄や鉄合金を窒素ガス雰囲気(低圧)中でイオンブレ
ーティング等を行い基体上に窒化鉄を形成させているの
で、生産性が悪く且つ窒化イオンの利用効率が悪い。ま
た、最近、イオン銃により窒素ガスをイオン化して基体
に当て、Fe源から蒸発したFeと反応せしめ窒化鉄膜
を形成させる方式も行われているが、イオン銃の配置等
に特別の考慮がなされておらず、なお生産性や窒素イオ
ンの利用効率等に問題があった。
(For example, Japanese Unexamined Patent Publication No. 60-236113) [Problems to be solved by the invention] The magnetic recording medium having the above-mentioned iron nitride magnetic film has good magnetic properties, excellent corrosion resistance, and high-density magnetic properties. Although it is suitable as a recording medium, it has problems with productivity. That is, in the method for manufacturing a magnetic recording medium disclosed in the above publication, iron or iron alloy is subjected to ion blasting or the like in a nitrogen gas atmosphere (low pressure) to form iron nitride on the substrate, which reduces productivity. This is bad and the utilization efficiency of nitride ions is poor. Recently, a method has also been used in which nitrogen gas is ionized using an ion gun, applied to the substrate, and reacted with Fe evaporated from the Fe source to form an iron nitride film, but special consideration must be given to the placement of the ion gun, etc. However, there were still problems with productivity and nitrogen ion utilization efficiency.

本発明はこれらの欠点を克服し、生産性及び窒素イオン
の利用効率が向上した窒化鉄磁性薄膜型磁気記録媒体の
製造方法を提供することを目的としている。
An object of the present invention is to overcome these drawbacks and provide a method for manufacturing an iron nitride magnetic thin film magnetic recording medium with improved productivity and nitrogen ion utilization efficiency.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは窒化鉄磁性薄膜の形成についてイオン銃の
位置等について種々検討を重ねその最も効率の良い位置
があることを見出し、本発明を達成した。
The present inventors have conducted various studies regarding the position of the ion gun, etc. for forming an iron nitride magnetic thin film, and have found that there is a position that is most efficient, and have achieved the present invention.

すなわち、本発明は非磁性基体を円筒状ドラムの外周に
そって搬送しつつ斜め蒸着法により鉄を主成分とする磁
性材料を基体上に付着せしめると同時に窒素イオンを主
成分とするイオンビームを基体上に照射せしめ窒化鉄磁
性薄膜を形成させる磁気記録媒体の製造方法において、
鉄を主成分とする磁性材料の蒸気流と基体の法線とのな
す角が最大となる位置近傍でイオンビーム密度が最大と
なるように窒素イオンを主成分とするイオンビームを照
射させることを特徴とする磁気記録媒体の製造方法であ
る。
That is, in the present invention, while a non-magnetic substrate is conveyed along the outer circumference of a cylindrical drum, a magnetic material mainly composed of iron is deposited on the substrate by an oblique evaporation method, and at the same time, an ion beam mainly composed of nitrogen ions is emitted. In a method for manufacturing a magnetic recording medium in which an iron nitride magnetic thin film is formed on a substrate by irradiation,
The ion beam mainly composed of nitrogen ions is irradiated so that the ion beam density is maximized near the position where the angle between the vapor flow of the magnetic material mainly composed of iron and the normal to the substrate is maximum. This is a method for manufacturing a magnetic recording medium.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明で用いる基体の素材としては、ポリエチレンテレ
フタレート、ポリエチレン2,6−ナフタレートなどの
ポリエステル類;ポリエチレン、ポリプロピレンなどの
ポリオレフィン類、セルローストリアセテートなどのセ
ルロース誘導体、ポリカーボネート、ポリイミド、ポリ
アミドイミドなどのプラスチック、等がある。
Examples of the base material used in the present invention include polyesters such as polyethylene terephthalate and polyethylene 2,6-naphthalate; polyolefins such as polyethylene and polypropylene; cellulose derivatives such as cellulose triacetate; plastics such as polycarbonate, polyimide, and polyamideimide; etc. There is.

本発明で窒化鉄の薄膜磁性層を設けるには、例えば第1
図に概略図で示す如き真空蒸着装置を用いる。
In the present invention, in order to provide a thin film magnetic layer of iron nitride, for example, the first
A vacuum evaporation apparatus as schematically shown in the figure is used.

図示するように、真空槽1内に設けられた円筒状ドラム
(冷却キャン)2に沿って前記基体3を連続的に搬送さ
せ、鉄、鉄合金等の鉄を主成分とする磁性材料4を電子
銃5で加熱・蒸発させ基体に斜方入射させると共に、イ
オン銃6からイオン化された窒素ガスを供給し、基体上
に窒化鉄の薄■9磁性層を形成させる。この場合、真空
槽は10″3〜1O−7Torr程度に保たれる。なお
7は鉄蒸気が基体の不要部位に付くのを防止するマスク
である。
As shown in the figure, the substrate 3 is continuously conveyed along a cylindrical drum (cooling can) 2 provided in a vacuum chamber 1, and a magnetic material 4 mainly composed of iron such as iron or iron alloy is deposited on the substrate 3. The electron gun 5 heats and evaporates the material and obliquely injects it into the substrate, and the ion gun 6 supplies ionized nitrogen gas to form a thin magnetic layer of iron nitride on the substrate. In this case, the vacuum chamber is maintained at a pressure of about 10"3 to 10-7 Torr. Note that 7 is a mask that prevents iron vapor from adhering to unnecessary parts of the substrate.

本発明はこの場合に、イオン化された窒素ガスを供給す
るイオン銃6の位置を鉄等の透気流が基体の法線とのな
す角が最大となる位置、すなわち最大入射角θmaxの
近傍でイオンビーム密度が最大となるように窒素イオン
を主成分とするイオンビームを照射できるように位置に
配置して窒素イオンを照射する。
In this case, the present invention sets the position of the ion gun 6 that supplies ionized nitrogen gas at a position where the angle between the permeation flow of iron and the normal to the substrate is maximum, that is, near the maximum incident angle θmax. Nitrogen ions are irradiated at a position such that an ion beam containing nitrogen ions as a main component can be irradiated so that the beam density is maximized.

本発明で云う鉄蒸気の入射角θは、第2図に示すように
鉄蒸気がドラム上の基体に入射する点aにおける入射方
向とその点における基体の法線とのなす角θである。鉄
源4から電子銃5によって蒸発する鉄の蒸気は図示する
ようにある広がりをもって基体に入射するので入射角θ
は一定の範囲の値をとるが、最も外側に入射する鉄蒸気
が5点でなす入射角が最大となり、これを最大入射角θ
maxと称する。第2図の場合、θma x=90゜で
あるが、この部分に防着マスクを設置することによりθ
ma x<90°とすることも可能である。
The incident angle θ of the iron vapor referred to in the present invention is the angle θ formed between the direction of incidence at a point a where the iron vapor is incident on the substrate on the drum and the normal to the substrate at that point, as shown in FIG. The iron vapor evaporated from the iron source 4 by the electron gun 5 enters the substrate with a certain spread as shown in the figure, so the angle of incidence θ is
takes a value within a certain range, but the incident angle formed by the outermost 5 points of iron vapor is the maximum, and this is the maximum incident angle θ
It is called max. In the case of Figure 2, θmax = 90°, but by installing an anti-fouling mask in this area, θ
It is also possible to set max<90°.

本発明は、b点近傍、すなわち鉄器気流が基体に入射す
る最大入射角θmaxの近傍で窒素イオンビームが最大
となるようにイオン銃から窒素イオンを照射することに
より、イオンの利用効率を改良し、生産性、すなわち、
薄膜形成速度を上げることができることを見出したので
ある。上記のように窒素イオンを照射するには、イオン
銃を窒素イオンが点す近傍に最も効率的に照射されるよ
うに配置すればよい。
The present invention improves ion utilization efficiency by irradiating nitrogen ions from an ion gun so that the nitrogen ion beam becomes maximum near point b, that is, near the maximum incident angle θmax at which the ironwork airflow enters the base. , productivity, i.e.
They discovered that it is possible to increase the rate of thin film formation. To irradiate nitrogen ions as described above, the ion gun may be placed so as to most efficiently irradiate the vicinity of where the nitrogen ions are fired.

本発明でいうところのイオンビーム密度とは、電流密度
として測定可能であり、例えばイオン銃に相対して小型
のファラデーカップを数個配置せしめ、その電流値を測
定することで求められる。
The ion beam density as referred to in the present invention can be measured as a current density, and can be determined, for example, by arranging several small Faraday cups facing an ion gun and measuring the current value.

−例を第3図に示す。これは直径30mmのイオン銃に
相対する500mm離れた面上のA−に点でのビーム密
度を示したもので、加速電圧によりビームの形は大きく
変化している。またビームの形はイオン銃引きだし電極
の形状、距離、真空度等により大きく変化する。ここで
、イオンビーム密度最大の点は加速電圧1,5KVの場
合E、  F。
- An example is shown in FIG. This shows the beam density at a point A- on a plane 500 mm away from an ion gun with a diameter of 30 mm, and the shape of the beam changes greatly depending on the accelerating voltage. In addition, the shape of the beam varies greatly depending on the shape of the ion gun extraction electrode, distance, degree of vacuum, etc. Here, the points of maximum ion beam density are E and F when the accelerating voltage is 1.5 KV.

Gで示されるが、0.3KVの場合C−Iのいずれの点
も含まれる。従って、このイオン銃を第2図の如く配し
、0.3KVの加速電圧で運転させたときには、例えば
最大入射角θmaxがF点、最小入射角θminがAよ
り左になった時も本発明に含まれ、またθmaxがH点
、θminがA点の場合も含まれる。しかるにθmax
が1点、θminが0点などという組合せは本発明の範
囲外である。
In the case of 0.3 KV, any point of C-I is included. Therefore, when this ion gun is arranged as shown in Fig. 2 and operated at an accelerating voltage of 0.3 KV, the present invention also applies when, for example, the maximum incident angle θmax is at point F and the minimum incident angle θmin is to the left of A. It also includes the case where θmax is the H point and θmin is the A point. However, θmax
Combinations such as 1 point for θmin and 0 point for θmin are outside the scope of the present invention.

窒化鉄は一般にFexN(χは2〜8)で表わされる種
々のものが存在し、例えばε−Fez−IN。
There are various iron nitrides generally represented by FexN (χ is 2 to 8), such as ε-Fez-IN.

7  F es N、  F es N等が形成される
が、ε−Fez、Nは非磁性体で好ましくないので、蒸
着に際しては真空度、Fe源、イオン化窒素の量、加速
電圧等を制御してε−Fez〜3Nが50%以内になる
ようにすることが好ましい。
7 Fes N, Fes N, etc. are formed, but since ε-Fez and N are non-magnetic and undesirable, the degree of vacuum, Fe source, amount of ionized nitrogen, accelerating voltage, etc. must be controlled during vapor deposition. It is preferable that ε-Fez~3N be within 50%.

窒化鉄薄膜の厚さは500〜5000人である。The thickness of iron nitride thin film is 500-5000.

〔実施例〕〔Example〕

以下、本発明を実施例によって説明する。 Hereinafter, the present invention will be explained by examples.

第1図に示す如き装置を用い、直径400mmの円筒状
ドラムにそって厚さ12μm、幅100mmのポリエチ
レントリアセテートベースを搬送させつつ、イオン引出
しロ直径30mm0カウフマン型イオン銃を配置して窒
素イオンをb点近傍でイオンビーム密度が最大となるよ
うに照射した。
Using an apparatus as shown in Figure 1, a polyethylene triacetate base with a thickness of 12 μm and a width of 100 mm is conveyed along a cylindrical drum with a diameter of 400 mm, and a Kauffman type ion gun with a diameter of 30 mm is placed in the ion extraction chamber to collect nitrogen ions. Irradiation was performed so that the ion beam density was maximized near point b.

また同時にFe源から電子銃でFc蒸気を入射させて窒
化鉄膜を形成させた。
At the same time, Fc vapor was injected from the Fe source using an electron gun to form an iron nitride film.

真空槽内を5X 10−5To r rに保った。イオ
ン電流は10mA、加速電圧は0.6KVで膜厚が15
00人となるようにした。なお、斜め蒸着入射角は70
度であった。
The inside of the vacuum chamber was maintained at 5×10 −5 Torr. The ion current is 10 mA, the acceleration voltage is 0.6 KV, and the film thickness is 15
00 people. Note that the incident angle of oblique evaporation is 70
It was degree.

本実施例では搬送スピード3m/分で磁性薄膜を形成し
た。得られた磁気記録媒体の保磁力Hcは8200eで
あった。
In this example, the magnetic thin film was formed at a conveyance speed of 3 m/min. The coercive force Hc of the obtained magnetic recording medium was 8200e.

また比較例としてイオン銃を点線8の従来位置に配置し
て窒化鉄薄膜を形成したところ、搬送スピードを0.5
m/分にしなければ保磁力の大きい薄膜が形成されず、
得られた磁気記録、媒体のHCは8000eであった。
As a comparative example, an ion gun was placed at the conventional position indicated by dotted line 8 to form an iron nitride thin film.
m/min, a thin film with a large coercive force cannot be formed.
The obtained magnetic recording medium had a HC of 8000e.

(発明の効果〕 本発明により、窒素イオンビーム密度が最大入射角θm
axの近傍で最大となるように窒素イオンを照射しつつ
斜め蒸着法で窒化鉄薄膜の形成を行うことにより、その
他の状態で窒素イオンビームを照射した場合と比較して
基体の搬送スピードを著しく上げることができ、しかも
すぐれた保磁力が得られる。
(Effects of the Invention) According to the present invention, the nitrogen ion beam density can be increased to a maximum angle of incidence θm.
By forming an iron nitride thin film by oblique evaporation while irradiating nitrogen ions so that the maximum is in the vicinity of ax, the conveyance speed of the substrate can be significantly increased compared to the case where nitrogen ion beams are irradiated in other conditions. Moreover, excellent coercive force can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いられる蒸着装置の一例を示す概略
図であり、 第2図は本発明における入射角を説明する略図であり、 第3図はイオンビーム密度分布を示す一例である。 2・・・円筒状ドラム  3・・・基体4・・・鉄源 
     5・・・電子銃6・・・イオン銃 第1図 第2図 第  3  図 イオシビ=L)、f畳し″
FIG. 1 is a schematic diagram showing an example of a vapor deposition apparatus used in the present invention, FIG. 2 is a schematic diagram explaining an incident angle in the present invention, and FIG. 3 is an example showing an ion beam density distribution. 2... Cylindrical drum 3... Base 4... Iron source
5... Electron gun 6... Ion gun Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)非磁性基体を円筒状ドラムの外周にそって搬送し
つつ斜め蒸着法により鉄を主成分とする磁性材料の蒸気
流を基体に差し向けると同時に窒素イオンを主成分とす
るイオンビームを基体上に照射せしめ窒化鉄磁性薄膜を
形成させる磁気記録媒体の製造方法において、該蒸気流
と基体の法線とのなす角が最大となる位置近傍でイオン
ビーム密度が最大となるように窒素イオンを主成分とす
るイオンビームを照射させることを特徴とする磁気記録
媒体の製造方法。
(1) While conveying a non-magnetic substrate along the outer periphery of a cylindrical drum, a vapor flow of a magnetic material mainly composed of iron is directed onto the substrate using an oblique evaporation method, and at the same time an ion beam mainly composed of nitrogen ions is ejected. In a method for manufacturing a magnetic recording medium in which a magnetic thin film of iron nitride is formed on a substrate by irradiation, nitrogen ions are A method for manufacturing a magnetic recording medium, which comprises irradiating an ion beam containing as a main component.
JP1619987A 1987-01-28 1987-01-28 Production of magnetic recording medium Pending JPS63184927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1619987A JPS63184927A (en) 1987-01-28 1987-01-28 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1619987A JPS63184927A (en) 1987-01-28 1987-01-28 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS63184927A true JPS63184927A (en) 1988-07-30

Family

ID=11909840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1619987A Pending JPS63184927A (en) 1987-01-28 1987-01-28 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS63184927A (en)

Similar Documents

Publication Publication Date Title
JPS58130443A (en) Production of magnetic recording medium
JPH0318254B2 (en)
JPH061551B2 (en) Method of manufacturing magnetic recording medium
CA1162113A (en) Process for producing magnetic recording medium
JPH0916960A (en) Manufacturing device for information recording medium
JPS63184927A (en) Production of magnetic recording medium
JPH0318253B2 (en)
JPS6339124A (en) Magnetic recording medium and its production
JPH0442731B2 (en)
JPS59172163A (en) Production of vertical magnetic recording medium
JPS6237453B2 (en)
JP2650300B2 (en) Method for manufacturing perpendicular magnetic recording medium
JP2785272B2 (en) Method for manufacturing perpendicular magnetic recording medium
JPS5925975A (en) Production of thin alloy film
JPS598142A (en) Production of magnetic recording medium
JPH1091958A (en) Production of magnetic recording medium
JPH08102068A (en) Formation of metal film and equipment therefor
JPH08194944A (en) Method and system for producing magnetic recording medium
JPH0411923B2 (en)
JPS6154040A (en) Manufacture of magnetic recording medium
JPH06103571A (en) Production of magnetic recording medium
JPH01107319A (en) Production of magnetic recording medium
JPS63184926A (en) Method and apparatus for producing thin film type magnetic recording medium
JPH0963055A (en) Production of magnetic recording medium
JPS62146435A (en) Production of magnetic recording medium