JPS5830338A - Waste gas purifying catalyst - Google Patents

Waste gas purifying catalyst

Info

Publication number
JPS5830338A
JPS5830338A JP56129037A JP12903781A JPS5830338A JP S5830338 A JPS5830338 A JP S5830338A JP 56129037 A JP56129037 A JP 56129037A JP 12903781 A JP12903781 A JP 12903781A JP S5830338 A JPS5830338 A JP S5830338A
Authority
JP
Japan
Prior art keywords
catalyst
potassium
titanium
hours
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56129037A
Other languages
Japanese (ja)
Other versions
JPH0337975B2 (en
Inventor
Kazuko Yoshida
和子 吉田
Yoshitsugu Ogura
義次 小倉
Shigenori Sakurai
桜井 茂徳
Yoshihiro Suzuki
鈴木 喜博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP56129037A priority Critical patent/JPS5830338A/en
Publication of JPS5830338A publication Critical patent/JPS5830338A/en
Publication of JPH0337975B2 publication Critical patent/JPH0337975B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain a catalyst superior in low temp. activity, and high in durability, by adding titanium and potassium, and then a noble metal component to a carrier to prepare a catalyst for purifying an waste gas. CONSTITUTION:Titanium and potassium are first carried in a carrier, such as alumina or cordierite, of a catalyst for purifying the waste gas of an internal combustion engine, and then, a component of a noble metal, such as platinum, palladium, or rhodium are added to it, thus permitting low temp. activity of the catalyst to be enhanced without increasing the content of the noble metal and durability to be also raised.

Description

【発明の詳細な説明】 本発明は低温において優れた活性を示す内燃機関の排気
ガス浄化用触媒に関する。内燃機関、特に自動車の内燃
機関からの排ガス中に含1れる有害物質を除去または低
減するための浄化用触媒としては耐久性、浄化性におい
て極めてM;度な性能が要求されており従来自動車排気
ガス浄化用触媒にはα−アルミナ、γ−アルミナ等から
なる粒状担体又はハニカム状コージライト担体にアルミ
ナを被覆したモノリス担体などに白金、ロジウム、パラ
ジウム等の触媒活性金有する貴金属全単独又は組合せて
担持した触媒が使用されていることは既に知られている
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a catalyst for purifying exhaust gas of an internal combustion engine that exhibits excellent activity at low temperatures. As a purification catalyst for removing or reducing harmful substances contained in exhaust gas from internal combustion engines, especially automobile internal combustion engines, extremely high performance in terms of durability and purification performance is required, and conventional automobile exhaust For gas purification catalysts, a granular carrier made of α-alumina, γ-alumina, etc. or a monolithic carrier such as a honeycomb-shaped cordierite carrier coated with alumina, etc., and noble metals containing catalytically active gold such as platinum, rhodium, and palladium may be used alone or in combination. The use of supported catalysts is already known.

しかるに近年車輛の低燃費化が重要視され、これに伴な
い排ガスの温度が低下する傾向におり、低温活性に優れ
た触媒に対する要求が大きい。
However, in recent years, emphasis has been placed on improving the fuel efficiency of vehicles, and as a result, the temperature of exhaust gas tends to decrease, and there is a strong demand for catalysts with excellent low-temperature activity.

本発明の目的はこのような要望に応えるために低温での
活性に優れると共に耐久性をも併せもつ触媒を提供せん
とするものである。
An object of the present invention is to provide a catalyst that has excellent activity at low temperatures and is also durable in order to meet such demands.

本発明者等は貴金属の担持量を増すことなしに上記の目
的を達成し得る触媒を求めて研究金型ねた結果、第三成
分すなわちチタン、カリウムの添加によシ、それも貴金
属の担持に先立って添加することで貴金属の相持状態に
変化を与えることにより従来の触媒より低温における浄
化性能を向上せしめうろことを見出した。
The present inventors conducted research in search of a catalyst that could achieve the above objectives without increasing the amount of precious metals supported. It has been found that by adding precious metals prior to the catalyst, the purification performance at low temperatures can be improved compared to conventional catalysts by changing the state of mutual attachment of precious metals.

本発明で用いる触媒担体としては従来使用されていたも
のが使用でき球状でもモノリスタイプのものでもよい。
As the catalyst carrier used in the present invention, conventionally used catalyst carriers can be used, and they may be spherical or monolithic.

担体は材質的には特に限定されずアルミナ、コージェラ
イト等が用いられる。好1しくけアルミナ担体でα−1
γ−アルミナ等が使用される、 担持金属としては触媒活性を有する白金(1)t)パラ
ジウム(I’d>ロジウム(Rh)等の霞金属が使用さ
れ、これら貴金属は単独又は混イすして前記の担体に担
持させる。貴金属は通常このJ(11の目的で使用され
る範囲の址で用いらt圭るが好剪しい担持量は触媒の容
喰に対しpt o、i〜29/l、 Pd031〜22
μ、lRh (102〜0.2!l’/lである。これ
らの担持金属を混合して用いる場付には例えばPt1.
35か’t−Rh0.15〕/l、  PdO,89/
l−・■)hα05り/を等の割合で使用する。本発明
においては触媒成分として上記貴金属のほかにこれら貴
金属の触媒活171°を持続させるための他の触媒成分
、例えt」:セリウム(Ce)等を担持させてもよい。
The material of the carrier is not particularly limited, and alumina, cordierite, etc. are used. α-1 with a preferable alumina carrier
γ-alumina, etc. are used. As supporting metals, hazy metals such as platinum (1) t) palladium (I'd> rhodium (Rh)), which have catalytic activity, are used, and these noble metals may be used alone or in combination. The noble metal is usually supported on the above-mentioned carrier.Noble metals are usually used in the range used for the purpose of J (11), but the preferred supported amount is pt o, i ~ 29/l relative to the catalyst capacity. , Pd031-22
μ, lRh (102 to 0.2! l'/l. When using a mixture of these supported metals, for example, Pt1.
35?t-Rh0.15]/l, PdO, 89/
l-・■)hα05ri/ are used in the same proportions. In the present invention, in addition to the above-mentioned noble metals, other catalyst components such as cerium (Ce) may be supported to maintain the catalytic activity of these noble metals.

上記貴金属に先立って担持すべきチタン及びカリウムの
fjkは使用目的、担持する貴金属の種類に応じて適宜
変えられるが、チタン及びカリウムとも各々0,05〜
α5 me/Lのときに効果が大きい。本発明において
チタンとカリウムは両者を併用することによって効果が
得られ、チタン、カリウムがそれぞれα05 mo l
/を以下では低温における触媒活性が不十分であシ、ま
た0、5mot/を以上でに増加させた割には効果は上
昇しない。
The fjk of titanium and potassium to be supported prior to the above noble metals can be changed as appropriate depending on the purpose of use and the type of noble metal to be supported, but both titanium and potassium are each in the range of 0.05 to 0.05.
The effect is large when α5 me/L. In the present invention, the effect can be obtained by using both titanium and potassium in combination, and titanium and potassium each have α05 mol
If the amount is less than /, the catalytic activity at low temperature will be insufficient, and the effect will not increase even if it is increased from 0.5 mot/ or more.

チタン及びカリウムを触媒担体に担持させるにはM媒金
属を担持させる従来公知の方法と同様に炭酸塩、硝酸塩
等との水溶性チタン又はカリウム塩の水溶液を担持し、
含浸させ乾燥、焼成する方法によって行う。チタン及び
カリウムの411持しj通常別/くに行われ、いずれを
先に行ってもよいが、寸fc例えば蓚酸チタンカリウム
のように両者を含むJ4 k用いて同時に添加してもよ
い。含浸後の乾燥及び焼成温度は特に限定されないが次
の貴金属担持のためには200℃以上で6時間位処理す
るのが好ましい。以下本発明の触媒について実施例及び
比較例を用いて説明する。
In order to support titanium and potassium on a catalyst carrier, an aqueous solution of water-soluble titanium or potassium salt with carbonate, nitrate, etc. is supported in the same manner as the conventionally known method of supporting M-mediate metal,
This is done by impregnating, drying, and firing. The addition of titanium and potassium is usually carried out separately, and either one may be added first, but it is also possible to add both at the same time, for example, using a compound containing both, such as titanium potassium oxalate. The drying and firing temperature after impregnation is not particularly limited, but it is preferable to carry out the treatment at 200° C. or higher for about 6 hours in order to support the next precious metal. The catalyst of the present invention will be explained below using Examples and Comparative Examples.

実施(jill 1 比表面積50.i/f  の球状アルミナ担体500C
,Cに+lL6モル/を炭酸カリウム水溶液全含浸し1
20℃で2時間乾燥した後ろ00℃で6時間焼成した。
Implementation (Jill 1 Spherical alumina carrier 500C with specific surface area 50.i/f
, C was completely impregnated with +lL6 mol/in a potassium carbonate aqueous solution 1
After drying at 20°C for 2 hours, it was fired at 00°C for 6 hours.

次に18%塩化チタン水溶液全含浸し、120℃で2時
間乾燥後、450℃で焼成し更にもう一度含浸乾燥し8
00℃で3時間焼成した。、続いて0.53モn−/1
硝酸セリウム水酵液を含浸し、120Cで2時間乾燥後
、600℃で2時間焼成し/こ。次に0.26 ?/を
硝酸ロジウム水溶成金含浸し120“Cで2時間乾燥後
500℃で30分間焼成した。更に2.57V/を塩化
白金酸六水和物の水浴液を含浸し120℃で2時間乾燥
後500℃で30分間焼成して触媒を得た。
Next, the entire body was impregnated with a 18% aqueous titanium chloride solution, dried at 120°C for 2 hours, fired at 450°C, and impregnated and dried once more.
It was baked at 00°C for 3 hours. , followed by 0.53 mon-/1
Impregnated with cerium nitrate fermentation solution, dried at 120C for 2 hours, and then baked at 600℃ for 2 hours. Next 0.26? / was impregnated with rhodium nitrate water-soluble gold, dried at 120"C for 2 hours, and then fired at 500°C for 30 minutes. Further, 2.57V/ was impregnated with a water bath solution of chloroplatinic acid hexahydrate, and dried at 120°C for 2 hours. A catalyst was obtained by calcining at 500°C for 30 minutes.

比較例1 比表面積50n?/l  の球状アルミナlIj体50
0C,Cに実施例1と同様の操作でセリウム、ロジウム
、白金全4■持して(触媒を得た。但しこの触媒の場合
にはチタン、カリウムの何れ全も川持しなかった。
Comparative Example 1 Specific surface area 50n? /l spherical alumina lIj body 50
Cerium, rhodium, and platinum were all deposited at 0C and C in the same manner as in Example 1 to obtain a catalyst. However, in the case of this catalyst, neither titanium nor potassium was retained at all.

実施例2 酢酸で安定化したアルミナ含有率10重量%のアルミナ
ゾル3007に蒸溜水2507 i加え更に硝酸アルミ
ニラ、!、 44M’を加え攪拌して混合懸濁液分イ(
Iた。次に平均粒径1aμのr−アルミナ600fI全
混合懸濁液に加え、スラリーとした。
Example 2 2507 i of distilled water was added to alumina sol 3007 stabilized with acetic acid and had an alumina content of 10% by weight, and further alumina nitrate was added! , 44M' was added and stirred to separate the mixed suspension (I).
I was. Next, it was added to a total mixed suspension of 600 fI of r-alumina having an average particle size of 1 amu to form a slurry.

このスラリー中に直径93111111.長さ76調の
ハニカムタイプの円筒状コージライト質モノリス担体用
基材を2分間浸漬し、引上げた後抗体基材セル内の余分
のスラIJ  y、空気流で吹き飛はし、150℃で3
時間乾燥した後、6oo℃で3時間焼成してモノリス触
媒用担体全得た。
In this slurry, diameter 93111111. A honeycomb type cylindrical cordierite monolith carrier base material with a length of 76 scales was immersed for 2 minutes, and after being pulled up, the excess slurry in the antibody base material cell was blown away with an air flow, and then heated at 150°C. 3
After drying for an hour, the mixture was calcined at 60° C. for 3 hours to obtain the entire monolithic catalyst carrier.

次に、この゛担体Q0.05モル/を蓚酸チタンカリウ
ム水溶液に60分間浸漬し、引き上げて液滴を空気流で
吹き飛ばした後150℃で6時間乾燥、I7!にもう一
度蓚酸チタンカリ水溶液に浸漬、乾燥し800℃で1時
間焼成した。次に、この担体全17モル/を硝酸セリウ
ム水溶液に1分間浸漬し、引き上けて液滴を空気流で吹
き飛ばした後1o・o℃で1時間乾燥、700℃で2時
間焼成した。次にこのtL1体を1 f/を塩化白金酸
六水和物の水溶液に2時間浸漬し、引き上げてセル内の
液/1g]’c吹き飛ばした後、200℃で3時間乾燥
し、次に0、07 ?/を塩化ロジウム水溶液中に60
分間浸漬し、引き土ばてセル内の液を凶を吹き賎ばした
後200℃で3時間乾燥して触媒をイuた。
Next, 0.05 mol of this carrier Q was immersed in an aqueous titanium potassium oxalate solution for 60 minutes, pulled out, and the droplets were blown off with an air stream, followed by drying at 150° C. for 6 hours, I7! Then, it was dipped once again in an aqueous solution of titanium oxalate, dried, and fired at 800°C for 1 hour. Next, a total of 17 mol of this carrier was immersed in an aqueous cerium nitrate solution for 1 minute, pulled up, and the droplets were blown off with an air stream, dried at 1 o.degree. C. for 1 hour, and calcined at 700.degree. C. for 2 hours. Next, this tL1 body was immersed in an aqueous solution of chloroplatinic acid hexahydrate for 2 hours, pulled out and the liquid in the cell was blown away, dried at 200°C for 3 hours, and then 0,07? /60 in rhodium chloride aqueous solution
The cell was immersed in soil for a minute, the liquid in the cell was blown out with soil, and the cell was dried at 200° C. for 3 hours to remove the catalyst.

比較例2 実施例2と同じ操作で得られた直径93窄長さ76胡の
ハニカムタイプの円筒状モノリス触媒用担体に実施例2
と同じ操作でセリウム、白金、ロジウム金属持して触媒
を得た。但し本例の触Wでは実施例2とは異なり、蓚酸
チタンカリウムは担持しなかった。
Comparative Example 2 Example 2 was applied to a honeycomb type cylindrical monolithic catalyst carrier with a diameter of 93 mm and a length of 76 mm obtained by the same operation as in Example 2.
A catalyst containing cerium, platinum, and rhodium metals was obtained using the same procedure as above. However, unlike Example 2, titanium potassium oxalate was not supported in the test W of this example.

上記の実施例、比較例で調製した触媒に4’l持した金
属の量は第1表に示す11[エリである。
The amount of metal carried in the catalysts prepared in the above Examples and Comparative Examples was 11 [Eli] as shown in Table 1.

第 1 表 (江:金属相持量は触媒1を当りの3jt k示す。)
以上の様に調製した各触媒について空燃比ル乍をほぼ1
6にコントロールした排ガス中で50時間の耐久試験を
行った。耐久試験時の触媒床湯度は約800℃であシ、
空気速度(S、 V)は約6万Hr  とした。
Table 1 (E: The amount of metal supported is 3jtk per catalyst 1.)
For each catalyst prepared as above, the air-fuel ratio was approximately 1.
A durability test was conducted for 50 hours in exhaust gas controlled at a temperature of 6. The temperature of the catalyst bed during the durability test was approximately 800℃.
The air velocity (S, V) was approximately 60,000 Hr.

」二記耐久試験を行なった後の各触媒について触媒活性
能を測定した。
The catalytic activity of each catalyst was measured after the durability test described in Section 2 was conducted.

活性能測定条件 モデルガス成分 co:o、az、NOx : 2.2 (l Oppm
 、炭化水素(C3Hs ) : 8” IFQ2:0
.84%H2:1117チ Hz0:約6チ C02:
10チN2:残部 上記組成よりなるモデルガスに0.8チの過剰02.1
.6係の過剰COとなるように交互に1ヘルツ(Hz)
で導入した変動ガス全200〜450℃に加熱し、Sv
約3万Hr ”’−’の割合で触媒に通じてN0xk還
元させ、CO及び炭化水素(T(C)を酸化させ、HC
,G。
Activity measurement conditions Model gas components co: o, az, NOx: 2.2 (l Oppm
, Hydrocarbon (C3Hs): 8” IFQ2:0
.. 84%H2: 1117chi Hz0: Approximately 6chi C02:
10 chi N2: 0.8 chi excess 02.1 to the model gas with the balance above composition
.. 1 hertz (Hz) alternately so that there is an excess CO of 6 units.
The fluctuating gas introduced at
Approximately 30,000 Hr passes through the catalyst at a rate of ``-'' to reduce NOxk, oxidize CO and hydrocarbons (T(C), and oxidize HC
,G.

及びNOxの浄化率全測定した。測定結果を第1図ない
し第6図に示す。第1図ないし第3図は実施例1と比較
例1の触媒を使用しての入口ガス温度と浄化率との関係
分水し、図中、央看イー赤寸Alは実施例1の触媒の結
果を示しB1は比較例1の触媒の結果を示す。
and NOx purification rate were measured. The measurement results are shown in Figures 1 to 6. Figures 1 to 3 show the relationship between inlet gas temperature and purification rate using the catalysts of Example 1 and Comparative Example 1. B1 shows the results of the catalyst of Comparative Example 1.

同様に第4図ないし第6図は実施例2と比較例2の各触
媒の結果を示し、A2は実施例2の触媒の結果を示し、
B2は比較例2の触媒の結果を示す。図から朗らかなよ
うに本発明による触媒は特に低温域において高活性であ
り、高部域の排ガスに対しても耐久性が優れている。
Similarly, FIGS. 4 to 6 show the results of each catalyst of Example 2 and Comparative Example 2, A2 shows the results of the catalyst of Example 2,
B2 shows the results of the catalyst of Comparative Example 2. As clearly seen from the figure, the catalyst according to the present invention is highly active, especially in the low temperature range, and has excellent durability against exhaust gas in the high temperature range.

実施例6 比表面積50rr?//fKD球状アルミナ相体100
CCに025モル/を蓚酸チタンカリウム水m液を含浸
し、120℃で2時間乾燥した後、更にもう一度025
モル/を蓚酸チタンカリウム水浴液を含浸し、120℃
で2時間乾燥後800℃で3時間焼成した。
Example 6 Specific surface area 50rr? //fKD spherical alumina phase body 100
CC was impregnated with 025 mol/m of potassium titanium oxalate aqueous solution, dried at 120°C for 2 hours, and then impregnated with 025 mol/ml once again.
mol/impregnated with potassium titanium oxalate water bath solution, 120℃
After drying for 2 hours, it was fired at 800°C for 3 hours.

続いて[153モル/を硝酸セリウム水溶液を含浸し、
120℃で2時間乾燥後600℃で2時曲焼成した。
Subsequently, [153 mol/] was impregnated with an aqueous solution of cerium nitrate,
After drying at 120°C for 2 hours, it was baked at 600°C for 2 hours.

次に2.1f/L塩化白金酸六水和物の水溶液を含1c
4z3モル/l 、Ce12モル/l、Pt[L8f/
l e含有する。
Next, 1c containing 2.1f/L aqueous solution of chloroplatinic acid hexahydrate
4z3 mol/l, Ce12 mol/l, Pt[L8f/
Contains le.

比較例3 実施例3と同様にして比表面6so靜/lの球状7 /
l/ ミナ担体1ooccにCe 0.2 モiし/l
 s P t O−” f/を含有する触媒を調製した
。実施例3と異なる点’rl 侭fI!!チタンカリウ
ムを担持し斤いことである。
Comparative Example 3 In the same manner as in Example 3, a spherical material with a specific surface of 6 so/l was prepared.
l/Mina carrier 10cc Ce 0.2 moi/l
A catalyst containing s P t O-" f/ was prepared. The difference from Example 3 was that potassium titanium was supported.

実施例4 比表面8t50硝今 の球状アルミナ担体100Cに&
5条塩化チタン水溶液を含浸し120℃で2時間乾燥し
た後、500℃で3時間焼成した。次に0.26モル/
を炭酸カリウム水溶液を含浸し、120℃で2時間乾燥
後500℃で30分間焼成してTiQ、Ofモル/l−
s、  KL)、z3モル/l−、Pt0.8fltを
含有する触媒を得た。
Example 4 A spherical alumina carrier 100C with a specific surface of 8t50
It was impregnated with a 5-line aqueous titanium chloride solution, dried at 120°C for 2 hours, and then fired at 500°C for 3 hours. Next, 0.26 mol/
was impregnated with potassium carbonate aqueous solution, dried at 120°C for 2 hours, and then calcined at 500°C for 30 minutes to obtain TiQ, Of mol/l-
s, KL), z3 mol/l-, and a catalyst containing Pt0.8flt was obtained.

比較例4 実施例4と同様にして比表面積50 m”/90球状ア
ルミナJ[!体100CCK PtO,8?/を含有す
る触媒全調製した。チタン及びカリウムは担持しなかっ
た。
Comparative Example 4 A catalyst containing 100 CCK PtO, 8?/ of specific surface area 50 m''/90 spherical alumina J [! body] was prepared in the same manner as in Example 4. Titanium and potassium were not supported.

実施例3、比較例3、実施例4、比較例4の触媒につい
て前述の耐久試験全行ない、印久彷の各触媒の大ガス温
度250℃、300℃におけるHC,CO浄浄化率側測
定た。第2表に1itI+定結果を示す。
The catalysts of Example 3, Comparative Example 3, Example 4, and Comparative Example 4 were all subjected to the aforementioned durability tests, and the HC and CO purification rates of each of Inkyu's catalysts were measured at large gas temperatures of 250°C and 300°C. . Table 2 shows the 1itI+ results.

以上の様に担持された貴金属が一神の場合でも父、セリ
クムのない場合でもチタン、カリウムの添加の効果は明
らかである。
As described above, the effect of adding titanium and potassium is obvious whether the noble metal supported is one god or the father, Sericum, is not present.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は実施例1及び比MVl111の各
触媒の大ガス温度とHC,CO並ひにNOx浄化率との
関係を示すグラフ。第4図ないし第6図は実施例2及び
比較例2の各触媒の大ガス温度とIIC、CO並びにN
Ox浄化率との関係を示すグラフである。 図中、 A1・・・・・・実施例1の触媒 B、・・・・・・比較例1の触媒 入・・・・・・実施例2の触媒 B2・・・・・・比較例2の触媒 (ほか1名)
1 to 3 are graphs showing the relationship between the large gas temperature and the HC, CO, and NOx purification rates of each catalyst of Example 1 and the ratio MVl111. Figures 4 to 6 show the large gas temperature, IIC, CO and N of each catalyst of Example 2 and Comparative Example 2.
It is a graph showing the relationship with the Ox purification rate. In the figure, A1...Catalyst B of Example 1,...Catalyst included of Comparative Example 1...Catalyst B2 of Example 2...Comparative Example 2 catalyst (1 other person)

Claims (1)

【特許請求の範囲】[Claims] 触媒担体にチタン及びカリウ7−ヲ相持して後、白金、
パラジウム、ロジウム等の触媒貴金属の一種又は二種以
上を担持せしめたことを特徴とする排気ガス浄化用触媒
After titanium and potassium are supported on the catalyst carrier, platinum,
A catalyst for exhaust gas purification characterized by supporting one or more kinds of catalytic precious metals such as palladium and rhodium.
JP56129037A 1981-08-18 1981-08-18 Waste gas purifying catalyst Granted JPS5830338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56129037A JPS5830338A (en) 1981-08-18 1981-08-18 Waste gas purifying catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56129037A JPS5830338A (en) 1981-08-18 1981-08-18 Waste gas purifying catalyst

Publications (2)

Publication Number Publication Date
JPS5830338A true JPS5830338A (en) 1983-02-22
JPH0337975B2 JPH0337975B2 (en) 1991-06-07

Family

ID=14999539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56129037A Granted JPS5830338A (en) 1981-08-18 1981-08-18 Waste gas purifying catalyst

Country Status (1)

Country Link
JP (1) JPS5830338A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003071298A (en) * 2001-09-05 2003-03-11 Toyota Central Res & Dev Lab Inc COMPOSITE MATERIAL, PRODUCTION METHOD THEREFOR, CATALYST, PRODUCTION METHOD THEREFOR, NOx SORPTION METHOD, AND NOx SORPTIVE REDUCTION METHOD
JP2006110497A (en) * 2004-10-15 2006-04-27 Okura Ind Co Ltd Particulate combustion catalyst
KR100887363B1 (en) 2006-11-29 2009-03-05 희성촉매 주식회사 Potassium Oxide-Incorporated Alumina Catalysts with Enhanced Storage Capacities of Nitrogen Oxide and A Producing Method therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56102940A (en) * 1980-01-18 1981-08-17 Toyota Motor Corp Catalyst for cleaning exhaust gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56102940A (en) * 1980-01-18 1981-08-17 Toyota Motor Corp Catalyst for cleaning exhaust gas

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003071298A (en) * 2001-09-05 2003-03-11 Toyota Central Res & Dev Lab Inc COMPOSITE MATERIAL, PRODUCTION METHOD THEREFOR, CATALYST, PRODUCTION METHOD THEREFOR, NOx SORPTION METHOD, AND NOx SORPTIVE REDUCTION METHOD
JP4715064B2 (en) * 2001-09-05 2011-07-06 株式会社豊田中央研究所 Catalyst, production method thereof, NOx occlusion method, and NOx occlusion reduction method
JP2006110497A (en) * 2004-10-15 2006-04-27 Okura Ind Co Ltd Particulate combustion catalyst
JP4498881B2 (en) * 2004-10-15 2010-07-07 大倉工業株式会社 Particulate combustion catalyst
KR100887363B1 (en) 2006-11-29 2009-03-05 희성촉매 주식회사 Potassium Oxide-Incorporated Alumina Catalysts with Enhanced Storage Capacities of Nitrogen Oxide and A Producing Method therefor

Also Published As

Publication number Publication date
JPH0337975B2 (en) 1991-06-07

Similar Documents

Publication Publication Date Title
JP5996538B2 (en) Catalyst for lean-burn gasoline engines with improved NO oxidation activity
JP5910833B2 (en) Exhaust gas purification catalyst
JPH0653229B2 (en) Exhaust gas purification catalyst
JPH0626672B2 (en) Exhaust purification catalyst and method of manufacturing the same
JPH0760117A (en) Exhaust gas purifying catalyst
JP3821343B2 (en) Exhaust gas purification device
JP2001079402A (en) Exhaust gas cleaning catalyst and its production
KR100749946B1 (en) Catalyst for purifying exhaust gases and method of evaluating low-temperature purifying ability of the same
JPH0699069A (en) Catalyst for purification of exhaust gas
JP3872153B2 (en) Exhaust gas purification catalyst
JPS62282641A (en) Production of catalyst for purifying exhaust gas
WO2020203424A1 (en) Exhaust gas cleaning catalytic device
JPS5830338A (en) Waste gas purifying catalyst
JP3247956B2 (en) Exhaust gas purification catalyst
JPH10165817A (en) Catalyst for cleaning of exhaust gas
JPH10249199A (en) Catalyst for purifying exhaust gas
JPS6025544A (en) Catalyst for purifying exhaust gas
JPH03196841A (en) Catalyst for purification of exhaust gas
JPS6178438A (en) Monolithic catalyst for purifying exhaust gas
JPS61209045A (en) Catalyst for purifying exhaust gas
JPH0331396Y2 (en)
JPS6320036A (en) Production of catalyst for purifying exhaust gas
JPS6274453A (en) Catalyst for purifying exhaust gas
JPH0622674B2 (en) Engine exhaust gas purification catalyst
JP3330154B2 (en) Exhaust gas purification catalyst