JPS5829686B2 - Travel control system for a pair of track motor cars running in parallel on parallel tracks - Google Patents

Travel control system for a pair of track motor cars running in parallel on parallel tracks

Info

Publication number
JPS5829686B2
JPS5829686B2 JP54152834A JP15283479A JPS5829686B2 JP S5829686 B2 JPS5829686 B2 JP S5829686B2 JP 54152834 A JP54152834 A JP 54152834A JP 15283479 A JP15283479 A JP 15283479A JP S5829686 B2 JPS5829686 B2 JP S5829686B2
Authority
JP
Japan
Prior art keywords
guided vehicle
parallel
vehicle
guided
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54152834A
Other languages
Japanese (ja)
Other versions
JPS5574304A (en
Inventor
幹三 井上
光三 粂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP54152834A priority Critical patent/JPS5829686B2/en
Publication of JPS5574304A publication Critical patent/JPS5574304A/en
Publication of JPS5829686B2 publication Critical patent/JPS5829686B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Train Traffic Observation, Control, And Security (AREA)

Description

【発明の詳細な説明】 この発明は、例えば東海道新幹線などの上下線軌道のよ
うに、左右並行に敷設された軌道上を安全確認のために
並行走行する一対の軌道モータカーの走行制御方式に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a running control method for a pair of track motor cars that run parallel to each other for safety confirmation on tracks laid in parallel on the left and right, such as the upper and lower tracks of the Tokaido Shinkansen.

一般に、鉄道分野では、貨客列車の安全運行を図るため
に、架線及び信号関係や軌道関係の保守・点検作業が毎
夜行なわれ、これに伴って、特に軌道上への作業関連機
器あるいは工具等の置き忘れによる車両走行の障害事故
発生を未然に防ぐために始発列車に先立って軌道モータ
カー等の確認車を軌道上に走行させ、障害物の検出及び
撤去作業が行なわれていることは周知の通りである。
Generally, in the railway field, in order to ensure the safe operation of freight and passenger trains, maintenance and inspection work on overhead wires, signals, and tracks is carried out every night. It is well known that in order to prevent accidents caused by vehicles being left behind, inspection vehicles such as track motor cars are run on the tracks prior to the first train to detect and remove obstacles. .

従来、このような確認車による軌道上の走行安全を確認
する場合、特に上下線軌道が並行する東海道新幹線など
の新幹線網における左右並行軌道上の確認作業にあって
は、通常、上下線の保守・点検作業が片側軌道毎に交互
に行なわれていることから、特に保守・点検された軌道
側を重点において周軌道に確認車を走行させているもの
であるが、この種の確認走行は軌道上の障害物を前提と
するため、確認車の高速走行は非常に危険を伴なうため
高速走行はできない。
Conventionally, when checking the safety of running on a track using such a confirmation vehicle, especially when checking work on a Shinkansen network such as the Tokaido Shinkansen where the upper and lower tracks are parallel, it is usually necessary to perform maintenance on the upper and lower tracks.・As inspection work is carried out alternately on each side of the track, a confirmation vehicle is driven around the track, focusing especially on the side of the track that has been maintained and inspected. Since the above obstacles are assumed, the test vehicle cannot drive at high speed because it is extremely dangerous.

このため長距離区間の確認作業には多大な時間を要し、
作業能率が悪く、確認車の台数を増加させる必要性が生
じ、作業要員の人手不足、人件費の増大など、合理的な
作業を行なう上で種々の問題があった。
Therefore, it takes a lot of time to confirm long-distance sections.
There were various problems in carrying out rational work, such as poor work efficiency, the need to increase the number of inspection vehicles, a shortage of work personnel, and an increase in personnel costs.

そこで、この発明は、左右並行軌道上に有人誘導車と無
人被誘導車とを並列走行させかつ両車間に無線誘導方式
を採用して、上下画線を単一確認グループにより同時的
に確認できるようにし、障害物撤去確認作業の効率倍加
と、作業要員の省人化を達成できるようにした鉄道車両
における走行制御方式を提供しようとするものである。
Therefore, this invention runs a manned guided vehicle and an unmanned guided vehicle in parallel on left and right parallel tracks, and uses a wireless guidance system between both vehicles, so that upper and lower markings can be confirmed simultaneously by a single confirmation group. The present invention aims to provide a running control method for a railway vehicle that can double the efficiency of obstacle removal confirmation work and save labor.

以下、この発明を図示の実施例に基づいて説明する。The present invention will be explained below based on illustrated embodiments.

第1図に示すように、例えば上下線が並行する左右軌道
上に一対の軌道モータカーA、 Bを配置し、相互に無
線誘導制御関係を維持させながら並列走行させるととも
に、一方の軌道上を走行する軌道モータカーAを有人の
誘導車とし、他方の軌道上を走行する軌道モータカーB
を無人の被誘導車としてなる構成を有し、該有人誘導車
Aには、それ自体に備えた走行制御機器(機関燃料制御
、逆転機の前進・中立・後進の変換、変速機の1、2速
変換、制動弁制御など)の操作変位と同じ変位を無人被
誘導車B側の対応機器に信号指令するための誘導回路を
有する送信部1が設けられ、一方上記無人被誘導車Bに
は、誘導車Aの送信部1からの信号を受信して対応機器
に与えるための被誘導回路を有する受信部2が設けられ
、これらの送受信を、例えば周波数変調方式による信号
電送によって達成し得るようになっている。
As shown in Fig. 1, for example, a pair of track motor cars A and B are placed on left and right tracks with parallel up and down lines, and they run in parallel while maintaining a radio guidance control relationship with each other, while also running on one track. A track motor car A is a manned guided vehicle, and a track motor car B runs on the other track.
The manned guided vehicle A has a configuration in which the manned guided vehicle A has its own travel control equipment (engine fuel control, forward/neutral/reverse conversion of the reversing gear, transmission 1, A transmitter 1 is provided which has a guidance circuit for instructing corresponding equipment on the unmanned guided vehicle B side to signal the same displacement as the operational displacement (2-speed conversion, brake valve control, etc.); is provided with a receiving section 2 having a guided circuit for receiving signals from the transmitting section 1 of the guided vehicle A and providing them to corresponding equipment, and these transmissions and receptions can be achieved by signal transmission using a frequency modulation method, for example. It looks like this.

すなわち、このような誘導車Aと被誘導車Bとの無線誘
導制御方式を説明すると、第2図に示すように、有人誘
導車Aは一般的な軌道モータカーと同様な制御機器、つ
まり逆転・変速・制動機器のほか駆動機関のアクセル操
作量による燃料制御機器を備え、それと連動するそれぞ
れのポテンショメータ、スイッチング機構により検出し
た機器変位に相当する電波信号を送信部1から発信し、
これに対して無人被誘導車Bは、上記誘導車Aからの信
号指令を受信部2で受信し、対応機器を動作させると共
に誘導軍人の電子ガバナー7に対応する電子ガバナー7
−1を備え、誘導車Aのアクセル操作量の変位に対応し
た電波信号を受けて被誘導車Bは燃料−次制御を受ける
That is, to explain the wireless guidance control system for the guided vehicle A and the guided vehicle B, as shown in FIG. It is equipped with a fuel control device based on the amount of accelerator operation of the drive engine in addition to the speed change/braking device, and transmits a radio wave signal corresponding to the device displacement detected by the respective potentiometers and switching mechanisms linked thereto from the transmitter 1.
On the other hand, the unmanned guided vehicle B receives the signal command from the guided vehicle A at the receiving unit 2, operates the corresponding equipment, and also operates the electronic governor 7 corresponding to the electronic governor 7 of the guided military personnel.
-1, and in response to a radio wave signal corresponding to the displacement of the accelerator operation amount of the guided vehicle A, the guided vehicle B undergoes fuel-order control.

また、誘導車Aに被誘導車Bを並列走行状態で追随させ
る車速同調方式としては、誘導車Aの車軸回転数を検出
し該信号を発信部3から発信させて被誘導車Bの受信部
4に送信し、該受信部の比較回路に挿入し、自からの車
軸回転数による車速と比較して演算回路を経てその比較
差を燃料制御レベル回路8に出力させ、被誘導車Bに燃
料二次制御を行なわせることにより誘導車Aの車速に一
致させるものである。
In addition, as a vehicle speed synchronization method in which the guided vehicle A follows the guided vehicle B in a parallel running state, the axle rotation speed of the guided vehicle A is detected, the signal is transmitted from the transmitting section 3, and the signal is transmitted from the receiving section of the guided vehicle B. 4, and inserts it into the comparison circuit of the receiving section, compares it with the vehicle speed based on the axle rotation speed from the own vehicle, and outputs the comparison difference to the fuel control level circuit 8 through the arithmetic circuit, so that the fuel control level circuit 8 is sent to the guided vehicle B. The vehicle speed is made to match the vehicle speed of the guided vehicle A by performing secondary control.

ところで、上記した車速同調方式によると、車軸回転数
の検出、信号の発信及び受信時の経時的誤差が長距離に
亘る誘導走行において累積し、たとえば誤差が0.5係
に過ぎなくても、100Ian走行後においては、誘導
車Aと被誘導車Bとの間に500mの空間的な相対位置
ずれが生ずる。
By the way, according to the above-mentioned vehicle speed synchronization method, errors over time in detecting the axle rotation speed and transmitting and receiving signals accumulate over long distance guided travel, and even if the error is only 0.5 factors, for example, After traveling 100 Ian, a spatial relative positional deviation of 500 m occurs between the guided vehicle A and the guided vehicle B.

このため被誘導車Bに誘導車Aとの相対位置ずれを補正
する燃料三次制御を行なう必要がある。
Therefore, it is necessary to perform tertiary fuel control on the guided vehicle B to correct the relative positional deviation with the guided vehicle A.

そこで、上述した車速同調方式による空間的な相対位置
ずれの制御方式としては、誘導車Aと被誘導車Bとの間
に光電管を用いた相対位置検出回路5及び6を双方に設
置し、被誘導車Bの誘導軍人に対する位置検出から自か
らの燃料三次制御により誘導車λとの速度同調を行なわ
せるとともに、アクセル信号による燃料−次制御と、車
速同調方式による燃料二次制御を含むレベル回路8の総
合調整により、電子ガバナー7−1を適宜動作させるも
のである。
Therefore, as a control method for spatial relative position deviation using the vehicle speed synchronization method described above, relative position detection circuits 5 and 6 using phototubes are installed between the guided vehicle A and the guided vehicle B on both sides. A level circuit that performs speed synchronization with the guided vehicle λ by detecting the position of the guided vehicle B relative to the guided military personnel through its own tertiary fuel control, and also includes fuel secondary control using an accelerator signal and secondary fuel control using a vehicle speed synchronization method. 8, the electronic governor 7-1 is operated appropriately.

すなわち、このような相対位置の検出方式は、第3図か
ら第5図に具体的に示すように、誘導車Aの被誘導車B
に対向する側面の前後方向中央部に、光電投光器a−1
を上下方向に複数個設置し、被誘導車Bの対向側面に上
下連続な帯状の投光ビームとなって重合照射するように
形成する一方(第3図参照)、被誘導車Bの対向側面の
最前部、最後部及び中央部2個所に、一定間隔を存した
2個一対の受光器b−1を側面中央部の前後方向に沿っ
て設置するとともに(第4図参照)、最前部及び最後部
の受光器を絶対制御位置検出部とし、中央部寄りの受光
器を通常制御位置検出部とし、かつ該各々の検出部の受
光順序、つまり上記誘導車Aからの投光ビームの前から
後(加速指令)、又は後から前(減速指令)へと横切る
動作を区別し、所謂フリップフロップ回路と組合わすこ
とによりそれに対応し得る被誘導車Bの燃料制御を行な
わせてなるもので、これによって、まず第3図破線で示
すように、例えば左にカーブする軌溝上を並行走行する
際、誘導車にと被誘導車Bとの間に上下方向の相対的な
位置ずれが生じても誘導車Aの光電投光器a−1からの
投光ビームは、上下方向に長い帯状ビームとなって被誘
導車Bの対向側面を照射していることから、被誘導車B
の受光器b−iへの投光範囲は常に維持され、カーブ軌
溝上での被誘導車Bに対する燃料制御を確実に行なうこ
とができる。
That is, such a relative position detection method is used to detect the guided vehicle B of the guided vehicle A, as specifically shown in FIGS. 3 to 5.
A photoelectric projector a-1 is installed in the center of the front-rear direction of the side surface facing the
A plurality of light beams are installed in the vertical direction to form a vertical continuous belt-shaped projection beam that overlaps and irradiates the opposite side of the guided vehicle B (see Fig. 3). A pair of light receivers b-1 are installed along the front and back direction of the central part of the side surface at a constant interval at the front, rear, and two central parts of the front and back sides (see Figure 4). The light receiver at the rear is used as an absolute control position detection section, and the light receiver near the center is used as a normal control position detection section. It distinguishes between rear (acceleration command) and rear-to-front (deceleration command) movement, and by combining with a so-called flip-flop circuit, fuel control of the guided vehicle B can be performed to correspond to the movement. As a result, as shown by the broken line in Figure 3, for example, when traveling in parallel on a track curved to the left, even if a relative positional shift occurs in the vertical direction between the guiding vehicle and the guided vehicle B. The light beam emitted from the photoelectric projector a-1 of the guided vehicle A becomes a vertically long belt-shaped beam and illuminates the opposite side of the guided vehicle B.
The range of light emitted to the light receiver b-i is always maintained, and fuel control for the guided vehicle B on the curved track can be reliably performed.

さらに、誘導車Aと被誘導車Bとの並列走行状態におけ
る被誘導車Bの位置検出に伴う燃料制御動作を第5図A
、B、C,Dに基づいて説明すれば、第5図Aに示すよ
うに、誘導車Aと被誘導車Bとが完全な並列走行状態に
あるときは、車速同調方式による燃料二次制御で被誘導
車Bの相対位置制御が行なわれ、燃料三次制御は行なわ
ない。
Furthermore, FIG.
, B, C, and D. As shown in FIG. Relative position control of guided vehicle B is performed at , and tertiary fuel control is not performed.

第5図Bに示すように、被誘導車Bが誘導車Aに対して
位置ずれし始めると、誘導車Aからの投光ビームを被誘
導車Bの中央寄り前又は後部の受光器が位置ずれを検出
し、被誘導車Bに弱減速又は弱加速といった通常の位置
制御を燃料三次制御により行ない、さらに第5図C及び
Dに示すように、被誘導車Bの前部又は後部が誘導車A
からの投光ビーム照射範囲を越えるような位置ずれが生
じると、被誘導車Bに強減速又は強加速といった誘導車
Aから決して離れない絶対的な位置制御を燃料三次制御
により行なうものである。
As shown in Figure 5B, when the guided vehicle B begins to shift position with respect to the guided vehicle A, the light beam projected from the guided vehicle A is directed to the front or rear receiver near the center of the guided vehicle B. The deviation is detected, and normal position control such as weak deceleration or slight acceleration is performed on the guided vehicle B using tertiary fuel control, and as shown in Figure 5 C and D, the front or rear of the guided vehicle B is guided. Car A
If a positional shift that exceeds the range of the projected beam from the guided vehicle A occurs, the guided vehicle B is subjected to absolute position control such as strong deceleration or strong acceleration so that it never leaves the guided vehicle A using tertiary fuel control.

また、この種の誘導車Aと被誘導車Bとの無線誘導方式
では、並列走行中に一方が軌道上の障害物を検知して非
常制動すると、その非常制動信号を受信して他方にも非
常制動が掛かるような非常時の制動制御送受信装置を備
えている。
In addition, in this type of wireless guidance system between guided vehicle A and guided vehicle B, when one detects an obstacle on the track and performs emergency braking while running in parallel, the other receives the emergency braking signal and applies emergency braking to the other vehicle. It is equipped with a braking control transmitting/receiving device for emergency braking.

この装置は、誘導車A及び被誘導車Bに、非常停止用送
受信回路9及び10を設置し、一方の障害物検知に連動
する緊急ブレーキの動作信号を他方に送信して非常制動
を掛けるようになっている。
This device installs emergency stop transmitting/receiving circuits 9 and 10 on guided vehicle A and guided vehicle B, and transmits an emergency brake operation signal linked to obstacle detection from one to the other to apply emergency braking. It has become.

そして、このような非常制動方式は、誘導軍人及び被誘
導車Bの暴走を防ぐために、通常電波が送信または受信
されなくなった場合の電波遮断状態において緊急ブレー
キが常に働くようにフェールセーブが構成され、その後
の電波の送信または受信を可能にするためには、ゼロイ
ンターロック機構を設け、前進・後進等の操作スイッチ
を中立状態にしたときのみ解除するようになっている。
In order to prevent the guided military personnel and the guided vehicle B from running out of control, this emergency braking system is configured with a fail-save function so that the emergency brake always operates in a state where radio waves are cut off when normal radio waves are no longer being transmitted or received. In order to enable subsequent transmission or reception of radio waves, a zero interlock mechanism is provided, which is released only when the forward/backward operation switch is placed in the neutral state.

したがって、上記の構成によれば、現在の新幹線網ある
いは複線、複々線などの少なくとも二本の軌道が左右に
近接して並行する軌道上の走行安全確認を行なうにおい
て、左右並行軌道上に一対の軌道モータカーからなる確
認束を並列走行させ。
Therefore, according to the above configuration, when performing running safety confirmation on the current Shinkansen network or on tracks where at least two tracks, such as double track or double track, are closely parallel to each other on the left and right, a pair of tracks on the left and right parallel tracks can be checked. A confirmation bundle consisting of motor cars is run in parallel.

かつ一方を有人誘導車とし、他方を無人被誘導車として
相互に無線誘導制御関係をもたせて同期走行を可能にし
たことから、両軌道上の障害物撤去確認作業が効率良(
行なうことができるとともに、作業要員も省人化でき、
特に無人被誘導車を作業点検側軌道上を走行させれば、
高速走行が可能になり、作業員の安全性を高めることが
できる。
In addition, one side is a manned guided vehicle and the other is an unmanned guided vehicle, and they have a radio guidance control relationship to enable synchronized travel, making it possible to efficiently confirm the removal of obstacles on both tracks.
In addition to reducing the number of workers required,
In particular, if an unmanned guided vehicle is run on the work inspection side track,
It enables high-speed travel and increases worker safety.

また、両車両を並列走行させるにおいて、有人誘導車の
アクセル操作量と車速を無人被誘導車側に無線電送し、
該無人被誘導車は、電送された有人誘導車のアクセル操
作量で燃料−次制御を行ない、かつ、電送された有人誘
導車の車速と自らの車速との比較差に応じて燃料二次制
御を行ない得るようにしたことから、円滑で確実な同期
走行を行なわせることができるなど、作業性及び安全性
にすぐれた軌道上の走行安全確認を行なうことができる
ものである。
In addition, when running both vehicles in parallel, the accelerator operation amount and vehicle speed of the manned guided vehicle are wirelessly transmitted to the unmanned guided vehicle,
The unmanned guided vehicle performs secondary fuel control based on the electronically transmitted accelerator operation amount of the manned guided vehicle, and performs secondary fuel control according to the comparison difference between the vehicle speed of the manned guided vehicle that was transmitted electronically and its own vehicle speed. This makes it possible to carry out smooth and reliable synchronous running, making it possible to check running safety on the track with excellent workability and safety.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る並行軌道上の走行安全確認方式
の一実施例を示す説明図、第2図は有人誘導車及び無人
被誘導車相互の無線誘導制御系統を示す略示的説明図、
第3図から第5図A、B。 C,Dは有人誘導車及び無人被誘導車の相対位置検知制
御方式を示す略示的説明図である。 A・・・・・・誘導車、B・・・・・・被誘導車、1・
・・・・・走行制御送信部、2・・・・・・被走行制御
受信部、3・・・・・・速度同調制御発信部、4・・・
・・・被速度同調制御受信部、5.6・・・・・・相対
位置検出回路、7,71・・・・・・電子ガバナー、8
・・・・・・燃料制御レベル回路、9.10・・・・・
・非常停止制御回路、a−1・・・・・・光電投光器、
b−i・・・・・・受光器。
Fig. 1 is an explanatory diagram showing an embodiment of the traveling safety confirmation system on parallel tracks according to the present invention, and Fig. 2 is a schematic explanatory diagram showing a mutual radio guidance control system between a manned guided vehicle and an unmanned guided vehicle. ,
Figures 3 to 5 A, B. C and D are schematic explanatory diagrams showing a relative position detection control method for a manned guided vehicle and an unmanned guided vehicle. A: Guided vehicle, B: Guided vehicle, 1.
... Traveling control transmitting section, 2... Traveling control receiving section, 3... Speed synchronization control transmitting section, 4...
. . . Velocity synchronization control receiving unit, 5.6 . . . Relative position detection circuit, 7, 71 . . . Electronic governor, 8
...Fuel control level circuit, 9.10...
・Emergency stop control circuit, a-1...Photoelectric floodlight,
b-i... Light receiver.

Claims (1)

【特許請求の範囲】[Claims] 1一方を有人としかつ他方を無人として一対の軌道モー
タカーを相互に無線誘導制御関係を維持させながら左右
並行軌道上を並列走行させるにおいて、有人誘導車のア
クセル操作量と車速を無人被誘導車側に無線電送し、該
無人被誘導車は、電送された有人誘導車のアクセル操作
量で燃料−次制御を行ない、かつ、電送された有人誘導
車の車速と自らの車速との比較差に応じて燃料二次制御
を行ない得るようにしたことを特徴とする並行軌道上を
並列走行する一対の軌道モータカーの走行制御方式。
1. When a pair of track motor cars, one manned and the other unmanned, run in parallel on left and right parallel tracks while maintaining a mutual radio guidance control relationship, the accelerator operation amount and vehicle speed of the manned guided car are controlled by the unmanned guided car. The unmanned guided vehicle performs fuel control based on the transmitted accelerator operation amount of the manned guided vehicle and responds to the difference between the transmitted vehicle speed of the manned guided vehicle and its own vehicle speed. 1. A travel control system for a pair of track motor cars running in parallel on parallel tracks, characterized in that secondary fuel control can be performed by
JP54152834A 1979-11-26 1979-11-26 Travel control system for a pair of track motor cars running in parallel on parallel tracks Expired JPS5829686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54152834A JPS5829686B2 (en) 1979-11-26 1979-11-26 Travel control system for a pair of track motor cars running in parallel on parallel tracks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54152834A JPS5829686B2 (en) 1979-11-26 1979-11-26 Travel control system for a pair of track motor cars running in parallel on parallel tracks

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP50064638A Division JPS51141104A (en) 1975-05-29 1975-05-29 Vehicle travel control system in railroad vehicle

Publications (2)

Publication Number Publication Date
JPS5574304A JPS5574304A (en) 1980-06-04
JPS5829686B2 true JPS5829686B2 (en) 1983-06-24

Family

ID=15549143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54152834A Expired JPS5829686B2 (en) 1979-11-26 1979-11-26 Travel control system for a pair of track motor cars running in parallel on parallel tracks

Country Status (1)

Country Link
JP (1) JPS5829686B2 (en)

Also Published As

Publication number Publication date
JPS5574304A (en) 1980-06-04

Similar Documents

Publication Publication Date Title
US10259478B1 (en) Vehicle-vehicle communication based urban train control system
CN107709136B (en) Method and device for determining driving authorization for a rail vehicle
KR102118672B1 (en) Train control method and train control system
CA2850316C (en) Train control system
JP6051092B2 (en) Train control system
US4327415A (en) Transit vehicle handback control apparatus and method
KR20200015825A (en) Train control system
JP3420840B2 (en) Automatic train connection / release control method and control device used therefor
US11458999B2 (en) On-board control apparatus and platform-door control system
WO2015019431A1 (en) Train control system and train provided with same
JP2011045207A (en) On-board information-intensive advanced safety train control system
JPS5829686B2 (en) Travel control system for a pair of track motor cars running in parallel on parallel tracks
JPH08207769A (en) Train safety control system
JPS5930001B2 (en) System for confirming running safety of railway vehicles on parallel tracks
CN114194249B (en) Train driving control method and control system
JPS5833761B2 (en) Railroad vehicle running control system on left and right parallel tracks
JP3498975B2 (en) Automatic departure train automatic stop device
US4132379A (en) Method for improving the stopping accuracy at railway stations of track-bound vehicles
KR20080061054A (en) Train route controll system for closed-loof type, method for train toute control and train traveling management using the same
RU2768688C1 (en) Unified digital airborne security platform (bsb-e)
WO2024029184A1 (en) Train control system
JP3098861B2 (en) Operation controller for primary linear motor transportation system on the ground
KR102316767B1 (en) Automatic Train Stop System
JPH04135967A (en) Maintenance vehicle security control method and vehicle tracking method
JPH06327105A (en) Automatic train stopping device