JPS5930001B2 - System for confirming running safety of railway vehicles on parallel tracks - Google Patents

System for confirming running safety of railway vehicles on parallel tracks

Info

Publication number
JPS5930001B2
JPS5930001B2 JP54152833A JP15283379A JPS5930001B2 JP S5930001 B2 JPS5930001 B2 JP S5930001B2 JP 54152833 A JP54152833 A JP 54152833A JP 15283379 A JP15283379 A JP 15283379A JP S5930001 B2 JPS5930001 B2 JP S5930001B2
Authority
JP
Japan
Prior art keywords
guided vehicle
vehicle
control
running
parallel tracks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54152833A
Other languages
Japanese (ja)
Other versions
JPS5574303A (en
Inventor
幹三 井上
光三 粂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP54152833A priority Critical patent/JPS5930001B2/en
Publication of JPS5574303A publication Critical patent/JPS5574303A/en
Publication of JPS5930001B2 publication Critical patent/JPS5930001B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Train Traffic Observation, Control, And Security (AREA)

Description

【発明の詳細な説明】 この発明は、例えば東海道新幹線などの上下線軌道のよ
うに、左右並行に敷設された軌道の走行安全確認方式に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a running safety confirmation system for tracks laid in parallel on the left and right, such as the up and down tracks of the Tokaido Shinkansen.

一般に、鉄道分野では、貨客列車の安全運行を図るため
に、架線及び信号関係や軌道関係の保守・点検作業が毎
夜性なわれ、これに伴って、特に軌道上への作業関連機
器あるいは工具等の置き忘れによる車両走行の障害事故
発生を未然に防ぐために始発列車に先立って軌道モータ
カー等の確認車を軌道上に走行させ、障害物の検出及び
撤去作業が行なわれていることは周知の通りである。
Generally, in the railway field, in order to ensure the safe operation of freight and passenger trains, maintenance and inspection work on overhead wires, signals, and tracks is carried out every night. It is well known that in order to prevent accidents caused by vehicles being left behind, inspection vehicles such as track motor cars are run on the tracks prior to the first train to detect and remove obstacles. be.

従来、このような確認車による軌道上の走行安全を確認
する場合、特に上下線軌道が並行する東海道新幹線など
の新幹線網における左右並行軌道上の確認作業にあって
は、通常、上下線の保守・点検作業が片側軌道毎に交互
に行なわれていることから、特に保守・点検された軌道
側を重点において両軌道に確認車を走行させているもの
であるが、この種の確認走行は軌道上の障害物を前提と
するため、確認車の高速走行は非常に危険を伴なうため
高速走行はできない。
Conventionally, when checking the safety of running on a track using such a confirmation vehicle, especially when checking work on a Shinkansen network such as the Tokaido Shinkansen where the upper and lower tracks are parallel, it is usually necessary to perform maintenance on the upper and lower tracks.・As inspection work is carried out alternately on each side of the track, inspection vehicles are run on both tracks, with particular emphasis on the side of the track that has been maintained and inspected. Since the above obstacles are assumed, the test vehicle cannot drive at high speed because it is extremely dangerous.

このため長距離区間の確認作業には多大な時間を要し、
作業能率が悪く、確認車の台数を増加させる必要性が生
じ、作業要員の人手不足、人件費の増大など、合理的な
作業を行なう上で種々の問題があった。
Therefore, it takes a lot of time to confirm long-distance sections.
There were various problems in carrying out rational work, such as poor work efficiency, the need to increase the number of inspection vehicles, a shortage of work personnel, and an increase in personnel costs.

そこで、この発明は、左右並行軌道上に有人誘導車と無
人被誘導車とを並列走行させ、かつ両車間に無線誘導方
式を採用して、上下両線を単一確認グループにより同時
的に確認できるようにし、障害物撤去確認作業の効率倍
加と、作業要員の省人化を達成できるようにした鉄道車
両における走行制御方式を提供しようとするものである
Therefore, this invention has a manned guided vehicle and an unmanned guided vehicle run in parallel on left and right parallel tracks, and uses a wireless guidance system between both vehicles to simultaneously confirm both the upper and lower tracks by a single confirmation group. The present invention aims to provide a running control system for railway vehicles that can double the efficiency of obstacle removal confirmation work and save manpower.

以下、この発明を図示の実施例に基づいて説明する。The present invention will be explained below based on illustrated embodiments.

第1図に示すように、例えば上下線が並行する左右軌道
上に一対の軌道モータカーA、Bを配置し、相互に無線
誘道制御関係を維持させながら並列走行させるとともに
、一方の軌道上を走行する軌道モータカーAを有人の誘
導車とし、他方の軌道上を走行する軌道モータカーBを
無人の被誘導車としてなる構成を有し、該有人誘導車A
には、それ自体に備えた走行制御機器(機関燃料制御、
逆転機の前進・中立・後進の変換、変速機の1.2速変
換、制動弁制御など)の操作変位と同じ変位を無人被誘
導車B側の対応機器に信号指令するための誘導回路を有
する送信部1が設けられ、一方上記無人被誘導車Bには
、誘導車Aの送信部1からの信号を受信して対応機器に
与えるための被誘導回路を有する受信部2が設けられ、
これらの送受信を、例えば周波数変調方式による信号電
送によって達成し得るようになっている。
As shown in Fig. 1, for example, a pair of track motor cars A and B are arranged on left and right tracks with parallel up and down lines, and are run in parallel while maintaining a radio guide control relationship with each other. It has a configuration in which the running track motor car A is a manned guided vehicle, and the track motor car B running on the other track is an unmanned guided vehicle, and the manned guided vehicle A
has its own travel control equipment (engine fuel control, engine fuel control,
A guidance circuit is provided to send a signal to corresponding equipment on the unmanned guided vehicle B side that is the same as the operational displacement of the reversing gear (forward/neutral/reverse conversion, transmission 1.2 speed conversion, brake valve control, etc.) On the other hand, the unmanned guided vehicle B is provided with a receiving section 2 having a guided circuit for receiving a signal from the transmitting section 1 of the guided vehicle A and providing it to a corresponding device,
These transmissions and receptions can be accomplished, for example, by signal transmission using a frequency modulation method.

すなわち、このような誘導車Aと被誘導車Bとの無線誘
導制御方式を説明すると、第2図に示すように、有人誘
導車Aは一般的な軌道モータカーと同様な制御機器、つ
まり逆転・変速・制動機器のほか駆動機関のアクセル操
作量による燃料制御機器を備え、それと連動するそれぞ
れのポテンショメータ、スイッチング機構により検出し
た機器変位に相当する電波信号を送信部1から発信し、
これに対して無人被誘導車Bは、上記誘導車Aからの信
号指令を受信部2で受信し、対応機器を動作させると共
に誘導車Aの電子ガバナー7に対応する電子ガバナー7
−1を備え、誘導車Aのアクセル操作量の変位に対応し
た電波信号を受けて被誘導車Bは燃料−次制御を受ける
That is, to explain the wireless guidance control system for the guided vehicle A and the guided vehicle B, as shown in FIG. It is equipped with a fuel control device based on the amount of accelerator operation of the drive engine in addition to the speed change/braking device, and transmits a radio wave signal corresponding to the device displacement detected by the respective potentiometers and switching mechanisms linked thereto from the transmitter 1.
On the other hand, the unmanned guided vehicle B receives the signal command from the guided vehicle A at the receiving unit 2, operates the corresponding equipment, and also operates the electronic governor 7 corresponding to the electronic governor 7 of the guided vehicle A.
-1, and in response to a radio wave signal corresponding to the displacement of the accelerator operation amount of the guided vehicle A, the guided vehicle B undergoes fuel-order control.

また、誘導車Aに被誘導車Bを並列走行状態で追随させ
る車速同調方式としては、誘導車Aの車軸回転数を検出
し該信号を発信部3から発信させて被誘導車Bの受信部
4に送信し、該受信部の比較回路に挿入し、自からの車
軸回転数による車速と比較して演算回路を経てその比較
差を燃料制御レベル回路8に出力させ、被誘導車Bに燃
料二次制御を行なわせることにより誘導車Aの車速に一
致させるものである。
In addition, as a vehicle speed synchronization method in which the guided vehicle A follows the guided vehicle B in a parallel running state, the axle rotation speed of the guided vehicle A is detected, the signal is transmitted from the transmitting section 3, and the signal is transmitted from the receiving section of the guided vehicle B. 4, and inserts it into the comparison circuit of the receiving section, compares it with the vehicle speed based on the axle rotation speed from the own vehicle, and outputs the comparison difference to the fuel control level circuit 8 through the arithmetic circuit, so that the fuel control level circuit 8 is sent to the guided vehicle B. The vehicle speed is made to match the vehicle speed of the guided vehicle A by performing secondary control.

ところで、上記した車速同調方式によると、車軸回転数
の検出、信号の発信及び受信時の経時的誤差が長距離に
亘る誘導走行において累積し、たとえば誤差が0.5
%に過ぎなくても、100I−ar1走行後においては
、誘導車Aと被誘導車Bとの間に500mの空間的な相
対位置ずれが生ずる。
By the way, according to the above-mentioned vehicle speed synchronization method, errors over time in detecting the axle rotation speed and transmitting and receiving signals accumulate during long-distance guided travel, and for example, errors of 0.5
Even if it is only %, after traveling 100 I-ar1, a spatial relative positional deviation of 500 m occurs between guided vehicle A and guided vehicle B.

このため被誘導車Bに誘導車Aとの相対位置ずれを補正
する燃料三次制御を行なう必要がある。
Therefore, it is necessary to perform tertiary fuel control on the guided vehicle B to correct the relative positional deviation with the guided vehicle A.

そこで、上述した車速同調力式による空間的な相対位置
ずれの制御方式としては、誘導車Aと被誘導車Bとの間
に光電管を用いた相対位置検出回路5及び6を双方に設
置し、被誘導車Bの誘導車Aに対する位置検出から自か
らの燃料三次制御により誘導車Aとの速度同調を行なわ
せるとともに、アクセル信号による燃料−次制御と、車
速同調方式式による燃料二次制御を含へレベル回路8の
総合調整により、電子ガバナー7−1を適宜動作させる
ものである。
Therefore, as a control method for spatial relative position deviation using the vehicle speed synchronization force method described above, relative position detection circuits 5 and 6 using phototubes are installed between the guiding vehicle A and the guided vehicle B, and Based on the position detection of the guided vehicle B with respect to the guided vehicle A, speed synchronization with the guided vehicle A is carried out through tertiary fuel control from the guided vehicle B, and secondary fuel control based on the accelerator signal and secondary fuel control using the vehicle speed synchronization system are performed. The electronic governor 7-1 is operated appropriately by comprehensive adjustment of the level circuit 8.

すなわち、このような相対位置の検出方式は、第3図か
ら第5図に具体的に示すように、誘導車Aの被誘導車B
に対向する側面の前後方向中央部に、光電投光器a−1
を上下方向に複数個設置し、被誘導車Bの対向側面に上
下連続な帯状の投光ビームとなって重合照射するように
形成する一方(第3図参照)、被誘導車Bの対向側面の
最前部、最後部及び中央部2個所に、一定間隔を存した
2個一対の受光部b−1を側面中央部の前後力向に沿っ
て設置するとともに(第4図参照)、最前部及び最後部
の受光器を絶対制御位置検出部とし、中央部寄りの受光
器を通常制御位置検出部とし、かつ該各々の検出部の受
光順序、つまり上記誘導車Aからの投光ビームの前から
後(加速指令)、又は後から前(減速指令→へと横切る
動作を区別し、所謂フリツプフ田ンプ回路と組合わすこ
とによりそれに対応し得る被誘導車Bの燃料制御を行な
わせてなるもので、これによって、まず第3図破線で示
すように、例えば左にカーブする軌道上を並行走行する
際、誘導車Aと被誘導車Bとの間に上下方向の相対的な
位置ずれが生じても、誘導車Aの光電投光器a−1から
の投光ビームは、上下方向に長い帯状ビームとなって被
誘導車Bの対向側面を照射していることから、被誘導車
Bの受光器b−1への投光範囲は常に維持され、カーブ
軌道上での被誘導車Bに対する燃料制御を確実に行なう
ことができる。
That is, such a relative position detection method is used to detect the guided vehicle B of the guided vehicle A, as specifically shown in FIGS. 3 to 5.
A photoelectric projector a-1 is installed in the center of the front-rear direction of the side surface facing the
A plurality of light beams are installed in the vertical direction to form a vertical continuous belt-shaped projection beam that overlaps and irradiates the opposite side of the guided vehicle B (see Fig. 3). A pair of light-receiving parts b-1 are installed along the front-rear force direction at the central part of the side surface at a certain distance at two locations at the front, rear, and center (see Figure 4). The light receiver at the rearmost position is used as an absolute control position detection part, and the light receiver near the center is used as a normal control position detection part, and the order in which the light is received by each of the detection parts is determined, that is, before the light beam projected from the guide car A. This system distinguishes between movements that cross from back to back (acceleration command) or from back to front (deceleration command →), and performs fuel control of the guided vehicle B that can respond to it by combining it with a so-called flip-flop pump circuit. As a result, as shown by the broken line in Figure 3, for example, when traveling in parallel on a track that curves to the left, a relative vertical positional shift occurs between guided vehicle A and guided vehicle B. However, since the light emitted from the photoelectric projector a-1 of guided vehicle A becomes a vertically long belt-shaped beam and illuminates the opposite side of guided vehicle B, the light receiver of guided vehicle B The light projection range to b-1 is always maintained, and fuel control for the guided vehicle B on the curved track can be reliably performed.

さらに、誘導車Aと被誘導車Bとの並列走行状態におけ
る被誘導車Bの位置検出に伴う燃料制御動作を第5図A
、B、C,Dに基づいて説明すれば、第5図Aに示すよ
うに、誘導車Aと被誘導車Bとが完全な並列走行状態に
あるときは、車速同調方式による燃料二次制御で被誘導
車Bの相対位置制御が行なわれ、燃料三次制御は行なわ
ない。
Furthermore, FIG.
, B, C, and D. As shown in FIG. Relative position control of guided vehicle B is performed at , and tertiary fuel control is not performed.

第5図Bに示すように、被誘導車Bが誘導車Aに対して
位置ずれし始めると、誘導車Aからの投光ビームを被誘
導車Bの中央寄り前又は後部の受光器が位置ずれを検出
し、被誘導車B ?’(m弱減速又は弱加速といった通
常の位置制御を燃料三次制御により行ない、さらに第5
図C及びDに示すように、被誘導車Bの前部又は後部が
誘導車Aからの投光ビーム照射範囲を越えるような位置
ずれが生じると、被誘導車Bに強減速又は強加速といっ
た誘導車Aから決して離れない絶対的な位置制御を燃料
三次制御により行なうものである。
As shown in Figure 5B, when the guided vehicle B begins to shift position with respect to the guided vehicle A, the light beam projected from the guided vehicle A is directed to the front or rear receiver near the center of the guided vehicle B. Detects the deviation and guides vehicle B? '(m) Normal position control such as slight deceleration or slight acceleration is performed by tertiary fuel control, and
As shown in Figures C and D, if a positional shift occurs that causes the front or rear part of guided vehicle B to exceed the irradiation range of the projected beam from guided vehicle A, guided vehicle B will be forced to strongly decelerate or accelerate. Absolute position control that never leaves the guided vehicle A is performed by tertiary fuel control.

また、この種の誘導車Aと被誘導車Bとの無線誘導方式
では、並列走行中に一方が軌道上の障害物を検知して非
常制動すると、その非常制動信号を受信して他方にも非
常制動が掛かるような非常時の制動制御送受信装置を備
えている。
In addition, in this type of wireless guidance system between guided vehicle A and guided vehicle B, when one detects an obstacle on the track and performs emergency braking while running in parallel, the other receives the emergency braking signal and applies emergency braking to the other vehicle. It is equipped with a braking control transmitting/receiving device for emergency braking.

この装置は、誘導車A及び被誘導車Bに、非常停止用送
受信回路9及び10を設置し、一方の障害物検知に連動
する緊急ブレーキの動作信号を他方に送信して非常制動
を掛けるようになっている。
This device installs emergency stop transmitting/receiving circuits 9 and 10 on guided vehicle A and guided vehicle B, and transmits an emergency brake operation signal linked to obstacle detection from one to the other to apply emergency braking. It has become.

そして、このような非常制動方式は、誘導車A及び被誘
導車Bの暴走を防ぐために、通常電波が送信または受信
されなくなった場合の電波遮断状態において緊急ブレー
キが常に働くようにフェールセーフが構成され、その後
の電波の送信または受信を可能にするためには、ゼロイ
ンターロック機構を設け、前進・後進等の操作スイッチ
を中立状態にしたときのみ解除するようになっている。
In order to prevent the guided vehicle A and the guided vehicle B from running out of control, this emergency braking system has a fail-safe structure so that the emergency brake always operates in the state where radio waves are cut off when normal radio waves are no longer being transmitted or received. In order to enable subsequent transmission or reception of radio waves, a zero interlock mechanism is provided, which is released only when the forward/backward operation switch is placed in the neutral state.

したがって、上記の構成によれば、現在の新幹線網ある
いは複線、複々線などの少なくとも二本の軌道が左右に
近接して並行する軌道上の走行安全確認を行なうにおい
て、左右並行軌道上に一対の軌道モータカーからなる確
認車を並列走行させ、かつ一方を有人誘導車とし、他方
を無人被誘導車として相互に無線誘導制御関係をもたせ
て同期走行を可能にしたことから、両軌道上の障害物撤
去確認作業が効率良く行なうことができるとともに、作
業要員も省人化でき、特に無人被誘導車を作業点検側軌
道上を走行させれば、高速走行が可能になり、作業員の
安全性を高めることができ、これによって、作業性及び
安全性にすぐれた軌道上の走行安全確認を行なうことが
できるものである。
Therefore, according to the above configuration, when performing running safety confirmation on the current Shinkansen network or on tracks where at least two tracks, such as double track or double track, are closely parallel to each other on the left and right, a pair of tracks on the left and right parallel tracks can be checked. Obstacles on both tracks can be removed by running confirmation vehicles consisting of motor cars in parallel, with one being a manned guided vehicle and the other being an unmanned guided vehicle, and they have a radio guidance control relationship with each other to enable synchronized running. Confirmation work can be carried out efficiently, and the number of work personnel can be reduced.In particular, if an unmanned guided vehicle runs on the work inspection side track, it can run at high speed, increasing worker safety. This makes it possible to confirm running safety on the track with excellent workability and safety.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る左右並行軌道上の走行安全確認
方式の一実施例を示す説明図、第2図は有人誘導車及び
無人被誘導車相互の無線誘導制御系統を示す略示的説明
図、第3図から第5図A。 B、C,Dは有人誘導車及び無人被誘導車の相対位置検
知制御方式を示す略示的説明図である。 A・・・・・・誘導車、B・・・・・・被誘導車、1・
・・・・・走行制御送信部、2・・・・・・被走行制御
受信部、3・・・・・・速度同調制御発信部、4・・・
・・・被速度同調制御受信部、5.6・・・・・・相対
位置検出回路、7.7−1・・・・・・電子ガバナー、
8・・・・・・燃料制御レベル回路、9,10・・・・
・・非常停止制御回路、a−1・・・・・・充電投光器
、b−1・・・・・・受光器。
FIG. 1 is an explanatory diagram showing an embodiment of the running safety confirmation system on left and right parallel tracks according to the present invention, and FIG. 2 is a schematic diagram showing a mutual radio guidance control system between a manned guided vehicle and an unmanned guided vehicle. Figures 3 to 5A. B, C, and D are schematic explanatory diagrams showing a relative position detection control method for a manned guided vehicle and an unmanned guided vehicle. A: Guided vehicle, B: Guided vehicle, 1.
... Traveling control transmitting section, 2... Traveling control receiving section, 3... Speed synchronization control transmitting section, 4...
. . . Velocity synchronization control receiving unit, 5.6 . . . Relative position detection circuit, 7.7-1 . . . Electronic governor,
8... Fuel control level circuit, 9, 10...
... Emergency stop control circuit, a-1 ... Charging emitter, b-1 ... Light receiver.

Claims (1)

【特許請求の範囲】[Claims] 1 並行する軌道上の走行を安全確認するにあたり、該
左右並行軌道上に、一方を有人の誘導車としかつ他方を
無人の被誘導車として相互に車速同調方式による無線誘
導駆動制御関係をもたせた一対の軌道モーフカーを走行
させるとともに、該両車間に光電管による空間的な相対
位置ずれ制御機構を設けて並行走行を維持させてなるこ
とを特徴とする並行軌道上における鉄道車両の走行安全
確認方式。
1. In order to confirm the safety of traveling on parallel tracks, on the left and right parallel tracks, one side is a manned guided vehicle and the other is an unmanned guided vehicle, and a radio guidance drive control relationship is established using a mutual vehicle speed synchronization method. A system for confirming running safety of railway vehicles on parallel tracks, characterized by running a pair of track morph cars and maintaining parallel running by providing a spatial relative position shift control mechanism using photocells between the two cars.
JP54152833A 1979-11-26 1979-11-26 System for confirming running safety of railway vehicles on parallel tracks Expired JPS5930001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54152833A JPS5930001B2 (en) 1979-11-26 1979-11-26 System for confirming running safety of railway vehicles on parallel tracks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54152833A JPS5930001B2 (en) 1979-11-26 1979-11-26 System for confirming running safety of railway vehicles on parallel tracks

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP50064638A Division JPS51141104A (en) 1975-05-29 1975-05-29 Vehicle travel control system in railroad vehicle

Publications (2)

Publication Number Publication Date
JPS5574303A JPS5574303A (en) 1980-06-04
JPS5930001B2 true JPS5930001B2 (en) 1984-07-24

Family

ID=15549122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54152833A Expired JPS5930001B2 (en) 1979-11-26 1979-11-26 System for confirming running safety of railway vehicles on parallel tracks

Country Status (1)

Country Link
JP (1) JPS5930001B2 (en)

Also Published As

Publication number Publication date
JPS5574303A (en) 1980-06-04

Similar Documents

Publication Publication Date Title
US10259478B1 (en) Vehicle-vehicle communication based urban train control system
CN107709136B (en) Method and device for determining driving authorization for a rail vehicle
US3748466A (en) Vehicle control system
US4327415A (en) Transit vehicle handback control apparatus and method
KR102118672B1 (en) Train control method and train control system
JP6051092B2 (en) Train control system
KR20200015825A (en) Train control system
CN112406959A (en) Train operation control mode switching method suitable for flexible marshalling
CN1137993A (en) Method for establishing mutual contact within train and device for implementing the method
CN113650657A (en) Full-automatic train reverse running protection control method
JP3420840B2 (en) Automatic train connection / release control method and control device used therefor
US11458999B2 (en) On-board control apparatus and platform-door control system
WO2015019431A1 (en) Train control system and train provided with same
JP3342979B2 (en) Train security control system
JPS5930001B2 (en) System for confirming running safety of railway vehicles on parallel tracks
CN116654054A (en) Virtual marshalling full-state switching control system and method based on vehicle-to-vehicle communication
JPS5829686B2 (en) Travel control system for a pair of track motor cars running in parallel on parallel tracks
JP3498975B2 (en) Automatic departure train automatic stop device
KR19980083717A (en) Automatic train control device and method
JPH11129901A (en) Punning support device
US3328580A (en) Rapid transit speed control system
JPS5833761B2 (en) Railroad vehicle running control system on left and right parallel tracks
US4132379A (en) Method for improving the stopping accuracy at railway stations of track-bound vehicles
JP2020001544A (en) Track transport system and operation method for the same
JP3098861B2 (en) Operation controller for primary linear motor transportation system on the ground