JPS5826894A - Preparation of fine powder of cobalt oxalate - Google Patents

Preparation of fine powder of cobalt oxalate

Info

Publication number
JPS5826894A
JPS5826894A JP12644281A JP12644281A JPS5826894A JP S5826894 A JPS5826894 A JP S5826894A JP 12644281 A JP12644281 A JP 12644281A JP 12644281 A JP12644281 A JP 12644281A JP S5826894 A JPS5826894 A JP S5826894A
Authority
JP
Japan
Prior art keywords
particles
water
powder
particle
cobalt oxalate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12644281A
Other languages
Japanese (ja)
Inventor
Masao Kiyama
木山 雅雄
Toshio Takada
高田 利夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute for Production Development
Seisan Kaihatsu Kagaku Kenkyusho
Zaidan Hojin Seisan Kaihatsu Kenkyusho
Original Assignee
Research Institute for Production Development
Seisan Kaihatsu Kagaku Kenkyusho
Zaidan Hojin Seisan Kaihatsu Kenkyusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute for Production Development, Seisan Kaihatsu Kagaku Kenkyusho, Zaidan Hojin Seisan Kaihatsu Kenkyusho filed Critical Research Institute for Production Development
Priority to JP12644281A priority Critical patent/JPS5826894A/en
Publication of JPS5826894A publication Critical patent/JPS5826894A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prepare fine powder of cobalt oxalate having specific particle size and shape and useful as a raw material of pigment, etc., easily, economically, in high dispersibility, by mixing, crushing and reacting water-soluble hydrous Co (II) salt crystal, oxalic acid crystal, etc. with each other. CONSTITUTION:Fine powder of cobalt oxalate having essentially isotropic particle shape, a particle diameter of 0.5-2.0mum, and high dispersibility, is prepared by mixing and crushing a water-soluble hydrous Co (II) salt crystal (e.g. CoSO4. 7H2O) and crystalline oxalic acid (e.g. H2C2O4.2H2O) or crystalline oxalic acid salt, thereby reacting the crystals with each other. The mixing, crushing and reaction process can be carried out by using e.g. a ball mill. The water-soluble hydrous Co (II) salt crystal is preferably sulfate for industrial purpose in view of its handleability, cost, etc.

Description

【発明の詳細な説明】 本発明は、蓚酸コバルト微粉末の製造法に係るものであ
り、超硬合金用、顔料用、触媒用等の材料と[7て用い
られている酸化コバルト粒子粉末、コバルト金属粒子粉
末の出発原料として極めて優れた特性(特に分散性)を
備えている実質的に等方の粒子形状を呈し九粒径0・5
〜2・0μmの蓚酸コバルト微粒子粉末を容易且つ経済
的に得ることができる新規製造法を提供することを目的
とする本のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing fine cobalt oxalate powder, which can be used as a material for cemented carbide, pigments, catalysts, etc. [7] Cobalt oxide particle powder used in It has extremely excellent properties (especially dispersibility) as a starting material for cobalt metal particle powder.It exhibits a substantially isotropic particle shape and has a particle size of 0.5.
This book aims to provide a new manufacturing method that can easily and economically obtain cobalt oxalate fine particles of ~2.0 μm.

一般に、超硬合金を製造する場合には、WC粒子粉末や
C粒子粉末とコバルト金属粒子粉末とを混合し、加圧成
形后、加熱焼結させているが、この場合、目的物である
焼結体の性質を向上させるためには、加圧成形が容易で
あること及び加圧成形后の圧粉体の比重が高く空隙率が
少ないことが要求され、この要求を満たすには、使用す
るコバルト金属粒子粉末の粒子形状、大きさ、その分布
状態、分散性等の粉体特性が問題となる。
Generally, when manufacturing cemented carbide, WC particles or C particles are mixed with cobalt metal particles, and after being press-formed, they are heated and sintered. In order to improve the properties of the compact, it is required that pressure molding is easy and that the compact after pressure molding has a high specific gravity and a low porosity. Powder properties such as particle shape, size, distribution state, and dispersibility of cobalt metal particles pose problems.

また、顔料用、触媒用に用いられる酸化コバルト粒子粉
末、コバルト金属粒子粉末については、夫々釉の青着色
剤としての拳液との反応性、触媒能の観点から、使用す
る酸化コバルト粒子粉末、コバルト金属粒子粉末の粒子
形状、大きさ、その分布状態、分散性等の粉体特性が問
題となる。
In addition, regarding the cobalt oxide particle powder and cobalt metal particle powder used for pigments and catalysts, the cobalt oxide particle powder to be used, Powder properties such as particle shape, size, distribution state, and dispersibility of cobalt metal particles pose problems.

1掲いづれの用途において用いられる場合に本、特に分
散性の良好な酸化コバルト粒子粉末、コバルト金属粒子
粉末であることが必要である。
When used in any of the above applications, it is necessary that the cobalt oxide particles or cobalt metal particles have particularly good dispersibility.

ここで、「分散性の良好な粒子粉末」とは、水に分散1
−た場合にその沈降速廣が小さいものであることを云い
、か(る粒子粉末は、形状異方性が小さく凝集粒子の大
きさが粒径0・5〜2・0μmである微粒子からなる粉
末である。
Here, "particle powder with good dispersibility" means 1 dispersion in water.
- This means that the sedimentation rate is small when the particle size is 0.5 to 2.0 μm. It is a powder.

一方、周知の通り、酸化コバルト粒子粉末、コバルト金
属粒子粉末の粒子の大きさは、その生成過程における熱
分解温度や雰囲気によって左右されるものであり、超l
l細な粒子からなる酸化コバルト粒子粉末、コバルト金
属粒子粉末は、例えば熱分解温度の低いCo(11水酸
化物沈澱粒子粉末を出発原料として低温(約200〜7
00”0)で熱分解反応や還元反応を行わせることによ
って得られるとされている。
On the other hand, as is well known, the particle size of cobalt oxide particles and cobalt metal particles depends on the thermal decomposition temperature and atmosphere during the production process, and
Cobalt oxide particle powder and cobalt metal particle powder consisting of fine particles are produced, for example, by using Co(11 hydroxide precipitated particle powder with a low thermal decomposition temperature) as a starting material at a low temperature (approximately 200 to 7
It is said that it can be obtained by carrying out a thermal decomposition reaction or a reduction reaction at 00"0).

しかし、C:0(11水酸化物沈澱粒子粉末は薄片状粒
子であるため乾燥によって各薄片状粒子が結合1゜易い
ものであり、これが為に、GOf1+水酸化物沈澱粒子
粉末を出発原料と1.て低温で熱分解反応や還元反応を
行って得た酸化コバルト粒子粉末、コバルト金属粒子粉
末は、超微細な粒子より成立っているものではあるが、
各超微細粒子が著1−<強ぐ結合し合うことによ如巨大
な多結晶状粒子を形成し、結果的には分散性の悪い粒子
粉末となっている。
However, since the C:0(11 hydroxide precipitated particles powder is a flaky particle, each flaky particle is easily bonded by 1 degree by drying, and for this reason, it is difficult to use GOf1+hydroxide precipitated particle powder as a starting material. 1. Although the cobalt oxide particles and cobalt metal particles obtained by performing thermal decomposition reactions and reduction reactions at low temperatures are composed of ultrafine particles,
The ultrafine particles bond together extremely strongly to form gigantic polycrystalline particles, resulting in a powder with poor dispersibility.

本発明者は、C0(1水酸化物沈澱粒子粉末を出発原料
とする場合には、分散性の良好な酸化コバルト粒子粉末
、コバルト金属粒子粉末が得られ難いことに鑑み、蓚酸
コバルト粒子粉末に着目17た。
In view of the fact that it is difficult to obtain cobalt oxide particles and cobalt metal particles with good dispersibility when C0(1 hydroxide precipitated particles are used as a starting material), Attention 17.

蓚酸コバルト粒子粉末は、co(1)水酸化物粒子粉末
に比I7てその粒子径が著(−<大きく、またCo(1
)水酸化物粒子粉末に比してCO含有量も小さいもので
あり、これを低温熱分解、還元した場合に生じる酸化コ
バルト粒子粉末、コバルト金属粒子粉末は、各微細粒子
の結合が比較的弱く、出発物である蓚酸コバル) (L
 OC2042H20)粒子の形状を保持している。
The particle size of cobalt oxalate particles is significantly (-<larger than I7) compared to co(1) hydroxide particles, and Co(1)
) The CO content is smaller than that of hydroxide particles, and the cobalt oxide particles and cobalt metal particles produced when this is pyrolyzed and reduced at low temperatures have relatively weak bonds between the fine particles. , starting material cobal oxalate) (L
OC2042H20) The shape of the particles is maintained.

さて、Co(1)を含む水溶液に020:を導入すると
、両イオン濃度が溶解度積以上の場合に社、co (i
tが形状異方性の大きい蓚酸コバルト(COC2042
′ki20)粒子と1.て沈澱してくること。そして沈
澱剤と1゜てH2C204、(NH4)2C204又は
Na2C2O4水溶液をCo(11酸性水溶液に当量以
上添加1−だ場合!L/fi、沈澱剤の種類に応じて反
応後の正値が大きくなればなるtlど溶存co(11i
度が小はくなり生成する蓚酸コバルト(CoC2042
H20)粒子粉末の収率が大きくなることfd既によく
知られているところである。
Now, when 020: is introduced into an aqueous solution containing Co(1), if the concentrations of both ions are greater than or equal to the solubility product, then co(i
t is cobalt oxalate with large shape anisotropy (COC2042
'ki20) Particles and 1. and precipitate. Then, if H2C204, (NH4)2C204 or Na2C2O4 aqueous solution is added in an amount equivalent to or more to Co (11 acidic aqueous solution) at 1° with the precipitant, the positive value after the reaction will increase depending on the type of L/fi, precipitant. Dissolved co(11i)
Cobalt oxalate (CoC2042), which is produced as the degree of
H20) It is already well known that fd increases the yield of particulate powder.

本発明者は、C0C2042H20の沈澱生成反応につ
いて系統的な研究を進めた結果、沈澱剤の種類、沈澱反
応の湿度、用いるco(1)塩の種類及び濃度、両反応
液の混合方法、反応液の濃度等の沈澱条件によって生成
するC0C20,2H20沈澱粒子の形状、大きさ、そ
の分布状態が左右されることを確認し、多くの実験fr
−血ねた結果、水溶液反応によって形状異方性の小さい
2・0μm以下のC0C2042H20粒子粉末を得る
ことは極めて困難であることを知った。
As a result of conducting systematic research on the precipitation reaction of C0C2042H20, the present inventor has discovered the type of precipitant, the humidity of the precipitation reaction, the type and concentration of the co(1) salt used, the method of mixing both reaction solutions, and the reaction solution. It was confirmed that the shape, size, and distribution of the C0C20, 2H20 precipitated particles are affected by the precipitation conditions such as the concentration of
- As a result of the blood test, we learned that it is extremely difficult to obtain C0C2042H20 particles with a small shape anisotropy of 2.0 μm or less by an aqueous solution reaction.

そ1−で、本発明者は、コバルトイオン及び蓚酸イオン
の両イオンiffを上げるとC0C2042H20沈澱
粒子の生成率が大きくなると共にその形状異方性及び粒
径が小さくなる傾向があることを知り、両イオン濃度の
最塙限度と考えられる状態でのC0C2042H20生
成反応換言すれば固体状態でのC0C2042H20生
成反応を行わせれば形状異方性の少さい2・0μm以下
のC0C2042H20粒子粉末を高収率で得られるこ
とを見出したのである。
In part 1-, the present inventor found that when both ion iff of cobalt ion and oxalate ion were increased, the production rate of C0C2042H20 precipitated particles increased and the shape anisotropy and particle size tended to decrease. In other words, if the C0C2042H20 production reaction is carried out in a solid state in a state that is considered to be at the maximum concentration of both ions, C0C2042H20 particles with a size of 2.0 μm or less with little shape anisotropy can be produced in high yield. I found out what I could get.

例えば、本発明者は、CoBO47H20の固体結晶と
当量以上のH2C20,2H20の固体結晶とを、ボー
ルミル中で粉砕【−泥状化させて、混合粉砕反応させる
と実質的に等方の粒子形状を呈[7た粒径0・5〜2・
0μmのC0C2042H201&粒子が高収率で生成
するとbう割目すべき現象を発見している。
For example, the present inventor has found that by pulverizing a solid crystal of CoBO47H20 and an equivalent or more amount of solid crystals of H2C20, 2H20 in a ball mill and causing a mixing and pulverization reaction, a substantially isotropic particle shape is obtained. Particle size 0.5~2.
We have discovered a phenomenon that should be considered when 0 μm C0C2042H201 particles are produced in high yield.

本発明は上述の新知見に基づき完成1.たものである。The present invention was completed based on the above-mentioned new knowledge.1. It is something that

即ち、本発明は、水溶性含水Co(11塩結晶と蓚酸結
晶又は蓚酸塩結晶とを、混合粉砕反応させることに−よ
って実質的に等方の粒子形状を呈した粒径0・5〜2・
0μmの蓚酸コバルト微粒子を生成させることを特徴と
する分散性の良好な蓚酸コバルト微粉末の製造法である
That is, the present invention provides particles having a substantially isotropic particle shape with a particle size of 0.5 to 2.・
This is a method for producing fine cobalt oxalate powder with good dispersibility, which is characterized by producing fine cobalt oxalate particles of 0 μm.

次に1本発明方法の構成、効果を述べる。Next, the structure and effects of the method of the present invention will be described.

先づ、本発明方法における混合粉砕反応について説明す
る。
First, the mixing and grinding reaction in the method of the present invention will be explained.

CoC20421(20の生成には水の存在が当然不可
欠であるが、水溶性含水Co(1)塩結晶、例えばCo
EK)、 7 H20結晶を加熱すると含水分の少ない
塩、例えばGoco4H20に変化すると同時、に一部
が溶解する。従って水溶性含水Co(1)塩結晶、例え
ばGoco4yH20と蓚酸結晶(H2C2042H2
0)との両固体同志を混合粉砕すると摩擦熱によって自
らCoco4水溶液が逐次生じるので、水を添加しなく
てもC0C2042H20生成度応が進行する。
Although the presence of water is naturally essential for the production of CoC20421 (20), water-soluble hydrated Co(1) salt crystals, such as Co
EK), 7 When H20 crystals are heated, they change to salts with low water content, such as Goco4H20, and at the same time, a portion of them dissolves. Therefore, water-soluble hydrated Co(1) salt crystals, such as Goco4yH20 and oxalic acid crystals (H2C2042H2
When both solids with 0) are mixed and pulverized, a Coco4 aqueous solution is sequentially generated by frictional heat, so the C0C2042H20 production rate reaction progresses even without adding water.

混合粉砕反応は、周知の混合粉砕器、例えばボールミル
を利用して容易に行なうことができる。
The mixing and pulverization reaction can be easily carried out using a well-known mixing and pulverizer, such as a ball mill.

尚、混合粉砕時の摩擦熱によるC0C2042H20生
成時の温度変化をできるたけ小さくすることが再現性の
点で好ましく、この為に反応器を外側より15〜20℃
程度に水冷することが有効である。
In addition, it is preferable in terms of reproducibility to minimize the temperature change during C0C2042H20 production due to frictional heat during mixing and pulverization, and for this purpose, the reactor is heated at 15 to 20 °C from the outside.
Water cooling to a certain degree is effective.

混合粉砕反応が終了すると反応器内には白色泥状物が形
成される。この泥状物を常法によって炉別、水洗、乾燥
−tレバi 的トf ;!:* CoC,042H20
11a子粉末が得られる。
When the mixing and crushing reaction is completed, a white slurry is formed in the reactor. This sludge is divided into ovens, washed with water, and dried using conventional methods. :*CoC,042H20
11a powder is obtained.

また、本発明者は、水溶性含水c cci+塩結晶と蓚
酸結晶又は蓚酸塩結晶との両固体同志を混合粉砕するに
当って極小量の水、詳イすれば、結晶の一部が溶解され
る量の水を添加して置くと反応が促進されることを見出
【−でいる。尚、この場合には無添加の場合と比較して
生成する粒子の大きさが僅かに大きくなる。
In addition, the present inventor has discovered that when mixing and pulverizing both solids of water-soluble hydrated c cci + salt crystals and oxalic acid crystals or oxalate crystals, an extremely small amount of water, more specifically, a part of the crystals is dissolved. It was discovered that the reaction was accelerated by adding a certain amount of water. In this case, the size of the particles produced will be slightly larger than in the case of no additive.

水の添加は全固体分に対17て15重量部以下に止める
べきであり、これ以上の添加は沈澱の生成率の減少及び
生成粉末の平均粒径の増加となるので避けるべきである
The addition of water should be limited to 15 parts by weight or less based on the total solid content, and addition of more than this should be avoided as it will reduce the rate of precipitation and increase the average particle size of the resulting powder.

次に、本発明方法における水溶性含水Co(1)塩結晶
と蓚酸結晶又は蓚酸塩結晶との使用割合は、水の添加の
有無にか覧わらず、C20:/Co(I)≧1であり、
特に1・5≧C2o:≧1・1が経済的である。
Next, in the method of the present invention, the ratio of water-soluble hydrated Co(1) salt crystals to oxalic acid crystals or oxalate crystals is such that C20:/Co(I)≧1, regardless of whether water is added or not. can be,
In particular, 1.5≧C2o:≧1.1 is economical.

水溶性含水com塩結& トLテHCQ8047H20
(7)如き硫酸塩の他に硝酸塩や塩化物を用いることも
可能であり、これは前述の反応機栃から1.で当然であ
る。しかし工業的実施に際しては、その取扱い、価格等
からして硫酸塩を選択することが好ましい。
Water-soluble water-containing com salt & torpedo HCQ8047H20
In addition to sulfates such as (7), it is also possible to use nitrates and chlorides, which can be obtained from the reaction method described in 1. Of course. However, in industrial implementation, it is preferable to select a sulfate from the viewpoint of handling, price, etc.

次に、本発明方法を実施例によって説明する。Next, the method of the present invention will be explained using examples.

5j!施例 1゜ 超硬ポール(直径415ケ、直径2−3)ケ、直径1−
5 m 50ケ)と共に、C0E3047H20結晶粉
末1・34幻とH2C2042H20結晶粉末0・72
kgとを内部をポリエチレン樹脂で被覆したステンレス
製円筒容器に投入し、該容器を約15℃に水冷した状態
でν時間回転させて混合粉砕を行った。回転を停止させ
ると容器内には白色泥状物が形成されていた。この泥状
物を炉別、水洗後、アセトン処理を施した後、減圧下約
50”Cで乾燥して粒子粉末0・76#を得た。
5j! Example 1゜Carbide pole (diameter 415 pieces, diameter 2-3 pieces), diameter 1-
5 m 50 pieces), along with C0E3047H20 crystal powder 1.34 phantom and H2C2042H20 crystal powder 0.72
kg were put into a stainless steel cylindrical container whose inside was coated with polyethylene resin, and the container was water-cooled to about 15° C. and rotated for ν hours to perform mixing and pulverization. When the rotation was stopped, a white sludge had formed inside the container. This slurry was separated into a furnace, washed with water, treated with acetone, and then dried at about 50"C under reduced pressure to obtain powder particles of 0.76#.

ここに得た乾燥粒子粉末は、顯徽鏡観察によればはソ等
方の粒子形状を呈【、た粒径0・5〜1・OpmのC0
C2042H2CJWk粒子から成立っており、各粒子
を立方状と1.たときのB11fT比表面積値からの算
出平均粒径は0・65μmであって、指で簡単にほぐす
ことのできる分散性の良好な粉末であった。
The dry particle powder obtained here had a particle shape of isotropic according to a mirror observation, and had a particle size of 0.5 to 1.
It is composed of C2042H2CJWk particles, and each particle has a cubic shape and 1. The average particle diameter calculated from the B11fT specific surface area value was 0.65 μm, and the powder had good dispersibility and could be easily loosened with fingers.

実施例 2゜ 実施例1.と同じ容器に、実施例1.と同じ超硬ボール
と共に、Co5047H20結晶粉末2−10&9と(
MEI4)2C204H20結晶粉末1・09#と水0
・354とを投入し、該容器を約加℃に水冷した状態で
8時間回転させて混合粉砕を行った。回転を停止させる
と容器内には白色泥状物が形成されていた。この泥状物
を実施例1.と同様に処理して粒子粉末1・27#を得
た。
Example 2゜Example 1. In the same container as Example 1. Co5047H20 crystal powder 2-10&9 and (
MEI4) 2C204H20 crystal powder 1.09# and water 0
・354 was added, and the container was rotated for 8 hours while water-cooled to approximately 0.degree. C. to perform mixing and pulverization. When the rotation was stopped, a white sludge had formed inside the container. This slurry was prepared in Example 1. Particle powder 1.27# was obtained by processing in the same manner as above.

と−に得た乾燥粒子粉末は、顕微鏡観察によれば、はy
等方的な粒子形状を呈1.た粒径0・8〜2・口、gm
のC0C2042H20微粒子から成立っており、BE
T比表面積値からの推定平均粒径は1・2μmであって
、指で簡単にほぐすことのできる分散性の良好な粉末で
あった。
According to microscopic observation, the dry particle powder obtained in and - is y
Exhibits an isotropic particle shape1. Particle size 0.8~2.gm
It is composed of C0C2042H20 fine particles, and BE
The average particle diameter estimated from the T specific surface area value was 1.2 μm, and the powder had good dispersibility and could be easily loosened with fingers.

以上説明り、た通りの本発明方法によれば、形状異方性
が小さく、換言すれば、実質的に等方の粒子形状を呈1
7た粒径0・5〜2・0μmの蓚酸コバルト微粒子から
なる分散性の良好な粉末を容易に得ることができる。そ
して、この蓚酸コバルト微粉末を常法によって低温で熱
分解や還元すれば、出発物粒子の形状を保持【、九粒子
からなる、評言すれば出発物粒子の外形を有した形骸粒
子からなる酸化コバルト粒子粉末、コバルト金属粒子粉
末が得られ、これ等の粒子粉末もまた分散性の良好なも
のであるから超硬合金用、顔料用、触媒用等の材料とし
て好適な本のとなるのである。
According to the method of the present invention as explained above, the shape anisotropy is small, in other words, the particle shape is substantially isotropic.
A well-dispersible powder consisting of cobalt oxalate fine particles having a particle size of 0.5 to 2.0 μm can be easily obtained. If this cobalt oxalate fine powder is thermally decomposed or reduced at low temperature using a conventional method, the shape of the starting particles is retained [,9 particles, in other words, the oxidized particles are composed of skeleton particles having the external shape of the starting particles. Cobalt particle powder and cobalt metal particle powder are obtained, and since these particle powders also have good dispersibility, they are suitable as materials for cemented carbide, pigments, catalysts, etc. .

尚、C0C2042H20の熱分解温度は雰囲気によっ
て左右され、空気中では170℃で脱水反応が始まり2
50℃で酸化物への分解が始まるが、N2雰囲気中では
320℃で酸化物及び金属への分解が始まる。この場合
、熱分解によってGo及びC02が生じ、これ等の反応
系外への除去条件によっては、熱分解開始温度や分解速
度が相違l−でくると共に熱分解物の組成も異ってくる
The thermal decomposition temperature of C0C2042H20 depends on the atmosphere, and in air the dehydration reaction starts at 170°C.
Decomposition into oxides begins at 50°C, but decomposition into oxides and metals begins at 320°C in an N2 atmosphere. In this case, Go and C02 are generated by thermal decomposition, and depending on the conditions for removing these from the reaction system, the thermal decomposition start temperature and decomposition rate will vary, and the composition of the thermally decomposed product will also vary.

また、C0C2042H20の熱分解物は出発物の外形
を有した形骸粒子であり、熱分解温度や雰囲気によって
形骸粒子を構成する結晶子の大きさや焼結度合が左右さ
れることによって形骸粒子のくづれ易さが異なる。
In addition, the thermal decomposition product of C0C2042H20 is a skeleton particle that has the external shape of the starting material, and the size and degree of sintering of the crystallites that make up the skeleton particle are influenced by the thermal decomposition temperature and atmosphere, so that the collapse of the skeleton particle is The ease is different.

従って、本発明方法により得られる蓚酸コバルト微粒子
粉末を出発原料として酸化コバルト粒子粉末、コバルト
金属粒子粉末を製造する場合には、熱分解温度、雰囲気
等に配慮[、なければならないことは当然である・  
 特許出願人 (財)生産開発科学研究所
Therefore, when producing cobalt oxide particles or cobalt metal particles using the cobalt oxalate fine particles obtained by the method of the present invention as a starting material, it is natural that consideration must be given to the thermal decomposition temperature, atmosphere, etc.・
Patent applicant: Institute of Production Development Science

Claims (1)

【特許請求の範囲】 1、水溶性含水Co(1)塩結晶と蓚酸結晶又Fi蓚酸
塩結晶とを、混合粉砕反応させることによって実質的に
等方の粒子形状を呈した粒径0・5〜2・0μmの蓚酸
コバルト徽粒子を生成させることを特徴とする分散性の
良好な蓚酸コバルト微粉末の製造法。 2 水溶性含水CC(11塩結晶と蓚酸結晶又は蓚酸塩
結晶とを、極小量の水の存在下において、混合粉砕反応
させることによって実質的に等方の粒子形状を呈り、た
粒径0・5〜2・0μmの蓚酸コバルト微粒子を生成さ
せることを特徴とする分散性の良好な蓚酸コバルト微粉
末の製造法。
[Claims] 1. Particle size 0.5 which exhibits a substantially isotropic particle shape by mixing and pulverizing a water-soluble hydrated Co(1) salt crystal and an oxalic acid crystal or a Fi oxalate crystal. A method for producing fine cobalt oxalate powder with good dispersibility, characterized by producing cobalt oxalate particles of ~2.0 μm. 2 Water-soluble hydrated CC (11 salt crystals and oxalic acid crystals or oxalate crystals are mixed and pulverized in the presence of an extremely small amount of water to form a substantially isotropic particle shape, with a particle size of 0 - A method for producing fine cobalt oxalate powder with good dispersibility, which is characterized by producing fine cobalt oxalate particles of 5 to 2.0 μm.
JP12644281A 1981-08-11 1981-08-11 Preparation of fine powder of cobalt oxalate Pending JPS5826894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12644281A JPS5826894A (en) 1981-08-11 1981-08-11 Preparation of fine powder of cobalt oxalate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12644281A JPS5826894A (en) 1981-08-11 1981-08-11 Preparation of fine powder of cobalt oxalate

Publications (1)

Publication Number Publication Date
JPS5826894A true JPS5826894A (en) 1983-02-17

Family

ID=14935303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12644281A Pending JPS5826894A (en) 1981-08-11 1981-08-11 Preparation of fine powder of cobalt oxalate

Country Status (1)

Country Link
JP (1) JPS5826894A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100790429B1 (en) 2006-09-11 2008-01-07 주식회사 코바텍 Preparing method for cobalt oxalate, and cobalt oxalate and cobalt powder formed by preparing method for cobalt oxalate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100790429B1 (en) 2006-09-11 2008-01-07 주식회사 코바텍 Preparing method for cobalt oxalate, and cobalt oxalate and cobalt powder formed by preparing method for cobalt oxalate

Similar Documents

Publication Publication Date Title
CA2478698C (en) Process for making nano-sized and sub-micron-sized lithium-transition metal oxides
KR100427005B1 (en) Spheroidally Agglomerated Basic Cobalt(II) Carbonate and Spheroidally Agglomerated Cobalt(II) Hydroxide, Process for Their Production and Their Use
CN103571334B (en) Cerium oxide polishing powder and preparation method thereof
JP2002255515A (en) Production method for metal oxide fine particle
JP3961826B2 (en) Method for producing high density and large particle size cobalt hydroxide or cobalt mixed hydroxide and product produced by this method
Mahmoud et al. Physicochemical properties of pseudobrookite Fe2TiO5 synthesized from ilmenite ore by co-precipitation route
JPH0457613B2 (en)
JP3113271B2 (en) Method for producing precursor powder used in production of varistor and precursor powder produced by this method
JPH10324523A (en) Production of cobalt oxide fine particulate powder
Zandevakili et al. Synthesis of lithium ion sieve nanoparticles and optimizing uptake capacity by taguchi method
JPH09183620A (en) Bismuth oxycarbonate powder and its production
JPS5826894A (en) Preparation of fine powder of cobalt oxalate
US6203774B1 (en) Method for producing iron oxide powder using a particle size and shape controller
JP4841421B2 (en) Spherical peroxotitanium hydrate and method for producing spherical titanium oxide
JP3102789B1 (en) Plate-like potassium octitanate and method for producing the same
JPH03141115A (en) Production of fine yttrium oxide powder
JP2834199B2 (en) Method for producing ultrafine tungsten particles
JPS60176968A (en) Manufacture of sno2-zro2-tio2 dielectric
JPS63319216A (en) Production of cobalt blue pigment
JP2011132107A (en) Method of manufacturing cerium oxide fine particle
JPS58213633A (en) Production of aluminum oxide
JPS60215527A (en) Production of zirconium oxide fine powder
JPS6235970B2 (en)
JPS61122121A (en) Production of rare earth metal oxide powder
JPH0742109B2 (en) Method for producing indium oxide powder