JPS60176968A - Manufacture of sno2-zro2-tio2 dielectric - Google Patents

Manufacture of sno2-zro2-tio2 dielectric

Info

Publication number
JPS60176968A
JPS60176968A JP59031499A JP3149984A JPS60176968A JP S60176968 A JPS60176968 A JP S60176968A JP 59031499 A JP59031499 A JP 59031499A JP 3149984 A JP3149984 A JP 3149984A JP S60176968 A JPS60176968 A JP S60176968A
Authority
JP
Japan
Prior art keywords
mol
powder
aqueous solution
manganese
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59031499A
Other languages
Japanese (ja)
Inventor
野村 昭一郎
原田 芳次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP59031499A priority Critical patent/JPS60176968A/en
Publication of JPS60176968A publication Critical patent/JPS60176968A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はマイクロ波フィルターに用いられる誘電体磁器
の製造法に関し、詳しくは3n、Zr、Tiのそれぞれ
の塩の混合水溶液とアルカリ水溶液を混合して共沈物を
得、さらに所望によりマンガン化合物を添加し、これを
洗浄、乾燥、焼成するSnO2Zr02−TfO2系誘
電体磁器の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing dielectric porcelain used in microwave filters, and more specifically, a coprecipitate is obtained by mixing a mixed aqueous solution of 3n, Zr, and Ti salts and an alkali aqueous solution. Furthermore, the present invention relates to a method for producing SnO2Zr02-TfO2-based dielectric porcelain, in which a manganese compound is added if desired, and this is washed, dried, and fired.

近年、iηi星放送や自動車電話などマイクロ波の利用
が盛んになってきている。マイクロ波領域においては、
誘電体磁器が誘電体共振器、誘電体基板、マイクロ波相
チツプコンデンリ−として活用されCいる。通信衛星用
は高周波のIOG+−17以」−が使われ、民生用にL
Jt小型で安価、()かも温度安定1ノ1の1!1<、
高誘雷室で、誘電損失の少ない、すなわちQ l1rf
の大きいフィルターが要求されるように4丁つ1.:。
In recent years, the use of microwaves in iηi star broadcasting and car telephones has become popular. In the microwave region,
Dielectric ceramics are utilized as dielectric resonators, dielectric substrates, and microwave phase chip capacitors. High-frequency IOG+-17 or higher is used for communication satellites, and L for civilian use.
Jt is small, inexpensive, and has the highest temperature stability (1!1<,
High lightning dielectric chamber with low dielectric loss, i.e. Q l1rf
Four large filters are required 1. :.

マイク[]波フィルターの組成や絹合わせに関しては数
多く提案されており、このような用途に適したIJ l
”lどして、ずでにTlO2=7rO2−8nO2系の
組成物が1lii案されているが、結晶中への不純物の
混入等に起因して高いQIll′Iが1;7られないと
いう問題がある。T i O21r O2−8nO2系
絹成物に高いQ値を(qfすする一つの方法が特開昭5
8−48808号に開示されている。ここにおいでは、
99.9%以上の純度をもつ、T : 02、zro7
.3n○2を原料どじ、ぞのシ1造方法は、例えば上記
の所定量の酸化物原r3+を16時時間式混合し、次い
で脱水乾燥し、2,5 ton/Cnて成型し、+50
0へ、1600°に r 4時間焼結するもの−Cある
。この方法にあっては、湿式わ)砕混合であるため、例
えばボールミルを用いる場合には、ボールのアルミノV
)シリカか混入りる等の不純物の混入の恐れかあるのみ
ならず、粉砕、混合t、’二16時間もか(することは
経済的で4Tい。
Many proposals have been made regarding the composition and silk combination of microphone [] wave filters, and IJl is suitable for such applications.
``Also, a composition based on TlO2 = 7rO2-8nO2 has been proposed, but there is a problem that a high QIll'I cannot be achieved due to the incorporation of impurities into the crystal. One method of imparting a high Q value (qf) to T i O21r O2-8nO2-based silk composition was described in JP-A-5
No. 8-48808. Come here,
T: 02, zro7 with purity of 99.9% or more
.. 3n○2 is used as a raw material, and the manufacturing method is, for example, by mixing a predetermined amount of the oxide raw material r3+ mentioned above for 16 hours, then dehydrating and drying it, molding it at 2.5 tons/Cn, and forming it to +50
0 to 1600° for 4 hours. Since this method involves wet grinding and mixing, for example, when using a ball mill, the alumina V of the ball
) Not only is there a risk of contamination with impurities such as silica, but it also takes 16 hours to grind and mix (it is economical and costs 4 hours).

本発明は上記従来の問題点に化み、Q値が高く、しかも
簡便かつ安価な誘電体磁器の製造法を捉供することを目
的とし、特にマイクロ波フィルターに使用される。
The present invention addresses the above-mentioned conventional problems and aims to provide a simple and inexpensive manufacturing method for dielectric ceramics having a high Q value, and is particularly applicable to microwave filters.

通常、誘電体磁器を′l#造するには単一酸化物粉体を
混合し、これを成型し高温同相反応で所定の化合物を得
、再び粉砕することによって原料粉体を作っている。し
かしながら、この方法は上記のことぎ欠点を石する。本
発明者等は誘電体磁器の製造法に関し検討の結果、21
1M等の金属塩水溶液とアルカリ水溶液とをもって共沈
澱物を得る沈澱条f9で所定化合物の水酸化物を合成し
、次いで低ン昌で仮焼づることによって微粒子73日ら
成る集合体酸化物粉体−を作り、これに所望により微幇
のマンガン化合物を添加し、成型、焼結づることによっ
て、」−記目的を達成することを児出し本発明に至った
Normally, in order to produce dielectric ceramics, a raw material powder is produced by mixing single oxide powders, molding the mixture, obtaining a predetermined compound through a high-temperature in-phase reaction, and pulverizing it again. However, this method suffers from the drawbacks mentioned above. As a result of studies regarding the manufacturing method of dielectric porcelain, the present inventors found that 21
A hydroxide of a predetermined compound is synthesized in precipitation step f9 to obtain a coprecipitate with a 1M metal salt aqueous solution and an alkaline aqueous solution, and then calcined in a low oven to produce an aggregate oxide powder consisting of fine particles of 73 days. The inventors have developed the present invention to achieve the object described above by making a body, adding a small amount of manganese compound thereto as desired, molding it, and sintering it.

づ4Tわち本発明は、3n、 Zr、”riのそれぞれ
の塔の混合水溶液とアルカリ水溶液を混合して共沈物を
得、これを洗浄、乾燥、焼成することを特徴どづる5n
O2−Zr02−T ! 02系誘電イ本膏に器の製j
μγ人にある。
4T That is, the present invention is characterized in that a coprecipitate is obtained by mixing the mixed aqueous solution of each tower of 3n, Zr, and "ri" and an aqueous alkali solution, and this is washed, dried, and calcined.
O2-Zr02-T! 02 series dielectric gypsum and vessel manufacturing j
It is in μγ people.

本発明においては、原料としてスズ、ジルコニウムおよ
びチタンのイれぞれのJnの混合水溶液を用いる。スズ
塩としては塩化物が一般的に使用される。シルニ]ニウ
ム堪は塩化物、Δキシ塩化物が一般的C゛ある。また、
チタン塩としては3価のチタンIA+f化物が弱酸性水
溶液では加水分解ゼず好ましい。また、4111Iiの
チタン塩化物や4価のチタン1iXt <ヒ物も使用可
能である。
In the present invention, a mixed aqueous solution of each of tin, zirconium, and titanium is used as a raw material. Chlorides are commonly used as tin salts. Commonly used chlorides and Δxychlorides of sylnitium are C. Also,
As the titanium salt, trivalent titanium IA+f is preferred because it does not undergo hydrolysis in a weakly acidic aqueous solution. Further, titanium chloride of 4111Ii and tetravalent titanium 1iXt<H can also be used.

本発明においては、これらスス、ジルコニウム、j5よ
びブタンの塩を純水に溶’Ml ?I’ 7.) 。
In the present invention, salts of soot, zirconium, j5, and butane are dissolved in pure water. I'7. ).

これらの金属塩水溶液にお(プる各金属の混合割合は、
(ZrO2)x、(SnO2)v、(Ti02)zの、
X、Y、Zが以下の範囲となるように混合J−ることか
必要である。
The mixing ratio of each metal in these metal salt aqueous solutions is
(ZrO2)x, (SnO2)v, (Ti02)z,
It is necessary to mix J- so that X, Y, and Z are within the following ranges.

×−o、eo〜0.85モル、 Y −= 0.15へ・0.40モル、z= 0.80
〜1.10モル、 ×−トY1−ン=2、 本発明にd5いては、これらのスズ塩、ジル−コニウム
塩A3 J、ひチタン塩の混合水溶液をアル7Jり水溶
液と混合して共沈物を得る。アルカリ水溶液どしては、
アルカリ金属が最終焼結体に残ると著しく性能を落4の
で、アンモニア水または重炭酸アンモニ)′水等を用い
ることが望Jニジい。
×-o, eo ~ 0.85 mol, Y − = 0.15 to 0.40 mol, z = 0.80
~1.10 mol, x-ton Y1-tone = 2, In the present invention, a mixed aqueous solution of these tin salts, zirconium salt A3J, and titanium salt is mixed with an aqueous solution of Al7J to co-produce. Get a precipitate. For alkaline aqueous solutions,
If the alkali metal remains in the final sintered body, the performance will be significantly degraded, so it is preferable to use aqueous ammonia or ammonium bicarbonate.

このようなスズ塩等の金属塩水溶液とアルカリ水溶液の
混合法は、アンモニア水等のアルカリ水溶液をビーカー
中で加温し、攪拌しながら混合金属塩水溶液を滴下りる
In this method of mixing an aqueous solution of a metal salt such as a tin salt with an aqueous alkali solution, an aqueous alkali solution such as aqueous ammonia is heated in a beaker, and the aqueous mixed metal salt solution is dropped into the solution while stirring.

本発明にJ3いて、金属塩水溶液とアルカリ水溶液の)
17合方法は、−1−記のことくアルjJり水溶液に金
属塩水溶液を滴下する方法を用いるのが通常であるが、
逆に金属jn水溶液中にアルカリ水溶液を注加する方法
を用いてもよい。
J3 in the present invention, metal salt aqueous solution and alkali aqueous solution)
The 17-method is usually a method in which a metal salt aqueous solution is dropped into an aqueous solution of Al as described in -1-.
Conversely, a method of pouring an alkaline aqueous solution into a metal jn aqueous solution may be used.

金属塩水溶液どアルカリ水溶液の混合後、所望によって
背部して熟成を行ない、濾過効率を向上させる。この熟
成条件は適宜選択することができる。
After mixing the metal salt aqueous solution and the alkaline aqueous solution, if desired, the mixture is aged in the back to improve filtration efficiency. These ripening conditions can be selected as appropriate.

この共沈物が沈澱している水溶液は濾過され、得られた
ケーキに所定量の温水を加えミキサーでスラリー化し、
攪拌した後、再び濾過を行なう。
The aqueous solution in which this coprecipitate is precipitated is filtered, and a predetermined amount of hot water is added to the resulting cake to form a slurry in a mixer.
After stirring, filter again.

この攪拌条件も適宜選択することができる。This stirring condition can also be selected as appropriate.

本発明においては、最終濾過されたケーキは次いで乾燥
される。この乾燥は、ケーキを再びミキ4ノーで固形分
を10へ・15重口%含有するスラリーとし、スプレー
ドライヤーによって粉霧乾燥し、球状粉体とする方法が
ある。
In the present invention, the final filter cake is then dried. For this drying, there is a method in which the cake is made into a slurry containing 10% to 15% by weight of solids again in a mixer 4-no, and the slurry is dried using a spray dryer to form a spherical powder.

また、他の方法として、濾過終了後のケーキをそのまま
バット上にのせ熱用乾燥器で乾燥した後、粉砕機で平均
30u8!度に粉砕し、粉体を作る方法を用いてもよい
。この場合の温度は 100〜120°Cの範囲で行な
われる。
Another method is to place the cake after filtration on a vat and dry it in a heat drier, and then crush it with an average of 30 u8! A method may also be used in which the material is pulverized at once to form a powder. The temperature in this case is 100 to 120°C.

さらに、微粒子粉体を得るためアセトンまたはアルコー
ルを用いて乾燥を行なってもよい。ケーキをそのまま乾
燥づ゛ると、乾燥過程において水の凝集力で凝集し、乾
燥物は微粉凝集体となって得られる。この凝集を防ぐた
め、沈澱終了ケーキをアセトンまたはアルコール中に分
散し濾過する。
Furthermore, drying may be performed using acetone or alcohol to obtain a fine powder. If the cake is dried as it is, it will aggregate due to the cohesive force of water during the drying process, and the dried product will be obtained as fine powder aggregates. To prevent this agglomeration, the precipitated cake is dispersed in acetone or alcohol and filtered.

濾過ケーキを再びアセ1〜ンまたはアルコールに分散し
同様な操作を数回繰り返し、最後はロータリーエバポレ
ーター中で減圧加熱し、アセトンまたはアルコールを除
いて微粒粉体を得る。
The filter cake is again dispersed in acetone or alcohol and the same operation is repeated several times, and finally it is heated under reduced pressure in a rotary evaporator to remove acetone or alcohol and obtain a fine powder.

本発明においては、次にこの乾燥粉体を仮焼する。乾燥
粉体は600〜800℃の範囲で、空気中で仮焼する。
In the present invention, this dry powder is then calcined. The dry powder is calcined in air at a temperature in the range of 600 to 800°C.

本発明においては、所望によりマンガン化合物を添加す
ることによって、Q値をさらに高くすると共に焼結性を
高めることができる。微開のマンガンを均一に付着させ
るには塩の水溶液を用いるのが良く、添加するマンガン
塩としでは硝酸ンンガン、ギー酸マンガン、酢酸マンガ
ン等の低温分解づる塩が望ましい。硫酸マンガンも使用
できるが分解温度は1000℃近い。
In the present invention, by adding a manganese compound as desired, the Q value can be further increased and the sinterability can be improved. In order to uniformly adhere finely divided manganese, it is preferable to use an aqueous salt solution, and the manganese salt to be added is preferably a salt decomposed at a low temperature such as manganese nitrate, manganese formate, or manganese acetate. Manganese sulfate can also be used, but its decomposition temperature is close to 1000°C.

このマンガン1論は、乾燥をスル−ドライr−で行なう
場合には、スプレードライを行なう前のスラリー中に所
定間を溶解添加する方法が採用される。粉砕粉末を用い
る場合には、濾過後のケーキをスラリー化し、これに添
加する方法が採用される。あるいは、スズ塩、ジルコニ
ウム塩、チタン塩の水溶液とアルカリ水溶液から共沈物
を生成させる際に、所定間のマンガンjB水溶液を同時
に加える方法でも本発明の目的は達成し得る。また、乾
燥粉体を所定h)のマンガン塩溶液中に含浸乾燥させた
後、仮焼してもよい。仮焼接の粉体にマンカン塩添加す
る場合には、仮焼粉体を所定間のマンガン塩溶液に含浸
、乾燥し、300〜1ooo℃の温度で塩を分解すやか
、分解せずそのまま焼結用原料粉末とする。あるいは、
仮焼粉体のマンガン溶液混合物を50〜60℃に加温し
、これにアンモニア水を加えρF19以上とし攪拌する
とマンガンは空気によって酸化され酸化物に変換する。
According to this first theory, when drying is carried out by through-drying, a method is adopted in which manganese is dissolved and added to the slurry for a predetermined period of time before spray drying. When using pulverized powder, a method is adopted in which the cake after filtration is made into a slurry and the slurry is added thereto. Alternatively, the object of the present invention can be achieved by a method of simultaneously adding a predetermined amount of manganese jB aqueous solution when producing a coprecipitate from an aqueous solution of a tin salt, zirconium salt, or titanium salt and an aqueous alkaline solution. Alternatively, the dry powder may be impregnated and dried in a manganese salt solution of a predetermined value h), and then calcined. When adding manganese salt to the calcined powder, the calcined powder is impregnated with a manganese salt solution for a specified period of time, dried, and the salt is decomposed at a temperature of 300 to 100°C, or it can be left as it is without being decomposed. Use as raw material powder for sintering. or,
When a manganese solution mixture of calcined powder is heated to 50 to 60°C and aqueous ammonia is added thereto to raise the temperature to ρF19 or higher and stirred, manganese is oxidized by air and converted into an oxide.

このs苔は濾過し乾燥すれば焼結用原料となる。If this moss is filtered and dried, it becomes a raw material for sintering.

このマンガンの添加mは、(Zrx・5ny)T120
41モルに対し、マンガンとして0,01〜1.0モル
%添加することが好ましい。
This manganese addition m is (Zrx・5ny)T120
It is preferable to add 0.01 to 1.0 mol % of manganese to 41 mol.

本発明においては、この仮焼粉体に1.0〜3.0重量
1%の滑剤を加えて、十分混合する。
In the present invention, a lubricant of 1.0 to 3.0% by weight is added to this calcined powder and thoroughly mixed.

この混合物を成型した後、焼結する。成型および焼結条
件としては、例えば仮焼粉体と滑剤を混合して 1〜4
ton/cdの圧力で成型する。次に、焼結炉を用い1
200〜1600’Cの範囲で焼結する。この焼結に際
しては、特別にガスは送入しなくともよい。
After shaping this mixture, it is sintered. As for the molding and sintering conditions, for example, mixing the calcined powder and a lubricant,
Molding is performed at a pressure of ton/cd. Next, using a sintering furnace,
Sinter in the range of 200-1600'C. During this sintering, there is no need to specially introduce gas.

このように焼成して得られた誘電体磁器の5n02 、
Z r 02 、T i 02 (1)It4.t、コ
(7) xi N 体m器の組成を1式のごとく示した
ときに、(Zrx ・5ny)TizO4 上式中、 x = 0.60〜0.85 モル、 y = 0.15〜0.40 七k、 z = 0.80〜1.10モル、 x 十y +z =2、 の範囲にあり、最適比は、x=0.8、v=o、2、z
=1.0である。
Dielectric porcelain 5n02 obtained by firing in this way,
Z r 02 , T i 02 (1) It4. t, co(7) xi N When the composition of the m-body is shown as equation 1, (Zrx ・5ny)TizO4 In the above formula, x = 0.60 to 0.85 mol, y = 0.15 to 0.40 7k, z = 0.80-1.10 mol, x 10y + z = 2, and the optimal ratio is x = 0.8, v = o, 2, z
=1.0.

この誘電体磁器は所望形状に加工され、マイクロ波フィ
ルターとして利用される。
This dielectric ceramic is processed into a desired shape and used as a microwave filter.

Iメ十のどどぎ本発明にあっては、以下のごときQノ果
を秦する。
In the present invention, the following Q fruits are used.

■ 沈澱法を採用づ−ることで、長時間にわたる原オ′
シ酸化物の粉砕、混合工程を省略できる。
■ By adopting the precipitation method, the raw oil can be heated for a long time.
The process of crushing and mixing silica oxide can be omitted.

■ 高温固相反応を省略覆るばかりか、後続する成型体
の粉砕工程をも省略できる。
■ Not only can the high-temperature solid phase reaction be omitted, but the subsequent process of crushing the molded body can also be omitted.

■ 最終11能どじで高いQ 1i(Iのちのが1qら
れ、特にマンカン化合物を添加した場合にはざらに高い
Q 1irJが得られる。
■ A high Q 1i (1q after I) is obtained at the final 11th level, and especially when a mankan compound is added, a much higher Q 1irJ is obtained.

(■ 粉体が微粒子であり、また所望によってマンカン
化合物を添加するので、低調、短時間で焼結かC′きる
ので、焼結条件が大幅に緩和される。
(2) Since the powder is fine particles and a mankan compound is added if desired, sintering can be completed at low speed and in a short time, so the sintering conditions are greatly relaxed.

以上、実施例および比較例に基づき本発明を具体的に説
明する。
The present invention will be specifically explained based on Examples and Comparative Examples.

実施例1 試檗特IJA7r OCJ 2・81−120 (純度
99%)26.04 g 、Sn Ce 2 ・2H2
0(llfi度98%)C60!II トTi C,9
323,3手早%を含有−J−ルTiC113iM#6
6.24 g ヲ全燵6’ 00 m(!となルヨウニ
純水に希釈した。一方、淵アンモニア水(試桑特級)6
3.41 !II ヲ全ffl 700mj ニ8 M
< シ、3.lU’)シー)J −に移し、60℃に加
温した。
Example 1 Special IJA7r OCJ 2・81-120 (99% purity) 26.04 g, Sn Ce 2 ・2H2
0 (llfi degree 98%) C60! II TiC,9
Contains 323,3 Quick% - J-Le TiC113iM #6
6.24 g 6'00 m (!) It was diluted with Tona Ruyouni pure water.
3.41! II All ffl 700 mj Ni 8 M
<C, 3. The mixture was transferred to 1U') and heated to 60°C.

この加温アンモニア溶液中に攪拌しイtから金属塩水溶
′a、をポンプで挿入した。アンモニjノ溶11(j 
IJ60℃に仇つように部用制御した。
An aqueous metal salt solution was introduced into the heated ammonia solution using a pump while stirring. Ammonia solution 11 (j
The temperature was controlled to maintain an IJ temperature of 60°C.

沈澱が終でしたら、純水300 m(!を追加し3oブ
y、70 ’Cで熟成した。熟成後、濾過し、d市過柊
fケーキは1.5〕の純水に分散し、再び70℃に加温
し30分保った。その後頁ひlll!(過し、Ir1様
な操作をこの後3回繰り返した。
When the precipitation is complete, add 300 m of pure water (!) and age at 70'C for 3 oby. After aging, filter, and disperse in 1.5 m of pure water. The temperature was again heated to 70° C. and maintained for 30 minutes. After that, the same operation as Ir1 was repeated three times.

曜過洗d1を終えたケーキを固形分10ΦF11%とな
るようミキリーで分散し、このスラリーをスプレードラ
イヤーで乾燥した。
The cake after filter washing d1 was dispersed in a millimeter so that the solid content was 10ΦF11%, and this slurry was dried with a spray dryer.

この粉体を700℃、1 、5 Il、¥間空気雰囲気
下、電気炉中で仮焼し酸化物粉体を得た。この粉1本の
組成は(SnO2)0.2モル、(Z r 02 > 
0.8tル、(T i 02 ) 1.0モルであった
This powder was calcined in an electric furnace at 700° C. for 1.5 Il in an air atmosphere to obtain an oxide powder. The composition of one powder is (SnO2) 0.2 mol, (Z r 02 >
0.8 tl, (T i 02 ) 1.0 mol.

この粉体に滑剤を加え、2 toniciでのパックで
成型し、1550℃3時間焼結した。焼結体がら径6I
II Ill、厚さ約2mmのピースを切り抜き、Q値
(9,0G HZに対する測定(ffiであり、1′、
1.下の実施例および比較例についても同様)、誘電率
、温度係数<Tc )の測定に供した。結果を第1表に
示した。
A lubricant was added to this powder, it was molded in a pack of 2 tonics, and sintered at 1550°C for 3 hours. Sintered body diameter 6I
II Ill, cut out a piece about 2 mm thick and measure the Q value (9,0 G HZ (ffi, 1',
1. The same applies to the Examples and Comparative Examples below), dielectric constant, and temperature coefficient <Tc). The results are shown in Table 1.

実施例2〜3 実施例1と同様な方法で、(SnO2’) 0.15モ
ル、(Z r 02 ) 0.85 モル、(Tt02
)1.0−E/L、の酸化物粉体(実施例2)と(Sn
O2)0.25モル、(Z r 02 ) 0.75モ
ル、(Ti02)1.0モルの酸化物粉体(実施例3)
を調製し lこ 。
Examples 2 to 3 In the same manner as in Example 1, (SnO2') 0.15 mol, (Z r 02 ) 0.85 mol, (Tt02
)1.0-E/L, oxide powder (Example 2) and (Sn
Oxide powder of 0.25 mol (O2), 0.75 mol (Z r 02 ), 1.0 mol (Ti02) (Example 3)
Prepare it.

これら粉体を実施例1ど同様に滑剤を加え、2ton/
cnでの圧力で成型し、1550℃3時間焼結した。焼
結体から径6mm、厚さ2mmのピースを切り抜ぎ、Q
値、誘電率、温度係数(Tc )の測定に供した。結果
を第1表に示しlc0 比較例1〜3 市販試桑の酸化スズ、酸化ジルコニウム、酸化ヂタンを
<5nO2)0.2モル、(Zr02)08−[ル、(
丁I○2)1.0モルの比になるよう採11νし、エタ
ノール中ボールミルで10時間混合し、乾燥後2ton
/cfflの圧力で成型した。この成型物を1100〜
1200℃、7時間仮焼し、再びボールミルで粉体にし
た後、滑剤を加え2,5 ton/CI+fで成型し、
1550°C,3時間焼結し、焼結体を冑l、:(比較
例1)。
A lubricant was added to these powders in the same manner as in Example 1, and 2 tons/
It was molded under a pressure of cn and sintered at 1550°C for 3 hours. Cut out a piece with a diameter of 6 mm and a thickness of 2 mm from the sintered body, and
The temperature coefficient, dielectric constant, and temperature coefficient (Tc) were measured. The results are shown in Table 1. Comparative Examples 1 to 3 Commercial samples of mulberry tin oxide, zirconium oxide, and titane oxide were mixed with <5nO2) 0.2 mol, (Zr02)08-[ru, (
11ν was taken so that the ratio was 1.0 mol, mixed in a ball mill in ethanol for 10 hours, and after drying, 2 tons
It was molded at a pressure of /cffl. This molded product is 1100~
After calcining at 1200℃ for 7 hours and turning it into powder again using a ball mill, a lubricant was added and molded at 2.5 ton/CI+f.
Sintered at 1550°C for 3 hours, and the sintered body was dried: (Comparative Example 1).

比較例1ど同様な方法で′、(SnO2)0.15−E
ル、(Z ro2) 0.85 モル、(T!02)1
.0モルの粉体(比較例2)J3よぴ<sr]o2)0
.25−Eル、(Z r 02 ) 0.75−Eル、
(Ti02)1.0モル粉体(比較例3)を用い、焼結
体を得た。
', (SnO2)0.15-E in the same manner as Comparative Example 1
ru, (Z ro2) 0.85 mol, (T!02)1
.. 0 mol powder (Comparative Example 2) J3yopi<sr]o2) 0
.. 25-Ele, (Z r 02 ) 0.75-Ele,
A sintered body was obtained using a 1.0 mol (Ti02) powder (Comparative Example 3).

これらの粉体に滑剤を加え、2.5 ton/clti
での圧ツノで成型し、1550℃3時間焼結した。焼結
1本から径6mm、厚さ約2 m mのピースを切り抜
き、Q M(、誘電率、湿度係数(TO)の測定に供し
た。結果を第1表に示した。
Add a lubricant to these powders to produce 2.5 ton/clti
It was molded using a pressurized horn and sintered at 1550°C for 3 hours. A piece with a diameter of 6 mm and a thickness of about 2 mm was cut out from one sintered piece and subjected to measurement of QM, dielectric constant, and humidity coefficient (TO). The results are shown in Table 1.

第1表 試薬特級Zr OC,f 2 ・8H20(@度99%
)26.04 0 、Sn CJ 2 ・ 2H20(
純度98%)4.60 !]と王iCノ323.3重量
%を含有する丁ICJ 3 溶a66.21 !J ヲ
全量600iトなルヨウニ純水に希釈した。一方、濶ア
ンモニア水(試薬特級)63.41 (lを全量700
mρに希釈し、3)のビーカーに移し、60℃に加温し
た。
Table 1 Reagent special grade Zr OC, f 2 ・8H20 (@99%
) 26.04 0, Sn CJ 2 ・ 2H20 (
Purity 98%) 4.60! ] and Ding ICJ3 containing 323.3% by weight of King iC 3 melt a66.21! The total amount of J was diluted with 600 liters of pure water. On the other hand, ammonia water (reagent special grade) 63.41 (total volume 700 l)
The mixture was diluted to mρ, transferred to the beaker of 3), and heated to 60°C.

この加温アンモニア溶液中に攪拌しながら金属塩水溶液
をポンプで挿入した。アンモニア溶液は60°Cに保つ
ように温度制御した。
An aqueous metal salt solution was pumped into the heated ammonia solution while stirring. The temperature of the ammonia solution was controlled to be maintained at 60°C.

沈澱が終了()たら、純水300I+ρを追加し30分
、70℃で熟成した。熟成後、濾過し、濾過終了ケーキ
は1,5jの純水に分散し、Tfn:n0℃に加温し3
0分保った。その後再び濾過し、同様な操作をこの接3
回繰り返した。
When the precipitation was completed (), 300 I+ρ of pure water was added and the mixture was aged at 70° C. for 30 minutes. After aging, it was filtered, and the filtered cake was dispersed in 1.5j of pure water, heated to Tfn:n0℃, and heated to 3.
I kept it for 0 minutes. Then filter again and repeat the same operation for this third batch.
Repeated times.

沈澱ケーキは400dのアセトン中に分散し、これを濾
過しアセトンと分離し、再ひ゛同和のアゼトンに分散し
同様に濾過を行ない、この後3回同様に操作を行なった
後、減圧加熱してアセ1〜ンを除去し乾燥沈澱を得た。
The precipitate cake was dispersed in 400 d of acetone, filtered to separate it from the acetone, dispersed again in acetone, and filtered in the same way. After repeating the same procedure three times, the acetone was heated under reduced pressure to remove the acetone. 1-1 was removed to obtain a dry precipitate.

乾燥物は電気炉中720℃、1.5時間仮焼し酸化物に
変換した。
The dried product was calcined in an electric furnace at 720°C for 1.5 hours to convert it into an oxide.

この複合酸化物に対しマンガンとして0.02モル%と
なるよう硫酸マンガン溶液に浸し乾燥後、1000℃近
傍で仮焼し、油圧プレスで成型(2ton/cM)シ、
1420℃、3時間焼結した。この焼結体から径6mm
、厚さ約2mmの円板を切抜ぎ、Q値、誘電率、温度係
数(Tc )の測定に供した。
This composite oxide was immersed in a manganese sulfate solution so that the amount of manganese was 0.02 mol%, dried, calcined at around 1000°C, and molded using a hydraulic press (2 ton/cM).
Sintering was performed at 1420°C for 3 hours. From this sintered body, the diameter is 6 mm.
A disk with a thickness of about 2 mm was cut out, and the Q value, dielectric constant, and temperature coefficient (Tc) were measured.

この結果、誘電率(εr)は35,74 、Q値は61
00で渦電係数は(Tc ) −3,20pm/℃であ
った。
As a result, the dielectric constant (εr) is 35.74, and the Q value is 61.
00, the eddyelectric coefficient was (Tc) -3.20 pm/°C.

実施例5 実施例4ど同様の方法で沈澱を作り、濾過洗浄を終えた
ケーキを固形分10重鑓%となるようミキサ−−てづ2
散じ、このスラリーをスプレードライヤーで乾燥した。
Example 5 A precipitate was prepared in the same manner as in Example 4, and the filtered and washed cake was mixed with a mixer to make the solid content 10% by weight.
The slurry was dried with a spray dryer.

この粉体を700°C11,5時間電気炉中で仮焼し酸
化物どした。この酸化物粉体に0.02モル%となるよ
う硝酸マンガン溶液を加え乾燥し300℃、1時間焼成
分解した。
This powder was calcined in an electric furnace at 700° C. for 5 hours to form an oxide. A manganese nitrate solution was added to this oxide powder to give a concentration of 0.02 mol %, and the powder was dried and decomposed by firing at 300° C. for 1 hour.

この粉体に 1重量%の有機系滑剤を混ぜ2 ton/
 cIllの圧力で成型し、1420℃、3時間焼結し
た。
Mix 1% by weight of organic lubricant with this powder and mix 2 tons/
It was molded at a pressure of cIll and sintered at 1420°C for 3 hours.

実施例4と同様に径6mnr 、 Miさ2mmの円板
に加Tし、測定に供した。
As in Example 4, a disk having a diameter of 6 mnr and a depth of 2 mm was heated and subjected to measurement.

測定の結果、誘電率(ε1゛)は31.1、Q値は55
20、濡ri係数(Tc )は−3pom/℃であった
As a result of the measurement, the dielectric constant (ε1゛) was 31.1 and the Q value was 55.
20, the wetting coefficient (Tc) was -3 pom/°C.

実施例6〜10 実施例5と同様の方法で固形分10%のスラリーを調製
し、このスラリーにSnO2、ZrO2、T!02の合
Kl’ &!に対しマンガンのモル比が0.01(りj
−ゴt64シーIR)、010(宇1瞥tHζ^17)
030(実施例8)、0.50 (実施例9)、1.0
0 (実施例10)となるよう硝酸マンガンを分散させ
た。
Examples 6 to 10 A slurry with a solid content of 10% was prepared in the same manner as in Example 5, and SnO2, ZrO2, T! 02 combination Kl'&! The molar ratio of manganese is 0.01 (rij
-Got64shiIR), 010 (U1betsutHζ^17)
030 (Example 8), 0.50 (Example 9), 1.0
0 (Example 10).

このスラリーをスプレードライ1ノーで乾燥球状化し、
次いでマンガン含有粉体を100℃、1.5時間仮焼し
酸化物に変換し、実施例2ど/+7]社に成型焼結した
。各々の焼結体の9.0G+−12にl=IするQ(直
を第2表ど第1図に示した。
This slurry was dried into spheres by spray drying.
Next, the manganese-containing powder was calcined at 100° C. for 1.5 hours to convert it into an oxide, which was molded and sintered in Example 2/+7. 9.0G+-12 of each sintered body, Q (direction) where l=I is shown in Table 2 and FIG.

第2表 Sn、7「゛、Tiの絹成割含を変えて調製した以外は
実施例5と同様な方法を用いて焼結体を得、実施例5に
準じて誘電率、Qlii、温度係数(Tc )を測定し
、結果を第3表に示す。
Table 2 Sn, 7 "゛, A sintered body was obtained using the same method as in Example 5 except that the silk composition of Ti was changed, and the dielectric constant, Qlii, temperature The coefficient (Tc) was measured and the results are shown in Table 3.

第3表 以上の結果から明らかなように、本発明の方法により0
7られる誘電体磁器は、従来のものに比較して、高いQ
値を示し、この傾向はマンカン化合物を添加することに
より一層向トする。従って本発明により1!7られる誘
電(41…器(まマイクEl波フィルターどして好適に
使用できる。
As is clear from the results in Table 3 and above, the method of the present invention
7 dielectric porcelain has a higher Q than conventional ones.
This tendency is further improved by adding a mankan compound. Therefore, according to the present invention, the dielectric device (41) can be suitably used as a microphone El wave filter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は9.0GI−1zにお(Jるマン刀ン含有量と
Q値の関係を示づグラ−7゜ 特許出願人 1」揮株テ℃会d 代1411人 弁即十 伊東辰〃イ1 代理人 弁J!l! −1−伊東哲也 第 1 図 マンカ゛ンシ木カロl<モlし%)
Figure 1 shows the relationship between the content of 9.0GI-1z and the Q value. 〃1 Agent Ben J!l! -1-Tetsuya Ito 1st Figure Mankanshiki Karo l<Molize%)

Claims (1)

【特許請求の範囲】[Claims] 1.8n、Zr、Tiのそれぞれの塩の混合水溶液とア
ルカリ水溶液を混合して共沈物を得、これを洗浄、乾燥
、焼成することを特徴とする3nO2−ZrO2−T1
02系誘電体磁器の製造法。 2、前記誘電体磁器の組=成を下式のごとく示したとき
に、 (Zrx ・5nv)TizO,+ 上式中、 ×−0,60〜0.85モル1 、=0.15〜0.40モル、 Z = 0.80 ヘ、1.10 七ル、X +Y +
2 ”’2、 Cある特許請求の範囲第1項記載の製造法。 3、前記3n、lr、Tiのそれぞれの塩の混合水溶液
にアルカリ水溶液を加える前記特許請求の範囲第1項ま
たは第2項に記載の製造法。 4、前記アルカリ水溶液に5n17r、Tiのそれぞれ
の塩の混合水溶液を加える前記特許請求の範囲第1項ま
たは第2項に記載の製造法。 5、ざらにマンガン化合物を(Zrx・5nY)Tiz
O41モルに対し、マンガンどして0.01〜1.0モ
ル%添加づる特にC1請求の範囲第1項、第2項、第3
項または第4項記載の製造法。
1.8 3nO2-ZrO2-T1 characterized by mixing a mixed aqueous solution of each of the salts of n, Zr, and Ti and an aqueous alkali solution to obtain a coprecipitate, which is then washed, dried, and calcined.
Method for manufacturing 02 series dielectric porcelain. 2. When the composition of the dielectric ceramic is shown as the following formula, (Zrx ・5nv)TizO,+ In the above formula, ×-0.60 to 0.85 mol 1, = 0.15 to 0 .40 mol, Z = 0.80 he, 1.10 mol, X +Y +
2 ``'2, C The manufacturing method according to claim 1. 3. The method according to claim 1 or 2, wherein an aqueous alkali solution is added to the mixed aqueous solution of each of the salts of 3n, lr, and Ti. 4. The manufacturing method according to claim 1 or 2, in which a mixed aqueous solution of each salt of 5n17r and Ti is added to the alkaline aqueous solution. 5. Adding a manganese compound to the grains. (Zrx・5nY)Tiz
0.01 to 1.0 mol % of manganese etc. is added to 1 mol of O4. Particularly C1 Claims 1, 2 and 3
The manufacturing method according to item 4 or item 4.
JP59031499A 1984-02-23 1984-02-23 Manufacture of sno2-zro2-tio2 dielectric Pending JPS60176968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59031499A JPS60176968A (en) 1984-02-23 1984-02-23 Manufacture of sno2-zro2-tio2 dielectric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59031499A JPS60176968A (en) 1984-02-23 1984-02-23 Manufacture of sno2-zro2-tio2 dielectric

Publications (1)

Publication Number Publication Date
JPS60176968A true JPS60176968A (en) 1985-09-11

Family

ID=12332924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59031499A Pending JPS60176968A (en) 1984-02-23 1984-02-23 Manufacture of sno2-zro2-tio2 dielectric

Country Status (1)

Country Link
JP (1) JPS60176968A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261264A (en) * 1985-05-15 1986-11-19 黒崎窯業株式会社 Low expansion ceramic
JPS63141206A (en) * 1986-12-04 1988-06-13 太陽誘電株式会社 Intergranular insulation type semiconductor ceramic
JPS63141204A (en) * 1986-12-04 1988-06-13 太陽誘電株式会社 Manufacture of porcelain for electronic component
JPH0328162A (en) * 1989-06-26 1991-02-06 Matsushita Electric Ind Co Ltd Dielectric porcelain composition
US5538928A (en) * 1994-07-19 1996-07-23 Korea Institute Of Science And Technology Dielectric ceramic composition for high frequencies and method for preparation of the same
US5843860A (en) * 1996-08-13 1998-12-01 Korea Advanced Institute Of Science And Technology Ceramic composition for high-frequency dielectrics
CN100389091C (en) * 2005-10-17 2008-05-21 郴州高斯贝尔数码科技有限公司 Microwave medium ceramic for C-wave band and production thereof
WO2012086740A1 (en) * 2010-12-22 2012-06-28 京セラ株式会社 Dielectric ceramic and dielectric filter provided with same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818808A (en) * 1981-07-23 1983-02-03 株式会社村田製作所 High frequency dielectric porcelain composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818808A (en) * 1981-07-23 1983-02-03 株式会社村田製作所 High frequency dielectric porcelain composition

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261264A (en) * 1985-05-15 1986-11-19 黒崎窯業株式会社 Low expansion ceramic
JPS63141206A (en) * 1986-12-04 1988-06-13 太陽誘電株式会社 Intergranular insulation type semiconductor ceramic
JPS63141204A (en) * 1986-12-04 1988-06-13 太陽誘電株式会社 Manufacture of porcelain for electronic component
JPH0328162A (en) * 1989-06-26 1991-02-06 Matsushita Electric Ind Co Ltd Dielectric porcelain composition
US5538928A (en) * 1994-07-19 1996-07-23 Korea Institute Of Science And Technology Dielectric ceramic composition for high frequencies and method for preparation of the same
US5843860A (en) * 1996-08-13 1998-12-01 Korea Advanced Institute Of Science And Technology Ceramic composition for high-frequency dielectrics
CN100389091C (en) * 2005-10-17 2008-05-21 郴州高斯贝尔数码科技有限公司 Microwave medium ceramic for C-wave band and production thereof
WO2012086740A1 (en) * 2010-12-22 2012-06-28 京セラ株式会社 Dielectric ceramic and dielectric filter provided with same
CN103269999A (en) * 2010-12-22 2013-08-28 京瓷株式会社 DIELECTRIC CERAMIC AND DIELECTRIC FILTER PROVIDED WITH SAMe
CN103269999B (en) * 2010-12-22 2015-01-28 京瓷株式会社 Dielectric ceramic and dielectric filter provided with same
US9006122B2 (en) 2010-12-22 2015-04-14 Kyocera Corporation Dielectric ceramic and dielectric filter having the same
JP5726209B2 (en) * 2010-12-22 2015-05-27 京セラ株式会社 Dielectric ceramics and dielectric filter provided with the same

Similar Documents

Publication Publication Date Title
Ciftci et al. Hydrothermal precipitation and characterization of nanocrystalline BaTiO3 particles
US3577487A (en) Preparation of submicron sized alkaline earth titanate and zirconate powders
JPS60155532A (en) Production of barium strontium titanate fine particle
JP3154509B2 (en) Barium titanate and method for producing the same
JPS63103827A (en) Manufacture of barium titanate
JPS60176968A (en) Manufacture of sno2-zro2-tio2 dielectric
JPH0343213B2 (en)
JPH1179746A (en) Perovskite composite oxide and its production
JPH06305726A (en) Production of powdery oxide of rare earth element
JPH0251847B2 (en)
CN113024249B (en) Microwave dielectric ceramic composite material and preparation method thereof
US6733882B2 (en) Rare earth hydroxide and method for the preparation thereof
US5308807A (en) Production of lead zirconate titanates using zirconia sol as a reactant
JPS61146713A (en) Production of barium-strontium titanate solid solution or barium titanate
JPS6016373B2 (en) Method for manufacturing perovskite-type lead-containing composite oxide
JPH0210091B2 (en)
JPH069219A (en) Production of solid solution of barium strontium titanate
JPS6090825A (en) Manufacture of barium titanate or strontium titanate
JPS6235970B2 (en)
JPH0712922B2 (en) Method of forming inorganic hydroxide precipitate
JPH0621035B2 (en) Method for producing mixed fine particles comprising BaTiO 3) and BaSn (OH) 6)
JPS61251515A (en) Production of compound oxide ceramic powder
JPH0262496B2 (en)
JPS62256726A (en) Production of sr-zr-ti-o base dielectric power
JPH07247162A (en) Production of ito sintered body