JPS5822381A - Method and apparatus for plasma etching - Google Patents

Method and apparatus for plasma etching

Info

Publication number
JPS5822381A
JPS5822381A JP11917781A JP11917781A JPS5822381A JP S5822381 A JPS5822381 A JP S5822381A JP 11917781 A JP11917781 A JP 11917781A JP 11917781 A JP11917781 A JP 11917781A JP S5822381 A JPS5822381 A JP S5822381A
Authority
JP
Japan
Prior art keywords
electrodes
parallel
plasma
etching
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11917781A
Other languages
Japanese (ja)
Other versions
JPH0245715B2 (en
Inventor
Takashi Hirao
孝 平尾
Koshiro Mori
森 幸四郎
Masatoshi Kitagawa
雅俊 北川
Shinichiro Ishihara
伸一郎 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11917781A priority Critical patent/JPS5822381A/en
Publication of JPS5822381A publication Critical patent/JPS5822381A/en
Publication of JPH0245715B2 publication Critical patent/JPH0245715B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To apply plasma etching to a base plate at a high speed in high processing preciseness, by a method wherein voltage is applied between parallel cathodes and an anode in a vacuum container and a magnetic field is applied while a stock gas is supplied to induce discharge plasma. CONSTITUTION:After the inside of a vacuum container 10 is evacuated tp exhaust a gas therein through an exhaust pore 11, the valve opening degree of a gas introducing pipe 12 is adjusted to introduce an etching gas in a constant flow amount to adjust a vacuum degree to a predetermined value. In this condition, voltage is applied to an anode 15 and parallel cathodes 13, 14 are held,for example, to same potential (for example, earthing potential) and an external magnetic field vertical to parallel cathode surfaces by an electromagnet 16. By this method, plasma 19 confined between electrodes can be induced and vertical etching is applied to the base plate 27 in a fine pattern by this plasma 19.

Description

【発明の詳細な説明】 の半導体で形成された基板上の薄膜をドライエッチング
するための方法およびそのための装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for dry etching a thin film on a substrate made of a semiconductor and an apparatus therefor.

近年、半導体集積回路の高密度化につれてパターンサイ
ズが小さくなシ、基板上に形成された半導体,金属,絶
縁体等の薄膜をエツチングする場合に、従来の化学薬品
を用いたウェットエツチングに代って、ドライエツチン
グ法が主流となってきた。ドライエツチング法には、高
周波を用いたりアクティブエツチング法、有磁場マイク
ロ波プラズマエ、チング法、イオンエツチング広、高周
波東 ゾラズマエ、チング等がある。
In recent years, as the density of semiconductor integrated circuits has increased, pattern sizes have become smaller, and when etching thin films of semiconductors, metals, insulators, etc. formed on substrates, wet etching using conventional chemicals has been replaced. As a result, dry etching has become mainstream. Dry etching methods include those using high frequency, active etching, magnetic field microwave plasma etching, etching, ion etching, high frequency Higashizolasma etching, and the like.

次に、これらの工、チング法の長所、短所について説明
する。高周波を用いたプラズマエツチング法の装置とし
て種々の形式のものがあり被工。
Next, we will explain the advantages and disadvantages of these methods. There are various types of equipment for plasma etching using high frequency waves.

チング材料を多結晶Si 、 5in2.5i3N4P
SG或いはA1等多岐に亘る。しかしプラズマ内の反応
に寄与する活性種(中性ラジカル)は放電が行なわれる
真空域(〜ITorr)でランダム・モーションとなる
為、一般的には等方性エツチングとなっていわゆるサイ
ドエツチングが発生し、微細パターンの加工精度は限界
がある。
Polycrystalline Si, 5in2.5i3N4P
There are a wide variety of types such as SG or A1. However, active species (neutral radicals) that contribute to reactions within the plasma undergo random motion in the vacuum region (~ITorr) where the discharge occurs, so generally isotropic etching occurs, resulting in so-called side etching. However, there is a limit to the processing accuracy of fine patterns.

有磁場マイクロ波プラズマエツチング法は、磁ゑ 場中での電子のサイクロトン運動とマイクロ波との共鳴
現象を用い、低い放電ガス圧力でもプラズマ密度を低下
させることなく、しかもイオンエネルギーが低い状態で
エツチングできるようにしたもので、垂直エツチングが
可能となった事が発表されている。しかしこの方法に使
用される装置は、構成が複雑で高価である。
The magnetic field microwave plasma etching method uses the resonance phenomenon between the cycloton motion of electrons in a magnetic field and microwaves, and can be used without reducing the plasma density even at low discharge gas pressure and in a state of low ion energy. It has been announced that vertical etching is now possible. However, the equipment used in this method is complex and expensive.

為 イオンエツチングは、アルゴンイオン等を加速してその
衝撃によってスパッタリングさせてサイドエツチングの
少ないエツチングを行なう方法で、材料によるエツチン
グ速度の差、即ち選択比が大きくない。又エツチング速
度が小さくイオン衝撃による素子の損傷も大きい。
Therefore, ion etching is a method in which argon ions or the like are accelerated and sputtered by the impact thereof to perform etching with little side etching, and the difference in etching rate depending on the material, that is, the selectivity is not large. Furthermore, the etching rate is low and the element is seriously damaged by ion bombardment.

高周波を用いたりアクティブ・プラズマエツチング法は
、微小ノ9ターンの加工法として有力視されているドラ
イエツチング技術で、平行平板電極を用いそれに高周波
を印加して電極間にプラズマを誘起し平行電極上に置い
た試料を加工するものである。次にこのエツチング法を
第1図に基づいて説明する。
The active plasma etching method using high frequency is a dry etching technology that is considered to be a promising method for processing nine micro-turns.It uses parallel plate electrodes and applies high frequency to them to induce plasma between the electrodes. This is to process a sample placed at Next, this etching method will be explained based on FIG.

第1図は平行平板形電極構造のドライエツチング装置の
概略図である。1は下部電極でこの電極は水冷されてい
る。3はこの電極上に置かれた試料である。4は13゜
56 MHzの高周波電源で上部電極2及び下部電極1
の間に印加され、電極間にプラズマを誘起する。5はエ
ツチングガスの導入管で、6,7は排気管である。この
ドライエツチング法は従来のガスプラズマエツチングに
比べるとガス圧力が低く、いわゆるラジカルにより等方
的エツチングに加え、イオン衝撃によるスパッタエツチ
ング的要素も加味されている為、方向性エツチングが行
なわれ得る。このため超LSIの高精度な微細加工の有
力な手段として活発な研究開発がなされている。しかし
乍ら陰極近傍に形成されるイオンシース内で加速される
イオン衝撃による損傷を試料に与える事、しかもこのイ
オンエネルギーの大きさはなかなか同定し難く又その制
御が難かしい等の難点があシ、特にAlに対して充分な
スルージットを得る為にはエツチングに用いる塩素系化
合物ガスの流量を大きくする必要があシ、装置のメンテ
ナンスが困難である等の問題があった。
FIG. 1 is a schematic diagram of a dry etching apparatus having a parallel plate electrode structure. 1 is the lower electrode, and this electrode is water-cooled. 3 is a sample placed on this electrode. 4 is a 13°56 MHz high frequency power supply that connects the upper electrode 2 and the lower electrode 1.
is applied between the electrodes to induce plasma between the electrodes. 5 is an etching gas introduction pipe, and 6 and 7 are exhaust pipes. This dry etching method uses a lower gas pressure than conventional gas plasma etching, and in addition to isotropic etching using so-called radicals, it also includes sputter etching elements using ion bombardment, so that directional etching can be performed. For this reason, active research and development is being carried out as a powerful means for high-precision microfabrication of VLSIs. However, there are drawbacks such as damage to the sample due to ion bombardment accelerated within the ion sheath formed near the cathode, and the magnitude of this ion energy is difficult to identify and difficult to control. In particular, in order to obtain a sufficient throughput for Al, it is necessary to increase the flow rate of the chlorine compound gas used for etching, and there are problems such as difficulty in maintaining the apparatus.

本発明の目的は、このような問題を解決するため、イオ
ン源としてペニング放電を用いたプラズマエツチング方
法およびそのための装置を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a plasma etching method using a Penning discharge as an ion source and an apparatus for the same in order to solve such problems.

次に、本発明を実施例に基づいて説明する一第2図は、
第1の実施例を示す図であって、図において、10はス
テンレス容器、11は該容器を真空排気する為の排気孔
で、拡散ポンプ、油回転ポンプにつながっている。本排
気システムにより該容器内をあらかじめ10””Tor
r 程度t f 排気スフ>012は該容器に基板もし
くは基板上の薄膜例えば多結晶Siをエツチングする為
のガス導入型である。
Next, the present invention will be explained based on an example. Fig. 2 shows the following:
This is a diagram showing the first embodiment, and in the figure, 10 is a stainless steel container, 11 is an exhaust hole for evacuating the container, and is connected to a diffusion pump and an oil rotary pump. This exhaust system allows the inside of the container to be heated to 10"" Torr in advance.
r degree t f exhaust suction tube >012 is a gas introduction type for etching a substrate or a thin film on the substrate, such as polycrystalline Si, into the container.

もちろんガス導入管と排気孔の相対的位置は任意にかえ
得る事はいうまでもない。13及び14は平行電極で例
えばステンレス製の円板で平行に対向し、14の方は冷
却可能に力っている。17は該平行電極の一方14上に
置かれた被エツチング基板である。15は陽極(極で例
えばステンレス製の中空円板で前記平行電極間に置かれ
ている。
Of course, it goes without saying that the relative positions of the gas inlet pipe and the exhaust hole can be changed arbitrarily. Parallel electrodes 13 and 14 are made of, for example, stainless steel disks and are opposed in parallel, and 14 is powered to enable cooling. 17 is a substrate to be etched placed on one side 14 of the parallel electrodes. The anode 15 is a hollow circular plate made of stainless steel, for example, and is placed between the parallel electrodes.

18は該中空円板を支えるための絶縁材料で例えば石英
の円筒である。16は、容器10の外に置かれた電磁石
である。なお、電極13および14の距離は、自由に調
整できるように構成されている。
Reference numeral 18 is an insulating material for supporting the hollow disk, and is, for example, a quartz cylinder. 16 is an electromagnet placed outside the container 10. Note that the distance between the electrodes 13 and 14 is configured to be freely adjustable.

次に、このように構成された装置を用いてプラズマエツ
チングする場合の放電条件について説明する。まず、真
空容器lo内を拡散ポンプ及び油回転ポンプを用いてl
o 〜10Torr程度迄真空排気する。しかる後パル
プの開きを調整しながら一定の流量のガスを導入して、
真空度を所定の値例えば10−’Torrに調節する。
Next, the discharge conditions for plasma etching using the apparatus configured as described above will be explained. First, the inside of the vacuum container LO is lubricated using a diffusion pump and an oil rotary pump.
o Evacuate to about 10 Torr. After that, a constant flow rate of gas is introduced while adjusting the pulp opening.
The degree of vacuum is adjusted to a predetermined value, for example 10-'Torr.

しかる後、P[極電極15に電圧を与え平行電極13及
び14を例えば同電位(例えば接地電位)に保ち、外部
磁場を印加する事により電極間に閉じ込められたプラズ
マ19を誘起する事ができる。
Thereafter, the plasma 19 confined between the electrodes can be induced by applying a voltage to the P[polar electrode 15, keeping the parallel electrodes 13 and 14 at the same potential (for example, ground potential), and applying an external magnetic field. .

上述の装置における各構成要素の寸法を説明すると、電
極13および14は、直径300mで、その電極間距離
は50〜100mである。そして、本発明においては、
4ニング放電の概念を基本としているが、寸法的にはカ
ソード間の間隔に比べてカソード電極の寸法が大きくと
られているという点で従来のペニング放電の概念とは異
なっている。このことによシ、プラズマポテンシャルは
アノード電位に比べ例えば10  Torrのとき約半
分程度に降下していることが実験的に確認できた。又こ
のプラズマポテンシャルは真空度に大きく依存する。一
般的に真空度が悪くなるとプラズマポテンシャルはアノ
ード電位に近ずく。即ち真空度が悪くなるとアノード・
カソード間の放電は通常のDC放電に近ずく。
To explain the dimensions of each component in the above-mentioned device, the electrodes 13 and 14 have a diameter of 300 m, and the distance between the electrodes is 50 to 100 m. In the present invention,
Although it is based on the concept of a four-inning discharge, it differs from the conventional Penning discharge concept in that the dimensions of the cathode electrodes are larger than the spacing between the cathodes. As a result, it has been experimentally confirmed that the plasma potential drops to about half of the anode potential at 10 Torr, for example. Moreover, this plasma potential greatly depends on the degree of vacuum. Generally, when the degree of vacuum deteriorates, the plasma potential approaches the anode potential. In other words, when the degree of vacuum deteriorates, the anode
The discharge between the cathodes approaches a normal DC discharge.

基板或いは基板上の薄膜をエツチングする場合イオンの
エネルギー或いはラジカル量の制御は例えば第3図に示
すように基板を保持する側に抵抗をつなぐ事によって自
由に変え得る。例えば第3図に示すように基板27を保
持する電極24に抵抗28を接続する事によシプラズマ
ポテンシャルと基板27間の電位差を任意に変化し得る
。又電極24の電位を接地電位に対し正にする事によシ
ミ極24へ加速され入射する電子数が増大し電極24へ
飛び込む迄にガス分子との衝突によって多くのイオン及
びラジカルを形成することになる。
When etching a substrate or a thin film on a substrate, the energy of ions or the amount of radicals can be controlled freely by connecting a resistor to the side that holds the substrate, as shown in FIG. 3, for example. For example, as shown in FIG. 3, by connecting a resistor 28 to the electrode 24 holding the substrate 27, the potential difference between the plasma potential and the substrate 27 can be changed arbitrarily. Also, by making the potential of the electrode 24 positive with respect to the ground potential, the number of electrons accelerated and incident on the stain electrode 24 increases, and many ions and radicals are formed by collision with gas molecules before jumping into the electrode 24. become.

即ちラジカル・イオン量及びイオンエネルギーを変え得
る事になシエッチングに多様性を持たせ得る。なお、第
3図において、2oは例えばステンレス製の真空容器、
21は排気孔、22はガス導入管、23は一方の平行電
極、24は他方の平行電極、25はリング状の陽極電極
(もちろん円筒状でも、その他の形状でもよい)、26
は外部電磁石で、この場合平行電極面に垂直な場合が示
されているが、真空容器内に、平行電極面に垂直な磁界
を発生する磁界発生機構を配置することも可能である。
That is, since the amount of radical ions and ion energy can be changed, it is possible to provide diversity to the etching. In addition, in FIG. 3, 2o is, for example, a stainless steel vacuum container,
21 is an exhaust hole, 22 is a gas introduction pipe, 23 is one parallel electrode, 24 is the other parallel electrode, 25 is a ring-shaped anode electrode (of course, it can be cylindrical or other shape), 26
is an external electromagnet, and in this case the case is shown perpendicular to the parallel electrode surfaces, but it is also possible to arrange a magnetic field generating mechanism that generates a magnetic field perpendicular to the parallel electrode surfaces in the vacuum container.

27はエツチングすべき基板、28は基板側に電位を与
える例で、抵抗で接続されている場合が示されている。
Reference numeral 27 indicates a substrate to be etched, and 28 indicates an example in which a potential is applied to the substrate side, where the connection is made through a resistor.

29は誘起プラズマ、30は真空排気系を示す。29 is an induced plasma, and 30 is a vacuum evacuation system.

以上、説明したように、本発明においては、ペニング放
電を用いることにより、ドライエツチングに際してイオ
ンのエネルギー、イオン量、ラジカル量の異なる状態を
任意に作シ得る為、従来全く実現できなかった領域に於
けるドライエツチングが可能となった。これは例えば微
細加工の要する半導体集積回路の製造に於ける薄膜の加
工に大きな自由度を与える事になり工業上極めて大きな
価値を有するものである。
As explained above, in the present invention, by using Penning discharge, it is possible to arbitrarily create different states of ion energy, ion amount, and radical amount during dry etching. Dry etching is now possible. This provides a great degree of freedom in the processing of thin films in the manufacture of semiconductor integrated circuits, which require microfabrication, for example, and is therefore of extremely great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の平板電極ドライエツチング装置の一例
を示す断面図、第2図および第3図は、本発明のドライ
エツチング装置の実施例を示す断面図である。 10.20・・ステンレス容器、11.21・・・排気
孔、12.22・・・ガス導入管、13.14゜23.
24・・・平行電極、15.25・・・陽極電極、16
.26・・・電磁石、17.27・・・基板、19゜2
9・・プラズマ、30・・・真空排気系。 第1図 第2図 第3図
FIG. 1 is a sectional view showing an example of a conventional flat plate electrode dry etching apparatus, and FIGS. 2 and 3 are sectional views showing an embodiment of the dry etching apparatus of the present invention. 10.20...Stainless steel container, 11.21...Exhaust hole, 12.22...Gas introduction pipe, 13.14°23.
24...Parallel electrode, 15.25...Anode electrode, 16
.. 26...Electromagnet, 17.27...Substrate, 19°2
9...Plasma, 30...Vacuum exhaust system. Figure 1 Figure 2 Figure 3

Claims (5)

【特許請求の範囲】[Claims] (1)減圧状態にした容器内に平行陰極電極及び該陰極
電極面に対し垂直及び平行な電界成分を与える他の陽極
電極を配し、これら電極間に電圧を与え、原料ガスを供
給し々がら、前記平行陰極面に垂直な磁場を加えながら
該電極間に放電プラズマを誘起し、基板をエツチングす
ることを特徴とするグラズマエ、チング方法。
(1) A parallel cathode electrode and another anode electrode that provide electric field components perpendicular and parallel to the cathode electrode surface are placed in a container under reduced pressure, and a voltage is applied between these electrodes to supply raw material gas. A glasmae etching method characterized in that the substrate is etched by inducing discharge plasma between the electrodes while applying a magnetic field perpendicular to the parallel cathode surfaces.
(2)容器内の圧力を減圧状態にする為の排気機能と、
該容器中にガスを導入する機能と該容器内に複数の電極
を配し、核電極間に印加した電圧による電界、及び容器
外或いは内部に設置された磁界発生器による磁界によっ
て生じた電極間プラズマを用いてエツチングすることを
特徴とするプラズマエツチング装置。
(2) Exhaust function to reduce the pressure inside the container,
The function of introducing gas into the container, and the electric field generated by the voltage applied between the nuclear electrodes by arranging multiple electrodes in the container, and the magnetic field generated by a magnetic field generator installed outside or inside the container, between the electrodes. A plasma etching device characterized by etching using plasma.
(3)該複数の陰極が平行陰極電極及び該電極面に垂直
及び平行な電界成分を与える他の電極であり、前記平行
電極面に垂直な磁界を与える磁界発生器を有することを
特徴とする特許請求範囲第(2)項記載のプラズマエツ
チング装置。
(3) The plurality of cathodes are parallel cathode electrodes and other electrodes that provide electric field components perpendicular and parallel to the electrode surfaces, and include a magnetic field generator that provides a magnetic field perpendicular to the parallel electrode surfaces. A plasma etching apparatus according to claim (2).
(4)平行陰極電極に同じ電位を与え、他の電極に正電
位を与える事を特徴とする特許請求範囲第(2)項に記
載のプラズマエツチング装置。
(4) The plasma etching apparatus according to claim (2), wherein the same potential is applied to the parallel cathode electrodes, and a positive potential is applied to the other electrodes.
(5)平行陰極電極に電位差を与え、かつ他の電極に正
の電位を与える事を特徴とする特許請求範囲第(2)項
に記載のプラズマエツチング装置。
(5) The plasma etching apparatus according to claim (2), characterized in that a potential difference is applied to the parallel cathode electrodes, and a positive potential is applied to the other electrodes.
JP11917781A 1981-07-31 1981-07-31 Method and apparatus for plasma etching Granted JPS5822381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11917781A JPS5822381A (en) 1981-07-31 1981-07-31 Method and apparatus for plasma etching

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11917781A JPS5822381A (en) 1981-07-31 1981-07-31 Method and apparatus for plasma etching

Publications (2)

Publication Number Publication Date
JPS5822381A true JPS5822381A (en) 1983-02-09
JPH0245715B2 JPH0245715B2 (en) 1990-10-11

Family

ID=14754811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11917781A Granted JPS5822381A (en) 1981-07-31 1981-07-31 Method and apparatus for plasma etching

Country Status (1)

Country Link
JP (1) JPS5822381A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3500328A1 (en) 1985-01-07 1986-07-10 Nihon Shinku Gijutsu K.K., Chigasaki, Kanagawa SPRAYING DEVICE
JPS63140089A (en) * 1986-12-01 1988-06-11 Anelva Corp Method and device for etching aluminum alloy film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5435172A (en) * 1977-08-24 1979-03-15 Anelva Corp Chemical reactor using electric discharge

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5435172A (en) * 1977-08-24 1979-03-15 Anelva Corp Chemical reactor using electric discharge

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3500328A1 (en) 1985-01-07 1986-07-10 Nihon Shinku Gijutsu K.K., Chigasaki, Kanagawa SPRAYING DEVICE
JPS63140089A (en) * 1986-12-01 1988-06-11 Anelva Corp Method and device for etching aluminum alloy film

Also Published As

Publication number Publication date
JPH0245715B2 (en) 1990-10-11

Similar Documents

Publication Publication Date Title
KR0151769B1 (en) Plasma etching apparatus
JPS63131520A (en) Dry etching apparatus
JPH08107101A (en) Plasma processing device and plasma processing method
JPS59143328A (en) Dry etching device
US20050126711A1 (en) Plasma processing apparatus
JPS6136589B2 (en)
JP2001313286A (en) Parallel-plate dry etching apparatus
US6096176A (en) Sputtering method and a sputtering apparatus thereof
JPS5832417A (en) Method and apparatus for plasma etching
US5228940A (en) Fine pattern forming apparatus
JP2761172B2 (en) Plasma generator
JPS5822381A (en) Method and apparatus for plasma etching
JPH06216078A (en) Equipment and method for capacitive coupling discharge processing of wafer
JPH02106925A (en) Dry etching apparatus
JP3037848B2 (en) Plasma generating apparatus and plasma generating method
JP2851765B2 (en) Plasma generation method and apparatus
JP3192352B2 (en) Plasma processing equipment
JP3164188B2 (en) Plasma processing equipment
JPH07183284A (en) Apparatus and method for etching thin layer
JPS6348826A (en) Dry etching apparatus
JPH0457091B2 (en)
JP3208931B2 (en) Plasma processing apparatus and plasma processing method using the same
GB2049560A (en) Plasma etching
JPH1041284A (en) Plasma treating apparatus
JPS6094724A (en) Dry etching device