JPS58223317A - Method and device for growing of compound semiconductor crystal - Google Patents

Method and device for growing of compound semiconductor crystal

Info

Publication number
JPS58223317A
JPS58223317A JP10616282A JP10616282A JPS58223317A JP S58223317 A JPS58223317 A JP S58223317A JP 10616282 A JP10616282 A JP 10616282A JP 10616282 A JP10616282 A JP 10616282A JP S58223317 A JPS58223317 A JP S58223317A
Authority
JP
Japan
Prior art keywords
compound
compound semiconductor
growth
raw material
partition plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10616282A
Other languages
Japanese (ja)
Inventor
Yutaka Yoriume
撰梅 豊
Noriyoshi Shibata
典義 柴田
Juichi Noda
野田 壽一
Noboru Takagi
高木 暢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP10616282A priority Critical patent/JPS58223317A/en
Publication of JPS58223317A publication Critical patent/JPS58223317A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45578Elongated nozzles, tubes with holes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45587Mechanical means for changing the gas flow
    • C23C16/45591Fixed means, e.g. wings, baffles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To prevent the formation of an intermediate reaction product, and to form a crystal of excellent crystallinity and surface state by setting up a parting plate inhibiting mixing until at least two kinds of raw material compounds reach a growth layer. CONSTITUTION:Triethyl indium (TEI) and triethyl gallium (TEG) diluted by hydrogen are introduced gas-supply pipe 8 and arsine AsH2 phosphine PH3 diluted similarly by hydrogen form a gas supply pipe 9, and these substances are injected in the opposite direction partitioned by the parting plate 13 for example, from a jet 15 formed to a nozzle 14 constituted by a material such as quartz. Consequently, TEI or TEG and AsH2 or PH3 do no mix directly because they are isolated by the parting plate 13. Accordingly, the intermediate reaction product is not formed, and the crystal of excellent crystallinity and surface state can be formed extending over a range of a wide composition.

Description

【発明の詳細な説明】 本発明は、化合物半導体結晶の気相成長法及びその装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for vapor phase growth of compound semiconductor crystals and an apparatus therefor.

GaAe  又はInP等の基板上へのAtGaAs 
AtGaAs on a substrate such as GaAe or InP
.

AtGa、AsP 、 InGaAs  又はInGa
AsP等のエピタキシャル成長は、半導体レーザー、光
検出器あるいは超格子の実現による新機能デバイス等の
実現のため、最近その重要性を増してきている。
AtGa, AsP, InGaAs or InGa
Epitaxial growth of AsP and the like has recently become increasingly important for the realization of new functional devices such as semiconductor lasers, photodetectors, and superlattices.

このような化合物半導体の気相エピタキシャル技術の1
つとして、有機金属化合物とアルシン又はホスフィン等
との熱分解反応を利用したMOCVD法が従来性われて
きている。しかしながら、この従来法には下記するよう
な欠点があった。以下、理解全容易とするために、zn
p基板上にTno aA spの成長を行う場合につい
て説明する0 成長は、600℃〜700℃程度に加熱したInP基板
上に水素で希釈しタトリエチルインジウム〔工n (C
2H5) 3、以下TEIと略記する〕、トリエチルガ
リウム(G a (C2H5)3 、以下TEGと略記
する〕、アルシン(AsH3) 、ホスフィン(・PH
3)を導入し、熱分解反応を生じさせて行っている。
One such vapor phase epitaxial technology for compound semiconductors
As one example, the MOCVD method, which utilizes a thermal decomposition reaction between an organometallic compound and arsine or phosphine, has been developed. However, this conventional method had the following drawbacks. Below, for ease of understanding, zn
The case of growing Tno aA sp on a P substrate will be explained. The growth is performed by diluting with hydrogen and growing Tno aA sp on an InP substrate heated to about 600°C to 700°C.
2H5) 3, hereinafter abbreviated as TEI], triethylgallium (G a (C2H5)3, hereinafter abbreviated as TEG), arsine (AsH3), phosphine (・PH
3) is introduced to cause a thermal decomposition reaction.

これ全添付図面の第1図により具体的に説明する。第1
図は従来の化合物半導体結晶成長装置の概略図である。
This will be explained in detail with reference to FIG. 1 of the attached drawings. 1st
The figure is a schematic diagram of a conventional compound semiconductor crystal growth apparatus.

第1図において、符号1は反応容器、2はサセプタ、5
はサセプタホルダ、4はワークコイル、5は冷却水導入
口、6は冷却水排出口、7は基板、8及び9は給気管、
10は排気管を意味する。第1図において、エピタキシ
ャル成長に当ってはサセプタ2−I:、で高周波誘導加
熱するワークコイル4によって加熱されたInP基板Z
上に、給気管8からTEI及びTEGを、給気管9から
AsH3及びPH3iそれぞれ水素で希釈して反応室に
導入する。エピタキシャル成長層の組成、膜厚を均一に
するためにはこれらのガスが基板上に達する前に十分に
混合される必要があるが、逆にTEIとA SH3ある
いはPH3が反応して中間反応生成物が生成し、組成制
御が十分にできず、また結晶性や表面状態が悪くなると
いう問題があった。
In FIG. 1, numeral 1 is a reaction vessel, 2 is a susceptor, and 5 is a susceptor.
is a susceptor holder, 4 is a work coil, 5 is a cooling water inlet, 6 is a cooling water outlet, 7 is a board, 8 and 9 are air supply pipes,
10 means an exhaust pipe. In FIG. 1, during epitaxial growth, an InP substrate Z is heated by a work coil 4 that performs high-frequency induction heating in a susceptor 2-I.
Above, TEI and TEG are introduced from the air supply pipe 8 into the reaction chamber, and AsH3 and PH3i are diluted with hydrogen and introduced from the air supply pipe 9, respectively. In order to make the composition and film thickness of the epitaxially grown layer uniform, these gases need to be sufficiently mixed before reaching the substrate, but on the other hand, TEI and A SH3 or PH3 react and form intermediate reaction products. is generated, the composition cannot be controlled sufficiently, and the crystallinity and surface condition deteriorate.

本発明は、以上のような原料ガスの混合音せずに良好な
エピタキシャル結晶成長をさせることを特徴とし、その
第1の目的は従来技術のような中間反応生成物の生成を
抑止するにあり、第2の目的は、一時に処理し得るウエ
ノ・枚数を多く(〜、エピタキシャル成長コストの低減
”e 図る方法及び装置を提供することにある。
The present invention is characterized by achieving good epitaxial crystal growth without the above-mentioned mixing noise of raw material gases, and its first purpose is to suppress the generation of intermediate reaction products unlike the prior art. The second object is to provide a method and apparatus that can increase the number of wafers that can be processed at one time (and reduce epitaxial growth costs).

すなわち、本発明を概説すれば、本発明の第1の方法の
発明は、少なくとも2種以上の元素の化合物からなる化
合物半導体のエピタキシャル成長に際し、該元素を含む
2種以上の原料化合物ガス全反応させて単結晶を成長さ
せる化合物半導体結晶成長法において、少なくとも2種
の原料化合物が成長層に達する壕での混合を抑制するこ
とを特徴とする化合物半導体結晶成長法に関する。
That is, to summarize the present invention, the invention of the first method of the present invention is that during epitaxial growth of a compound semiconductor consisting of a compound of at least two or more elements, two or more raw material compound gases containing the elements are fully reacted. The present invention relates to a compound semiconductor crystal growth method in which a single crystal is grown using a compound semiconductor crystal growth method, which is characterized in that mixing of at least two types of raw material compounds in a trench reaching a growth layer is suppressed.

1だ、本発明の第2の装置の発明は、少なくとも2種以
上の元素の化合物からなる化合物半導体のエピタキシャ
ル成長に際し、該元素を含む2種以上の原料化合物ガス
を反応させて単結晶全成長させる化合物半導体結晶成長
装置において、少なくとも2種の原料化合物が成長層に
達するまでに混合するの全抑制するための仕切板を設け
たことe%徴とする化合物半導体結晶成長装置に関する
1. The second device invention of the present invention is that, when epitaxially growing a compound semiconductor made of a compound of at least two or more elements, two or more raw material compound gases containing the elements are reacted to grow a single crystal as a whole. The present invention relates to a compound semiconductor crystal growth apparatus in which a partition plate is provided for completely suppressing mixing of at least two types of raw material compounds before reaching the growth layer.

本発明によれば、成長に用いる複数の原料化合物ガス間
を仕切ることにより、該化合物ガスが成長基板上に達す
る寸で少なくとも2種類の原料化合物ガスが混合しない
ようにしたことを特徴とし、以下に挙げるような効果が
ある。
According to the present invention, a plurality of raw material compound gases used for growth are partitioned to prevent at least two kinds of raw material compound gases from mixing at the point where the compound gases reach the growth substrate, and as described below. It has the following effects.

第1の効果は混合することにより中間反応生成物を生成
し、エピタキシャル単結晶成長に悪影響を及はすような
原料化合物の混合が防止でき、したがって結晶性、表面
状態の良い単結晶を容易に成長でき、更に組成制御、不
純物#度制御が広い範囲にわたってできることにある。
The first effect is that by mixing, it is possible to prevent the mixing of raw material compounds that would produce intermediate reaction products and adversely affect epitaxial single crystal growth, thus making it easier to produce single crystals with good crystallinity and surface condition. It is possible to grow, and furthermore, the composition and impurity concentration can be controlled over a wide range.

第2の効果は多くの基板をサセプタ上に並べることがで
きるので量産が可能となり、製造コストの大幅な低減が
1図れることにある。
The second effect is that many substrates can be arranged on the susceptor, making mass production possible and significantly reducing manufacturing costs.

第5の効果は外界からの不純物の混入を抑制し、品質の
良いエピタキシャル結晶が得られることにある。
The fifth effect is that contamination of impurities from the outside world is suppressed, and epitaxial crystals of good quality can be obtained.

以下添付図面によって本発明の実施の態様を詳細に説明
する。しかし本発明は、これらに限定されるものではな
い。
Embodiments of the present invention will be described in detail below with reference to the accompanying drawings. However, the present invention is not limited to these.

第2図は本発明の化合物半導体結晶成長装置の一実施例
を示す概略図である。第2図において、符号2〜4及び
7〜10は第1図と同義であり、11はエピタキシャル
成長装置のペルジャー、12はワークコイルカバー、1
5は仕切板、14はノズル、15は噴気口、そして7は
InPの基板を意味する。第2図において、サセプタ2
はカーボン製、S]Cコートのカーボン製又はその上に
石英板を載せたものである。水素で希釈口づ11nI、
TKGは給気管8から、同様に水素で希釈したAsH3
、PH3は給気管9から導入され、それらは仕切板15
によって仕切られた反対方向へ、例えば、石英で構成さ
れたノズル14に設けられた噴気口15から噴射される
FIG. 2 is a schematic diagram showing an embodiment of the compound semiconductor crystal growth apparatus of the present invention. In FIG. 2, symbols 2 to 4 and 7 to 10 have the same meaning as in FIG. 1, 11 is a Pelger of an epitaxial growth apparatus, 12 is a work coil cover,
5 is a partition plate, 14 is a nozzle, 15 is a blowhole, and 7 is an InP substrate. In FIG. 2, the susceptor 2
is made of carbon, S]C-coated carbon, or has a quartz plate placed thereon. Dilute with hydrogen 11 nI,
TKG is supplied with AsH3 similarly diluted with hydrogen from the air supply pipe 8.
, PH3 are introduced from the air supply pipe 9, and they are connected to the partition plate 15.
The liquid is ejected from a blowhole 15 provided in a nozzle 14 made of quartz, for example, in opposite directions partitioned by quartz.

基板7を載せたサセプタ2は適当な速さで回転させる。The susceptor 2 on which the substrate 7 is placed is rotated at an appropriate speed.

噴気口15から噴射されたTEI 、  TEGは加熱
された基板7上で熱分解反応(〜て基板」−にインジウ
ムとガリウムが吸着するが、サセプタが回転しているた
めその状態で、AsH3とPH3のガス雰囲気下に持込
まれる0吸着したインジウムとガリウム又はそれらとA
sH3若しくはPH3が反応してできたそれらとヒ素又
はリンとの結合したものは表面拡散してキンクに達(〜
、結晶成長が進行する。
TEI and TEG injected from the fumarole 15 undergo a thermal decomposition reaction on the heated substrate 7 (indium and gallium are adsorbed to the substrate), but since the susceptor is rotating, AsH3 and PH3 0 adsorbed indium and gallium or those and A brought into the gas atmosphere of
The combination of sH3 or PH3 with arsenic or phosphorus diffuses on the surface and reaches the kink (~
, crystal growth progresses.

このような本発明の結晶成長法においてはTEI又はT
EGとAsH3又はPH3が仕切板15により隔離され
ているため直接混合することがなく、シたがって、中間
反応生成物が生成されず、結晶性及び表面状態の良い結
晶を広い組成の範囲にわたって成長することができる。
In such a crystal growth method of the present invention, TEI or T
Since EG and AsH3 or PH3 are separated by the partition plate 15, they do not mix directly. Therefore, intermediate reaction products are not generated, and crystals with good crystallinity and surface condition can be grown over a wide range of composition. can do.

基板1600℃に加熱し、24℃のTRIバブラに対す
るH2  流量15副3/分、−2℃のTEGバブラに
対するH2  流量5cm3/分、水素で希釈した1 
0 % AsH3流量150 cm37分、水素で希釈
した10%PH3流量10crn3/分としたとき1時
間でInP基板に格子整合した約2μmの工n0、72
 Ga  O,28入so、6P0.4i得ることがで
きた。得られたInGaAsPの表面は良好な鏡面にな
っており、結晶性にも問題はなかった。1だ結晶組成は
ガス流量全調整することによシ容易に変えることができ
た。なおこのエビクキシャル成長に当ってはサセプタ2
を毎分約50回転した0 1回転の間に吸着されるIn
、 Ga  等の量が大きくなりすぎないことが重要で
あり、1回転の間の成長層厚が格子定数程度以下である
必要がある。
Substrate heated to 1600 °C, H2 flow rate 15 cm3/min to TRI bubbler at 24 °C, H2 flow rate 5 cm3/min to TEG bubbler at -2 °C, diluted with hydrogen 1
When the flow rate of 0% AsH3 was 150 cm for 37 minutes and the flow rate of 10% PH3 diluted with hydrogen was 10 crn3/min, a process of about 2 μm that was lattice matched to the InP substrate in 1 hour was obtained.
It was possible to obtain 6P0.4i of GaO, 28 so. The surface of the obtained InGaAsP had a good mirror surface, and there were no problems with crystallinity. The crystal composition could be easily changed by adjusting the gas flow rate. In addition, regarding this eviaxial growth, susceptor 2
The In which is adsorbed during one rotation of approximately 50 revolutions per minute
It is important that the amount of , Ga, etc. does not become too large, and the thickness of the growth layer during one revolution must be approximately equal to or less than the lattice constant.

この方法によれば、サセプタ2上に基板7を複数枚載せ
ることができ、量産に適していることは明らかである。
According to this method, it is possible to mount a plurality of substrates 7 on the susceptor 2, and it is clear that this method is suitable for mass production.

第6図(イ)は第2図におけるノズル14及び仕切板1
50部分拡大図であり、第3図(ロ)は第6図(イ)の
A −A’断面図である。第5図(ハ)は第5図(イ)
のB −B’断面図である。第5図において、符号8.
9.15〜15は第2図と同義であり、16は隔壁、1
7はスリットヲ意味する。第6図において、ノズル14
は給気管8.9にそれぞれ接続された管8.9からなシ
、ガス噴射のだめの噴気口15が設けられている016
け管8と9全分離するだめの隔壁である。仕切板15は
ノズル14に設けられたスリット17に嵌込まれる。
Figure 6 (a) shows the nozzle 14 and partition plate 1 in Figure 2.
50 is a partially enlarged view, and FIG. 3(b) is a cross-sectional view taken along line A-A' in FIG. 6(a). Figure 5 (C) is Figure 5 (B)
It is a BB' sectional view of. In FIG. 5, reference numeral 8.
9. 15 to 15 have the same meaning as in Fig. 2, 16 is a partition wall, 1
7 means slit. In FIG. 6, nozzle 14
The pipes 8.9 are connected to the air supply pipes 8.9, respectively, and are provided with blowholes 15 for gas injection.
This is a bulkhead that completely separates tubes 8 and 9. The partition plate 15 is fitted into a slit 17 provided in the nozzle 14.

第4図は本発明の装置における仕切板の一実施例の断面
概略図である0凹み18を設けて、ノズル14に嵌込ん
だ際に安定するようにしたものである。
FIG. 4 is a schematic cross-sectional view of one embodiment of the partition plate in the device of the present invention, in which a recess 18 is provided to ensure stability when fitted into the nozzle 14.

第5図は本発明の装置における仕切板の他の一実施例の
断面概略図であって、突起19を設け、第4図同様の効
果をもたせたものである。
FIG. 5 is a schematic cross-sectional view of another embodiment of the partition plate in the device of the present invention, in which projections 19 are provided to provide the same effect as in FIG. 4.

第6図は本発明の装置における仕切板の他の一実施例の
断面概略図であって、TEI、 TEGi含むガスと、
AsH31PH3’ff:含むガスの分離をより十分に
するため、その上部をも被覆する上蓋を設けたものであ
る。第6図において符号15は仕切板、20は上蓋板、
21は側壁板を意味する。第6図(イ)はその底面図を
(ロ)は第6図(イ)のc −c’断面図を示す。仕切
板15と上蓋板20は一体化されている。第6図(ハ)
は更に側面に円筒状の側壁板21を設け、ガスの分離を
よシ確実にさせたものである。更にこの構造によれば外
部からの不純物ガスの混入を抑制することができる。
FIG. 6 is a schematic cross-sectional view of another embodiment of the partition plate in the apparatus of the present invention, in which a gas containing TEI, TEGi,
AsH31PH3'ff: In order to more thoroughly separate the contained gas, an upper lid is provided to cover the upper part of the gas. In FIG. 6, numeral 15 is a partition plate, 20 is an upper cover plate,
21 means a side wall plate. FIG. 6(A) shows a bottom view thereof, and FIG. 6(B) shows a sectional view taken along line c-c' in FIG. 6(A). The partition plate 15 and the upper cover plate 20 are integrated. Figure 6 (c)
Furthermore, a cylindrical side wall plate 21 is provided on the side surface to ensure gas separation. Furthermore, according to this structure, it is possible to suppress the mixing of impurity gas from the outside.

第7図は、本発明にかかる仕切板において上記ガスの分
離′ff:、!:り一層確実にするため、仕切板の下部
にアルゴン、窒素等の不活性ガス若しくは水素の給ガス
管22及び噴射口25を設けたものの断面図である。
FIG. 7 shows the separation of the gas 'ff:,! in the partition plate according to the present invention. This is a cross-sectional view of a partition plate in which a gas supply pipe 22 and an injection port 25 for inert gas such as argon or nitrogen or hydrogen are provided at the bottom of the partition plate in order to further ensure this.

第8図は本発明の化合物半導体結晶成長装置の他の実施
例の概略図である。第8図において、2.7.11.1
5は第2図と同義であり、24は筐体を意味する。第8
図においては、その筐体24より図示のように、仕切板
を支持する構造として仕切板の安定を図ったものである
。第6図あるいは第7図に示すような側面に側壁板を具
備した仕切板においては側壁板を支持する構造にしても
よいことは明らかである0第9図は本発明の装置の他の
実施例の概略図である。ペルジャー11の内面の一部に
突起25′ff:、仕切板の側壁板21の外面の一部に
突起26を設け、それらが互いに噛み合ってペルジャー
の上下部と共に仕切板の所定の位置への挿入及び除去が
できるようにしたものである。
FIG. 8 is a schematic diagram of another embodiment of the compound semiconductor crystal growth apparatus of the present invention. In Figure 8, 2.7.11.1
5 has the same meaning as in FIG. 2, and 24 means a housing. 8th
In the figure, as shown in the casing 24, the partition plate is stabilized as a structure that supports the partition plate. It is clear that in a partition plate having side wall plates on the side surfaces as shown in FIG. 6 or FIG. 7, a structure may be used to support the side wall plates. FIG. 2 is an example schematic diagram. A protrusion 25'ff is provided on a part of the inner surface of the Pelger 11: A protrusion 26 is provided on a part of the outer surface of the side wall plate 21 of the partition plate, and these engage with each other to insert the upper and lower parts of the Pelger into a predetermined position of the partition plate. and can be removed.

これにより、結晶成長前後の作業が大幅に簡略化でき、
丑だ第7図に示すようなガス噴射口を有する仕切板の場
合、ガスの導入がペルジャー側から容易にできるように
なる。
This greatly simplifies the work before and after crystal growth.
In the case of a partition plate having a gas injection port as shown in FIG. 7, gas can be easily introduced from the Pelger side.

以上説明はノズルを2分割して、2系統のガスを流す場
合について行ったが、6分割、4分割等多数に分割し、
それらを多数の仕切板により仕切ってTRI 、TKG
 XAsH3、PH3全それぞれ別系統として装置内に
導入することができる。
The above explanation was about the case where the nozzle is divided into two parts and two systems of gas are flowed, but if the nozzle is divided into six parts, four parts, etc.
They are divided by many partition plates and TRI, TKG
XAsH3 and PH3 can be introduced into the device as separate systems.

壕だ仕切板によって仕切られた反応室の数をガス系統数
より多く例えば整数倍とすれば、サセプタの1回転の間
にガス雰囲気は上記倍数だけ切換わったこととなるので
サセプタの回転数を小さくすることができる。
If the number of reaction chambers partitioned by trench partition plates is greater than the number of gas systems, for example, by an integer multiple, then the gas atmosphere will be changed by the above multiple during one rotation of the susceptor, so the rotation speed of the susceptor should be Can be made smaller.

これ壕で工nGaAEIPの単結晶成長にTEI 、T
EG、。
TEI and T were used for single crystal growth of nGaAEIP in this trench.
E.G.

PH3及びAsH3f用いる場合について説明してきた
が、トリメチルインジウム等のインジウム化合物、トリ
メチルガリウム等のガリウム化合物、三塩化ヒ素等のヒ
素化合物、三塩化リン等のリン化合物を用いても同様に
単結晶成長できることは明らかである。
Although we have explained the case of using PH3 and AsH3f, single crystal growth can be similarly achieved using indium compounds such as trimethylindium, gallium compounds such as trimethylgallium, arsenic compounds such as arsenic trichloride, and phosphorus compounds such as phosphorus trichloride. is clear.

また用いる化合物を適当に選択することにより、InP
 、  GaAs 、InGaAs、InAsP 、 
 GaAsP等の化合物半導体エピタキシャル成長が可
能であり、更にアルミニウム化合物、アンチモン化合物
を用いることにより、GaAtAθ、GaA7AsP 
In addition, by appropriately selecting the compound used, InP
, GaAs, InGaAs, InAsP,
Epitaxial growth of compound semiconductors such as GaAsP is possible, and by using aluminum compounds and antimony compounds, GaAtAθ, GaA7AsP
.

Garb XGaAsSb等のエピタキシャル成長も可
能である。エピタキシャル成長層の伝導型、伝導度全制
御するための不純物添加についても、例えばカドミウム
化合物等、所望の元素の化合物を他のガスと同様に反応
室内に導入することにより容易に行うことができる。
Epitaxial growth of Garb XGaAsSb etc. is also possible. Addition of impurities to completely control the conductivity type and conductivity of the epitaxially grown layer can also be easily carried out by introducing a compound of a desired element, such as a cadmium compound, into the reaction chamber in the same way as other gases.

エピタキシャル成長の基板は工nPの場合についてのみ
説明したがGaAe 、Garb等あるいは成長層に格
子整合する他の材料についても適用可能なこと幻:明ら
かである01だ多層へテロエピタキシャル成長等にも適
用可能である。
The substrate for epitaxial growth has been described only in the case of nP, but it can also be applied to GaAe, Garb, etc., or other materials that lattice match the growth layer. be.

更に以上説明したよりなIII −V族化合物半導体の
エピタキシャル成長に限らず、TI−vr族化合物半導
体の成長にも適用することができる。
Furthermore, it is applicable not only to the epitaxial growth of III-V group compound semiconductors as described above, but also to the growth of TI-Vr group compound semiconductors.

そして、以上の説明は反応室内圧力が大気圧ノ場合につ
いてのみ行ったが、真空ポンプで排気することによシ、
低圧下での成長が行えることも明らかである。
Although the above explanation was given only for the case where the pressure in the reaction chamber is atmospheric pressure, it is possible to
It is also clear that growth under low pressure can be performed.

以上詳細に説明したように、本発明によれば、(])中
間反応生成物の生成が防止でき、それ故良好な単結晶を
容易に成長できると共に各制御を広い範囲にわたって行
うことができる、(2)製造コストの大幅な低減が図れ
る、(3)品質の良いエピタキシャル結晶が得られると
いう顕著な効果が奏せられる。
As explained in detail above, according to the present invention, (]) the generation of intermediate reaction products can be prevented, and therefore a good single crystal can be easily grown, and each control can be performed over a wide range. (2) The manufacturing cost can be significantly reduced, and (3) epitaxial crystals of good quality can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の化合物半導体結晶成長装置の概略図、第
2図は、本発明の化合物半導体成長装置の一実施例を示
す概略図、第3図G)は本発明の第2図におけるノズル
及び仕切板の部分拡大図であり、第5図(ロ)は第6図
(イ)のA −A’断面図、第5図(ハ)は第6図(イ
)のB −B’断面図である。 また第4図〜第7図は本発明の装置における仕切板の一
実施態様を示す断面概略図であり第6図において(イ)
は仕切板の底面図、(ロ)は(イ)のC−C′断面図、
(ハ)は(イ)に側壁板を付設したものの断面図、第8
図及び第9図は本発明の装置の他の実施例の概略図であ
る。 1:反応容器、2:サセプタ、4:ワークコイル17:
基板、8及び9:給気管、10:排気管、13:仕切板
、14:ノズル、15:噴気口、20:上蓋板、21:
側壁板、22:給ガス管、26二噴射口 特許出願人  日本電信電話公社 代理人 中 本  宏 同      井   上      昭第 / 図 第3図 (イ) 第 2 図 第t! 図 (ハ) 第 7 図 第8図 率 9 図
Fig. 1 is a schematic diagram of a conventional compound semiconductor crystal growth apparatus, Fig. 2 is a schematic diagram showing an embodiment of the compound semiconductor crystal growth apparatus of the present invention, and Fig. 3G) is a nozzle in Fig. 2 of the present invention. and a partially enlarged view of the partition plate, FIG. 5(b) is a cross-sectional view taken along line A-A' in FIG. 6(a), and FIG. 5(c) is a cross-sectional view taken along line B-B' in FIG. 6(a). It is a diagram. Moreover, FIGS. 4 to 7 are schematic cross-sectional views showing one embodiment of the partition plate in the device of the present invention, and in FIG.
is a bottom view of the partition plate, (b) is a C-C' cross-sectional view of (a),
(C) is a cross-sectional view of (A) with a side wall plate attached, No. 8
9 and 9 are schematic diagrams of other embodiments of the device of the invention. 1: Reaction vessel, 2: Susceptor, 4: Work coil 17:
Substrate, 8 and 9: Air supply pipe, 10: Exhaust pipe, 13: Partition plate, 14: Nozzle, 15: Fumarole port, 20: Upper cover plate, 21:
Side wall plate, 22: Gas supply pipe, 26 two injection ports Patent applicant: Nippon Telegraph and Telephone Public Corporation agent Hirotoshi Nakamoto Akio Inoue / Figure 3 (a) Figure 2 t! Figure (c) Figure 7 Figure 8 Rate Figure 9

Claims (1)

【特許請求の範囲】 1、 少なくとも2種以上の元素の化合物からなる化合
物半導体のエピタキシャル成長に際し、該元素を含む2
種以上の原料化合物ガス全反応させて単結晶を成長させ
る化合物半導体結晶成長法において、少なくとも2種の
原料化合物が成長層に達するまでの混合全抑制すること
全特徴とする化合物半導体結晶成長法。 2、 少なくとも2種以上の元素の化合物からなる化合
物半導体のエピタキシャル成長に際し、該元素を含む2
種以上の原料化合物ガス全反応させて単結晶全成長させ
る化合物半導体結晶成長装置において、少なくとも2種
の原料化合物が成長層に達するまでに混合するのを抑制
するための仕切板を設けたことを特徴とする化合物半導
体結晶成長装置。
[Claims] 1. During epitaxial growth of a compound semiconductor consisting of a compound of at least two or more elements,
A compound semiconductor crystal growth method in which a single crystal is grown by causing a total reaction of more than one species of raw material compound gases, which is characterized in that mixing of at least two kinds of raw material compounds is completely suppressed until they reach a growth layer. 2. When epitaxially growing a compound semiconductor consisting of a compound of at least two or more elements,
In a compound semiconductor crystal growth apparatus in which a single crystal is grown by a total reaction of more than one raw material compound gas, a partition plate is provided to suppress mixing of at least two kinds of raw material compounds before reaching the growth layer. Characteristic compound semiconductor crystal growth equipment.
JP10616282A 1982-06-22 1982-06-22 Method and device for growing of compound semiconductor crystal Pending JPS58223317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10616282A JPS58223317A (en) 1982-06-22 1982-06-22 Method and device for growing of compound semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10616282A JPS58223317A (en) 1982-06-22 1982-06-22 Method and device for growing of compound semiconductor crystal

Publications (1)

Publication Number Publication Date
JPS58223317A true JPS58223317A (en) 1983-12-24

Family

ID=14426582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10616282A Pending JPS58223317A (en) 1982-06-22 1982-06-22 Method and device for growing of compound semiconductor crystal

Country Status (1)

Country Link
JP (1) JPS58223317A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4664743A (en) * 1984-08-21 1987-05-12 British Telecommunications Plc Growth of semi-conductors and apparatus for use therein
JP2003086522A (en) * 2001-09-13 2003-03-20 Sumitomo Chem Co Ltd Semiconductor-manufacturing device
JP2010232235A (en) * 2009-03-26 2010-10-14 Taiyo Nippon Sanso Corp Vapor growth device
CN102094189A (en) * 2011-03-14 2011-06-15 福建钧石能源有限公司 Chemical vapor deposition reaction equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4664743A (en) * 1984-08-21 1987-05-12 British Telecommunications Plc Growth of semi-conductors and apparatus for use therein
JP2003086522A (en) * 2001-09-13 2003-03-20 Sumitomo Chem Co Ltd Semiconductor-manufacturing device
JP2010232235A (en) * 2009-03-26 2010-10-14 Taiyo Nippon Sanso Corp Vapor growth device
CN102094189A (en) * 2011-03-14 2011-06-15 福建钧石能源有限公司 Chemical vapor deposition reaction equipment

Similar Documents

Publication Publication Date Title
US8133322B2 (en) Apparatus for inverted multi-wafer MOCVD fabrication
KR20040068596A (en) Method and device for depositing crystalline layers on crystalline substrates
EP0524817B1 (en) Crystal growth method of III - V compound semiconductor
JPS58223317A (en) Method and device for growing of compound semiconductor crystal
JPH03203228A (en) Semiinsulating garium arsenic formation
JPH08316151A (en) Manufacture of semiconductor
JP3386302B2 (en) N-type doping method for compound semiconductor, chemical beam deposition method using the same, compound semiconductor crystal formed by these crystal growth methods, and electronic device and optical device constituted by this compound semiconductor crystal
CA1313343C (en) Metal organic vapor phase epitaxial growth of group iii-v semiconductor materials
JPS6129915B2 (en)
JP2736655B2 (en) Compound semiconductor crystal growth method
JPH11329980A (en) Organic metallic gaseous phase growing device and method therefor using the same
JPS5930799A (en) Apparatus for growing crystal of compound semiconductor
JPS59170000A (en) Device for crystal growth
JP2952831B2 (en) Method for manufacturing semiconductor device
EP0477374B1 (en) Process for growing semiconductor crystal
JPH07122507A (en) Semiconductor manufacturing device
JPH11214316A (en) Manufacture of semiconductor
JPS6353160B2 (en)
WO1986002776A1 (en) Technique for the growth of epitaxial compound semiconductor films
JPH04221820A (en) Vapor growth method for organic metal
JPH0536397B2 (en)
JPS6377112A (en) Vapor growth method
JPH0788276B2 (en) Vapor phase epitaxial growth method
JPS6290925A (en) Method for vapor growth
JPH0684803A (en) Vapor phase epitaxial growth device