JPH0788276B2 - Vapor phase epitaxial growth method - Google Patents

Vapor phase epitaxial growth method

Info

Publication number
JPH0788276B2
JPH0788276B2 JP30384386A JP30384386A JPH0788276B2 JP H0788276 B2 JPH0788276 B2 JP H0788276B2 JP 30384386 A JP30384386 A JP 30384386A JP 30384386 A JP30384386 A JP 30384386A JP H0788276 B2 JPH0788276 B2 JP H0788276B2
Authority
JP
Japan
Prior art keywords
growth
layer
pressure
vapor phase
phase epitaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30384386A
Other languages
Japanese (ja)
Other versions
JPS63159296A (en
Inventor
博邦 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP30384386A priority Critical patent/JPH0788276B2/en
Publication of JPS63159296A publication Critical patent/JPS63159296A/en
Publication of JPH0788276B2 publication Critical patent/JPH0788276B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明はV族元素の水素化物とIII族元素の有機金属
化合物を原料として用いるIII−V族化合物半導体結晶
層の気相エピタキシャル成長方法に適用されるものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention uses a hydride of a group V element and an organometallic compound of a group III element as a raw material to form a crystal of a III-V group compound semiconductor crystal layer. It is applied to the phase epitaxial growth method.

(従来の技術) アルシン(AsH3),ホスフィン(PH3)等のV族元素の
水素化物と、トリメチルガリウム(Ga(CH33:以下TMG
と略称),トリメチルアルミニウム(Al(CH33:以下T
MAと略称)等のIII族元素の有機金属化合物を原料とし
て用い、III−V族化合物半導体結晶層を成長させる方
法は有機金属化学気相堆積法(以下MO−CVD法と略称)
と呼称され、均一性,量産性に優れた結晶成長法として
注目を集めている。
(Prior Art) Hydrogenation of group V elements such as arsine (AsH 3 ) and phosphine (PH 3 ) and trimethylgallium (Ga (CH 3 ) 3 : hereinafter TMG
Abbreviated), trimethylaluminum (Al (CH 3 ) 3 : T below
A method of growing a III-V group compound semiconductor crystal layer using an organometallic compound of a III group element such as MA) as a raw material is a metalorganic chemical vapor deposition method (hereinafter abbreviated as MO-CVD method).
It has been attracting attention as a crystal growth method with excellent uniformity and mass productivity.

ここ数年、高電子移動度トランジスタ(以下HEMTと略
称),多重量子井戸レーザ(以下MQWレーザと略称)等
の新しい素子の出現により、これらの素子を製造する際
の出発材料となるエピタキシャルウエハの成長において
も、多元系半導体結晶層を高度な制御性を有して多層に
成長させる技術が要求されている。
With the advent of new devices such as high electron mobility transistors (hereinafter abbreviated as HEMT) and multiple quantum well lasers (hereinafter abbreviated as MQW laser) in the past few years, the epitaxial wafers used as starting materials for manufacturing these devices have become Also in the growth, there is a demand for a technique for growing a multi-component semiconductor crystal layer in multiple layers with a high degree of controllability.

MO−CVD法は上記多元系半導体結晶層を多層に成長させ
るという観点からも有用な技術であるが、上記均一性,
量産性を損なうことなくHEMTやMQWレーザ等に用いるエ
ピタキシャルウエハの成長を行なうには未だに不満足な
状況である。
The MO-CVD method is a useful technique from the viewpoint of growing the multi-component semiconductor crystal layer in multiple layers, but the uniformity,
It is still unsatisfactory to grow epitaxial wafers used for HEMTs, MQW lasers, etc. without impairing mass productivity.

以下、従来例としてMO−CVD法によりHEMT用のウエハを
成長させる工程につき図面を参照して説明する。
Hereinafter, as a conventional example, a process of growing a HEMT wafer by MO-CVD will be described with reference to the drawings.

第2図にHEMT用のエピタキシャルウエハを断面図で示
す。図中の101は半絶縁性GaAs基板、102はアンドープGa
As層で層厚は約1μm,キャリア濃度は1×1014cm-3
下、103はn型AlχGa1- χAs層で層厚は400Å,キャリア
濃度は5×1017cm-3,Al組成χは0.3,104はn型GaAs層で
層厚は500Å,キャリア濃度は5×1017cm-3である。
FIG. 2 shows a cross-sectional view of an HEMT epitaxial wafer. In the figure, 101 is a semi-insulating GaAs substrate, and 102 is undoped Ga.
The As layer has a layer thickness of about 1 μm, the carrier concentration is 1 × 10 14 cm -3 or less, 103 is an n-type Al χ Ga 1- χ As layer, the layer thickness is 400Å, the carrier concentration is 5 × 10 17 cm -3 , The Al composition χ is 0.3 and 104 is an n-type GaAs layer with a layer thickness of 500Å and a carrier concentration of 5 × 10 17 cm -3 .

HEMTの特性を向上させるためには第2図に示したウエハ
において、次にあげる要件が満たされなければならな
い。すなわち、 (i)アンドープGaAs層102が高純度である(不純物濃
度が低い)こと。これには望ましくは77Kにおける移動
度が100,000cm2/VS以上であること。
In order to improve the characteristics of HEMT, the wafer shown in FIG. 2 must meet the following requirements. That is, (i) the undoped GaAs layer 102 has high purity (low impurity concentration). For this, the mobility at 77K is preferably 100,000 cm 2 / VS or more.

(ii)アンドープGaAs層102とn型AlGaAs層103との界面
の組成変化が急峻であること。
(Ii) The composition change at the interface between the undoped GaAs layer 102 and the n-type AlGaAs layer 103 is sharp.

(iii)n型AlGaAs層103の層厚,キャリア濃度,組成が
所定値に精度よく制御されていること。
(Iii) The layer thickness, carrier concentration, and composition of the n-type AlGaAs layer 103 are accurately controlled to predetermined values.

さらに素子製作工程における素子収量を増加させるため
に (iv)n型AlGaAs層103,n型GaAs層104の層厚およびキャ
リア濃度の面内均一性が良好であること。
Further, in order to increase the device yield in the device manufacturing process, (iv) the in-plane uniformity of the layer thickness and carrier concentration of the n-type AlGaAs layer 103 and the n-type GaAs layer 104 is good.

も必要である。Is also necessary.

叙上の要件を満たすべく、従来のMO−CVD法においては
次のような装置および工程により成長が行なわれてい
る。
In order to satisfy the above requirements, in the conventional MO-CVD method, the growth is performed by the following apparatus and process.

第3図は従来のMO−CVD装置の概要を示す断面図で、図
中111は石英で形成された反応管、112は上記反応管111
に開口し設けられた原料ガス導入口、113はウエハを載
置するためにグラファイトで形成されたサセプタ、114
はGaAs基板、115はサセプタ113を加熱するための高周波
コイル、116はガス排出口を夫々示す。
FIG. 3 is a cross-sectional view showing an outline of a conventional MO-CVD apparatus, in which 111 is a reaction tube made of quartz and 112 is the reaction tube 111.
A raw material gas inlet provided by opening at 113, a susceptor made of graphite for mounting a wafer, 114
Is a GaAs substrate, 115 is a high-frequency coil for heating the susceptor 113, and 116 is a gas outlet.

次に上記装置を用いたHEMT用のウエハの成長は次のよう
に進められる。まず、GaAs基板114を所定の位置に設置
したのち高周波コイル115に通電しサセプタ113を加熱す
る。GaAs基板114の温度が成長温度の例えば650℃に達し
安定した時点で原料ガス導入管112から予め設定された
流量のAsH3,TMG,水素の混合ガスを反応管111内に流入さ
せる。この工程によりアンドープGaAs層102(第2図)
の成長が行なわれる。さらに所定時間経過後反応管111
内に上記AsH3,TMG,水素の混合ガスに加えて、TMA及びド
ーバントであるSiH4を所定量流入される。この工程によ
りn型AlGaAs層103(第2図)の成長が行なわれる。さ
らに所定時間n型AlGaAs層を成長させたのち、TMAの供
給を停止し、n型GaAs層104層(第2図)を所定時間成
長させて全部の成長が完了する。
Next, the growth of a wafer for HEMT using the above-mentioned apparatus proceeds as follows. First, the GaAs substrate 114 is installed at a predetermined position, and then the high frequency coil 115 is energized to heat the susceptor 113. When the temperature of the GaAs substrate 114 reaches a growth temperature of, for example, 650 ° C. and becomes stable, a mixed gas of AsH 3 , TMG, and hydrogen having a preset flow rate is introduced into the reaction tube 111 from the source gas introduction tube 112. Through this process, the undoped GaAs layer 102 (Fig. 2)
Growth takes place. After a further predetermined time, the reaction tube 111
In addition to the above mixed gas of AsH 3 , TMG, and hydrogen, a predetermined amount of TMA and SiH 4 , which is a dopant, is introduced into the inside. By this step, the n-type AlGaAs layer 103 (FIG. 2) is grown. After the n-type AlGaAs layer is further grown for a predetermined time, the supply of TMA is stopped and the n-type GaAs layer 104 layer (FIG. 2) is grown for a predetermined time to complete the entire growth.

(発明が解決しようとする問題点) 叙上の工程により作成されたエピタキシャルウエハで
は、上記HEMT用ウエハが満たすべき4要件のうち、アン
ドープGaAs層を高純度にするという項目((i)項)以
外の3要件についてはこれらを満足させることが困難で
あった。特に第3図に示した常圧下の成長においてはガ
スの置換に時間がかかるので、GaAs層とAlGaAs層との界
面の急峻性が低下してしまうという重大な問題がある。
(Problems to be Solved by the Invention) In the epitaxial wafer formed by the above process, among the four requirements to be satisfied by the HEMT wafer, the item of making the undoped GaAs layer highly pure (section (i)). It was difficult to satisfy these 3 requirements other than the above. Particularly, in the growth under normal pressure shown in FIG. 3, it takes a long time to replace the gas, so that there is a serious problem that the steepness of the interface between the GaAs layer and the AlGaAs layer is lowered.

上記問題点に対する解決手段として、反応管内を排気し
減圧下で成長を行なうことが試みられている。この減圧
下で成長を行なう装置は第4図に示すように、反応管11
1の排気口116に圧力調整用バルブ117を介して真空用ロ
ータリポンプ118を取付け、反応管111内を50〜100Torr
程度の減圧にして成長を施す。成長の工程は常圧にて行
なう既述の工程と全く同様に施されるから説明を省略す
る。
As a means for solving the above problems, it has been attempted to exhaust the inside of the reaction tube and perform the growth under reduced pressure. As shown in FIG. 4, the apparatus for performing the growth under the reduced pressure has a reaction tube 11
Attach the vacuum rotary pump 118 to the exhaust port 116 of 1 through the pressure adjusting valve 117, and set the inside of the reaction tube 111 to 50 to 100 Torr.
The growth is performed with a reduced pressure. The growth process is performed in exactly the same manner as the above-described process performed under normal pressure, and therefore its description is omitted.

上記減圧下における成長では、常圧下の成長に比べて (a)ガスの流速が大きいために、ガスの置換が短時間
で行なわれ界面急峻性が向上する。
In the growth under the reduced pressure, (a) the gas flow velocity is higher than that in the growth under the normal pressure, so that the gas replacement is performed in a short time and the interface sharpness is improved.

(b)成長速度が低下するので、成長膜厚の制御性が向
上する。
(B) Since the growth rate is reduced, the controllability of the grown film thickness is improved.

(c)熱対流の影響を受けにくく、膜厚,キャリア濃度
の面内均一性が向上する。
(C) The influence of thermal convection is less likely to occur, and the in-plane uniformity of film thickness and carrier concentration is improved.

などの利点があり、上述の4要件のうち(ii)〜(iv)
項を満足させることができる。しかしながら、減圧下の
成長においては結晶層中に炭素が取り込まれやすく、Ga
As層を高純度化することが困難であること、および成長
濃度が小さいためにアンドーブGaAs層102を層厚1μm
に成長させるのに1時間以上を要し生産性が低いという
問題があった。
Among the above 4 requirements (ii) ~ (iv)
The term can be satisfied. However, during growth under reduced pressure, carbon is easily incorporated into the crystal layer,
Since the As layer is difficult to be highly purified and the growth concentration is low, the Andove GaAs layer 102 has a layer thickness of 1 μm.
There was a problem that productivity was low because it took more than 1 hour to grow into

叙上の如く、MO−CVD法でHEMT用ウエハを成長させる場
合、常圧,減圧のいずれかの方式においても一長一短が
あり、HEMT製作に適したMO−CVDの成長方法は見出せて
いない状況であった。
As mentioned above, when growing a HEMT wafer by MO-CVD method, there are merits and demerits in either method of normal pressure or reduced pressure, and there is no MO-CVD growth method suitable for HEMT fabrication. there were.

本発明者はこの点に鑑み種々検討を重ねた結果、複数層
のIII−V族化合物半導体結晶層を成長させるに際し、
各成長層において要求される結晶品質に応じて異なる圧
力化で成長を行えば常圧,減圧の各方法の長所を生かし
た成長が可能であるとの結論に達し、本発明を案出する
に至った。
The present inventor has made various studies in view of this point, and as a result, in growing a plurality of III-V group compound semiconductor crystal layers,
It was concluded that growth can be performed by utilizing the advantages of each method of normal pressure and reduced pressure if growth is performed under different pressures depending on the crystal quality required in each growth layer, and the present invention is devised. I arrived.

この発明は上記従来の問題点を改良するためになされた
もので、各成長層に要求され結晶品質を満たすように成
長圧力を調整して施す成長方法を提供する。
The present invention has been made to improve the above conventional problems, and provides a growth method in which the growth pressure is adjusted so as to satisfy the crystal quality required for each growth layer.

〔発明の構成〕[Structure of Invention]

(問題点を解決するための手段) この発明にかかる気相エピタキシャル成長方法は、V族
元素の水素化物とIII族元素の有機金属化合物を用いて
複数層のIII−V族化合物半導体結晶層を成長させるに
際し、反応容器内の圧力を可変となす機構を備えた成長
装置により、複数層の化合物半導体結晶層のうち組成も
しくはキャリア濃度の異なる少くとも二層に対し各層の
形成に適した異なる圧力の下で成長を施すことを特徴と
し、高品質の結晶層を得るものである。
(Means for Solving the Problems) In the vapor phase epitaxial growth method according to the present invention, a plurality of III-V group compound semiconductor crystal layers are grown using a hydride of a group V element and an organometallic compound of a group III element. In doing so, by using a growth apparatus equipped with a mechanism for making the pressure in the reaction vessel variable, it is possible to use different pressures suitable for forming each layer for at least two layers having different composition or carrier concentration among a plurality of compound semiconductor crystal layers. A high-quality crystal layer is obtained, which is characterized by being grown under.

(作 用) この発明は各結晶層において要求される結晶品質に適合
するように反応管内圧力を選択して成長を行なうことに
より従来の常圧もしくは減圧いずれか単一の圧力下での
成長では得られなかったより高品質のエピタキシャル結
晶層を得ることができる。
(Operation) In the present invention, by selecting the pressure in the reaction tube so as to meet the required crystal quality in each crystal layer and performing the growth, the conventional growth under a single pressure, either normal pressure or reduced pressure, It is possible to obtain a higher quality epitaxial crystal layer that has not been obtained.

(実施例) 以下、この発明にかかる気相エピタキシャル成長方法の
一実施例につき第1図を参照して説明する。なお、説明
において従来と変わらない部分については、この成長に
用いられるMO−CVD装置(第1図)の各部に従来と同じ
符号をつけて示し説明を省略する。
(Embodiment) An embodiment of the vapor phase epitaxial growth method according to the present invention will be described below with reference to FIG. In the description, the same parts as those of the conventional one will be denoted by the same reference numerals as those of the conventional one and will not be described.

この発明の実施に用いられるMO−CVD装置は、従来例で
示した装置(第4図または第3図)に圧力を可変にする
機構部を付与したものである。即ち第1図において、11
a,11bはいずれも圧力調整バルブ、12は減圧排気する経
路を選択するための三方バルブを夫々示す。この第1図
に示す装置によって第2図に示したHEMT用ウエハを成長
させる手順は以下の通りである。
The MO-CVD apparatus used in the practice of the present invention is the apparatus shown in the conventional example (FIG. 4 or FIG. 3) provided with a mechanism for varying the pressure. That is, in FIG.
Reference numerals a and 11b each denote a pressure adjusting valve, and reference numeral 12 denotes a three-way valve for selecting a path for depressurized exhaust. The procedure for growing the HEMT wafer shown in FIG. 2 by the apparatus shown in FIG. 1 is as follows.

まず、所定の流量を流した状態で、各排気経路の圧力調
整バルブ11a,11bを調節する。これには第1図の上側の
経路(以下経路Aと記す)を通して排気する場合には反
応管内の圧力が常圧に近い例えば500Torrになるように
調整バルブ11aを予め調節しておき、また、下側の経路
(以下経路Bと記す)を通して排気する場合には圧力が
低く例えば50Torrになるように予め調節しておく。
First, the pressure adjusting valves 11a and 11b in each exhaust path are adjusted while a predetermined flow rate is being flown. To this end, when exhausting through the upper path of FIG. 1 (hereinafter referred to as path A), the adjusting valve 11a is adjusted in advance so that the pressure in the reaction tube is close to normal pressure, for example, 500 Torr. When exhausting through the lower path (hereinafter referred to as path B), the pressure is adjusted beforehand to be low, for example, 50 Torr.

次にGaAs基板114を所定位置に設置し、従来例で述べた
手順と同一の方法でアンドープGaAs層の成長を施す。こ
の際、反応管内の排気は経路Aを通して行なうことによ
って反応管内の圧力は500Torrに設定される。この工程
では反応管内圧が常圧に近いため成長速度は0.05μm/mi
nと比較的大きく、また、高純度のGaAs層を成長させる
ことができる。次に、20分間経過(この時GaAs層厚は1
μmとなる)後、三方バルブ12を操作し排気経路を経路
Bに切換える。上記操作により反応管の内圧は50Torrに
減圧され、成長速度は0.01μm/minに急激に低下する。
そして、圧力が定常状態に達した時点でTMAおよびSiH4
を反応管内に導入しn型AlGaAs層の成長を行なう。そし
て、所定時間経過後TMAの導入を停止し、n型GaAs層を
所定時間成長させて成長が完了する。
Next, the GaAs substrate 114 is set at a predetermined position, and an undoped GaAs layer is grown by the same method as the procedure described in the conventional example. At this time, the pressure in the reaction tube is set to 500 Torr by exhausting the inside of the reaction tube through the path A. In this process, the growth rate is 0.05 μm / mi because the internal pressure of the reaction tube is close to normal pressure.
n is relatively large, and a high-purity GaAs layer can be grown. Next, 20 minutes have passed (at this time, the GaAs layer thickness is 1
μm), the three-way valve 12 is operated to switch the exhaust path to the path B. By the above operation, the internal pressure of the reaction tube is reduced to 50 Torr, and the growth rate is drastically reduced to 0.01 μm / min.
Then, when the pressure reaches a steady state, TMA and SiH 4
Is introduced into the reaction tube to grow an n-type AlGaAs layer. Then, after a lapse of a predetermined time, the introduction of TMA is stopped and the n-type GaAs layer is grown for a predetermined time to complete the growth.

上記排気経路を経路Bに変更後の成長は反応管の内圧が
50Torrという減圧下で成長が行なわれるので、界面急峻
性、面内均一性が良好である等の減圧成長での長所がそ
のまま発揮される。
The growth after changing the exhaust path to the path B shows that the internal pressure of the reaction tube is
Since the growth is carried out under a reduced pressure of 50 Torr, the advantages of the reduced pressure growth such as excellent interface steepness and in-plane uniformity are directly exhibited.

〔発明の効果〕〔The invention's effect〕

以上述べたようにこの発明によれば、各結晶層において
要求される結晶品質に適合するように反応管内圧力を選
択して成長を行うことにより、従来、常圧または減圧の
いずれか単一の圧力下での成長では得られなかったより
高品質のエピタキシャル結晶を提供することが可能にな
る。
As described above, according to the present invention, by selecting the pressure in the reaction tube so as to meet the required crystal quality in each crystal layer and performing the growth, conventionally, a single pressure of either normal pressure or reduced pressure is used. It becomes possible to provide a higher quality epitaxial crystal that could not be obtained by growth under pressure.

なお、叙上の実施例においてはHEMT用ウエハの成長を例
示したが、成長層が高純度であること、組成変化が急峻
であること、層厚,キャリア濃度,組成の制御性、面内
均一性が良好であること等の要件はHEMT用ウエハに限定
されるものではなく、MQWレーザ用ウエハ等、材料,構
造等にかかわりなく広くエピタキシャルウエハに要求さ
れる普遍的な要件であるから、本発明はエピタキシャル
成長材料,構造に何ら拘束されるものではない。また、
実施例では圧力を変化させる工程を一度しか含んでいな
いが、この工程を複数回含む如き成長においても本発明
は適用できる。
In the above examples, the growth of the HEMT wafer was illustrated. However, the growth layer has high purity, the composition changes sharply, the layer thickness, the carrier concentration, the composition controllability, and the in-plane uniformity. The requirements such as good performance are not limited to HEMT wafers, but are universal requirements that are widely required for epitaxial wafers regardless of materials, structures, etc. for MQW laser wafers, etc. The invention is not bound by the epitaxial growth material or structure. Also,
In the embodiment, the step of changing the pressure is included only once, but the present invention can be applied to the growth including the plurality of steps.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を説明するためのMO−CVD装
置の概略を示す断面図、第2図はHEMT用エピタキシャル
ウエハの構造を示す断面図、第3図および第4図はいず
れも夫々が従来のMO−CVD装置の概略を示す断面図であ
る。 101……半絶縁性GaAs基板 102……アンドープGaAs層 103……n型AlχGa1- χAs層 104……n型GaAs層、111……反応管 114……GaAs基板 11a……圧力調整バルブ(経路A) 11b……圧力調整バルブ(経路B) 12……三方バルブ
FIG. 1 is a sectional view showing the outline of an MO-CVD apparatus for explaining an embodiment of the present invention, FIG. 2 is a sectional view showing the structure of an HEMT epitaxial wafer, and FIGS. FIG. 3 is a sectional view showing the outline of a conventional MO-CVD apparatus. 101 …… Semi-insulating GaAs substrate 102 …… Undoped GaAs layer 103 …… n-type Al χ Ga 1- χ As layer 104 …… n-type GaAs layer, 111 …… Reaction tube 114 …… GaAs substrate 11a …… Pressure adjustment Valve (route A) 11b …… Pressure adjusting valve (route B) 12 …… Three-way valve

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】V族元素の水素化物とIII族元素の有機金
属化合物を用いて複数層のIII−V族化合物半導体結晶
層を成長させるに際し、反応容器内の圧力を可変となす
機構を備えた成長装置により、複数層の化合物半導体結
晶層のうち組成もしくはキャリア濃度の異なる二層に対
し各層の形成に適した異なる圧力の下で成長を施すこと
を特徴とする気相エピタキシャル成長方法。
1. A mechanism for varying the pressure in a reaction vessel when growing a plurality of III-V group compound semiconductor crystal layers using a hydride of a V group element and an organometallic compound of a III group element. A vapor phase epitaxial growth method, wherein two growth layers of compound semiconductor crystal layers having different compositions or carrier concentrations are grown under different pressures suitable for forming the respective layers by the growth apparatus.
【請求項2】前記二層の化合物半導体結晶層がGaAs層と
AlGaAs層であることを特徴とする特許請求の範囲第
(1)項記載の気相エピタキシャル成長方法。
2. The two compound semiconductor crystal layers are a GaAs layer.
The vapor phase epitaxial growth method according to claim (1), which is an AlGaAs layer.
JP30384386A 1986-12-22 1986-12-22 Vapor phase epitaxial growth method Expired - Lifetime JPH0788276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30384386A JPH0788276B2 (en) 1986-12-22 1986-12-22 Vapor phase epitaxial growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30384386A JPH0788276B2 (en) 1986-12-22 1986-12-22 Vapor phase epitaxial growth method

Publications (2)

Publication Number Publication Date
JPS63159296A JPS63159296A (en) 1988-07-02
JPH0788276B2 true JPH0788276B2 (en) 1995-09-27

Family

ID=17925972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30384386A Expired - Lifetime JPH0788276B2 (en) 1986-12-22 1986-12-22 Vapor phase epitaxial growth method

Country Status (1)

Country Link
JP (1) JPH0788276B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0350721A (en) * 1989-07-18 1991-03-05 Nec Corp Vapor phase epitaxy

Also Published As

Publication number Publication date
JPS63159296A (en) 1988-07-02

Similar Documents

Publication Publication Date Title
US4659401A (en) Growth of epitaxial films by plasma enchanced chemical vapor deposition (PE-CVD)
JP2789861B2 (en) Organometallic molecular beam epitaxial growth method
JPH08316151A (en) Manufacture of semiconductor
JPH1174202A (en) Vapor growth device of gallium nitride iii-v compound semiconductor and gallium nitride iii-v compound semiconductor device and its manufacture
JPH0788276B2 (en) Vapor phase epitaxial growth method
JP2577550B2 (en) Impurity doping of III-V compound semiconductor single crystal thin films
JPH01290221A (en) Semiconductor vapor growth method
JPH0754802B2 (en) Vapor growth method of GaAs thin film
JP2587624B2 (en) Epitaxial crystal growth method for compound semiconductor
JPH02126632A (en) Vapor phase epitaxy for compound semiconductor crystal layer and reaction tube therefor
JPH0547668A (en) Crystal growth method for compound semiconductor
JP2847198B2 (en) Compound semiconductor vapor phase growth method
JPS59170000A (en) Device for crystal growth
JPH01290222A (en) Semiconductor vapor growth method
JP2753832B2 (en) III-V Vapor Phase Growth of Group V Compound Semiconductor
JPS6265996A (en) Production of compound semiconductor crystal
JPH11126754A (en) Gaseous-phase growing method of organic metal
JPH03280419A (en) Method for formation of compound semiconductor thin film
JP2793239B2 (en) Method for manufacturing compound semiconductor thin film
JP2736417B2 (en) Semiconductor element manufacturing method
JPH02122521A (en) Manufacture of compound semiconductor crystal layer
JPH03232221A (en) Vapor growth method for compound semiconductor
JPH0737819A (en) Semiconductor wafer and manufacture thereof
JPS62202894A (en) Vapor growth method for iii-v compound semiconductor
JPH06124900A (en) Epitaxial growth method for compound crystal and method for doping