JPS5822309A - Manufacture of amorphous alloy powder and apparatus therefor - Google Patents

Manufacture of amorphous alloy powder and apparatus therefor

Info

Publication number
JPS5822309A
JPS5822309A JP56118442A JP11844281A JPS5822309A JP S5822309 A JPS5822309 A JP S5822309A JP 56118442 A JP56118442 A JP 56118442A JP 11844281 A JP11844281 A JP 11844281A JP S5822309 A JPS5822309 A JP S5822309A
Authority
JP
Japan
Prior art keywords
powder
alloy
particles
mixed flow
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56118442A
Other languages
Japanese (ja)
Other versions
JPS595641B2 (en
Inventor
Senji Shimanuki
島貫 専治
Koichiro Inomata
浩一郎 猪俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56118442A priority Critical patent/JPS595641B2/en
Publication of JPS5822309A publication Critical patent/JPS5822309A/en
Publication of JPS595641B2 publication Critical patent/JPS595641B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/002Making metallic powder or suspensions thereof amorphous or microcrystalline
    • B22F9/008Rapid solidification processing

Abstract

PURPOSE:To massproduce highly efficiently an amorphous alloy powder having a uniform particle diameter, by melting a crystalline alloy powder having a uniform particle diameter with the powder dispersed and moved by a gas stream, arresting and solidifying quickly the powder. CONSTITUTION:The crystalline alloy powder 3 made up of particles having a uniform particle diameter of up to 200mum is fed via a feeding port 4 of a hopper 2 into a container 1 while an inert gas or a reducing gas is introduced via a gas introducing inlet 5 of the container 1, so that the gas is mixed with the powder 3 to form a mixed stream, which is jetted in an atomized state from a nozzle 6 into a tubular furnace 7. In the tubular furnace 7, the alloy particles are heated to a temperature 50-500 deg.C higher than the melting point of the alloy, and are melted and delivered. Then the melted alloy particles are arrested by a cooling medium liquid 8 that is being circulated in directions shown by arrows 9, 9', so that they are quickly solidified into alloy particles, which are stored in storing liquid tank 10. Said cooling medium liquid 8 is fed in an amount of 20- 500 times the amount of melted alloy particles to be arrested so that the alloy particles may be quickly cooled.

Description

【発明の詳細な説明】 本発明轄非晶質合金粉末のI!造方法及びその装置に係
り、更虻評しくは、粒径の均一な非晶質合金粉末を、高
効率で、大量Ell造する方法及びその装置に関する。
[Detailed Description of the Invention] I! of the amorphous alloy powder of the present invention! The present invention relates to a manufacturing method and an apparatus thereof, and more particularly to a method and an apparatus for manufacturing amorphous alloy powder with uniform particle size in large quantities with high efficiency.

合金粉末はレーダー、テレビ、無線通信機、搬送逓信機
器、或い祉定電圧定電流電源などのえめの高層波トラン
ス、濾波器、高周波チョーク、!イクー同調フィル用の
磁心材料として用いられている。磁心材料としての合金
°粉末は合金薄帯と比較すると高周波帯域において磁心
損失が小さく、筒軸1に形状のコアを容易に成製出来る
などの特徴を持って−ゐ。又、この磁心材料として要求
される特性として、透磁率が高いこと、電気抵抗が高い
こと、渦電流損失やヒステリシス損失が小宴いことが挙
けられる。このような要求に最も適しているのは非晶質
合金粉末である。非晶質合金は通常の結晶質合金に比べ
て電気抵抗が高く、非晶質であるが故に結晶磁気異方性
がなくそのため透磁率が高く、ヒステリシス損失が小さ
いという前記の磁心材料の要求に適合した特徴を有して
いる0そこで、かかる非晶質合金粉末は、現在、軟磁性
材料として、電子41!器の部品などへの実用化が進ん
でいる。
Alloy powder is used in high-frequency transformers, filters, high-frequency chokes, etc. for radar, television, wireless communication equipment, carrier/transmission equipment, and constant voltage/constant current power supplies. It is used as a magnetic core material for Iku tuning fills. The alloy powder used as the magnetic core material has the characteristics that the core loss is smaller in the high frequency band than the alloy ribbon, and the core shaped like the cylindrical shaft 1 can be easily formed. Further, the properties required of this magnetic core material include high magnetic permeability, high electrical resistance, and low eddy current loss and hysteresis loss. Amorphous alloy powder is most suitable for meeting these requirements. Amorphous alloys have higher electrical resistance than normal crystalline alloys, and because they are amorphous, they do not have crystal magnetic anisotropy, so they have high magnetic permeability and low hysteresis loss, which meet the requirements for magnetic core materials. Therefore, such amorphous alloy powders are currently being used as soft magnetic materials for electronic 41! Practical applications are progressing for parts such as tableware.

ところで、この非晶質合金の特性は、一般に、非晶質化
の程度により彰響され易く、非晶質化の程度が均一でな
いと、その特性にバラツキを生じ易い。この為に、かか
る非晶質合金粉末としては、形状、特に粒径の均一なも
のであることが要求される。
By the way, the characteristics of this amorphous alloy are generally influenced by the degree of amorphization, and if the degree of amorphization is not uniform, the characteristics tend to vary. For this reason, such amorphous alloy powder is required to be uniform in shape, particularly in particle size.

従来、非晶質合金粉末の製造法としては、例えば特開E
 B 4−76468号公報、職%Pは同5B−128
!SOγ号公報等KII#されズいる如き、溶融合金を
細孔よシ噴出すると共に水流で霧化して凝固させるγト
マイズ法、或いは結晶質合金から成る電極讐誘電体液中
て火花放電させて電極の一部を粉体状に溶融・凝固させ
るスパークエロージョン法などが知られている。
Conventionally, as a manufacturing method of amorphous alloy powder, for example, JP-A-E
B 4-76468 Publication, job %P is 5B-128
! The γ tomization method, as shown in SOγ publications and other KII# publications, involves ejecting a molten alloy through pores and atomizing it with a water stream to solidify it, or by causing a spark discharge in a dielectric liquid between an electrode made of a crystalline alloy and forming an electrode. The spark erosion method, in which a portion of the material is melted and solidified into powder, is known.

ところが、これらの方法によると、得られる非晶質粉末
の粒径分布が広く、従って分級して粒径な揃える必要が
ある。また結晶質の粉末が含まれるなどして、均一な粒
径の非晶質粉末を高効率で得ることができないという量
産上の不都合があった。
However, according to these methods, the particle size distribution of the obtained amorphous powder is wide, and therefore it is necessary to classify the particle size to make the particle size uniform. Furthermore, since the powder contains crystalline powder, it is difficult to obtain amorphous powder with a uniform particle size with high efficiency, which is disadvantageous in terms of mass production.

本発明の目的は、従来の非晶質合金粉末の製造法が有し
ていた、上述の不都合を解消して、粒径の均一な非晶質
合金粉末を、高効率で、大量に製造する方法及びその装
置を提供する仁とKある。
The purpose of the present invention is to eliminate the above-mentioned disadvantages of conventional methods for producing amorphous alloy powder, and to produce amorphous alloy powder with uniform particle size in large quantities with high efficiency. Jin and K provide the method and apparatus.

即ち、本発明の非晶質合金粉末の製造方法は、結晶質合
金粉末と気体との混合流を形成すると共に1該混合流中
に分散され上移動する前記合金の粒子を溶融した後、こ
の溶融合金粒子を捕穫して急速凝11JtLめることを
特徴とする1のである〇本発明に用いられる、上記結晶
質合金粉末は、鉄、ニッケル及びコバルトの少なくとも
1種を主成分として、65〜85原子≦含み、炭素、ケ
イ素、ホウ素及びリンの少なくとも1種を15〜35原
千%含むと井に、その他の合金元素として、クロム、マ
ンガン、バナジウム、ニオブ、タンタル、タングステン
、モリブデン、ジルコニウム、チタン、又はハフニウム
などの1種又は2種以上を、必要に応じて含むものであ
る。
That is, the method for producing amorphous alloy powder of the present invention involves forming a mixed flow of crystalline alloy powder and gas, and melting the particles of the alloy dispersed in the mixed flow and moving upward. 1. The crystalline alloy powder used in the present invention is characterized by capturing molten alloy particles and rapidly solidifying them by 11 JtL. Contains ~85 atoms ≦ and contains 15 to 35,000% of at least one of carbon, silicon, boron, and phosphorus, and other alloying elements such as chromium, manganese, vanadium, niobium, tantalum, tungsten, molybdenum, and zirconium. , titanium, or hafnium, as necessary.

かかる合金は、通常、結晶質で脆−為に1容易に粉末化
できてしかも均一の粒度に揃え易いのであるが、本発明
方法に用いられる結晶質合金粉末としては、目的とする
非晶質合金粒子の粒径に適合した、均一の粒径のもので
あることが必要である。また、かかる結晶質合金F末と
しては、粒径200μm以下の本のが好ましい。粒径が
200μmを超えると、該合金粒子の比表面積が低下し
、溶融合金粒子の冷却連廣が低下して非晶質化しにくい
ためである。
Such alloys are usually crystalline and brittle, so they can be easily pulverized into a uniform particle size. It is necessary to have a uniform particle size that matches the particle size of the alloy particles. Moreover, as such crystalline alloy F powder, one having a grain size of 200 μm or less is preferable. This is because if the particle size exceeds 200 μm, the specific surface area of the alloy particles decreases, and the cooling continuity of the molten alloy particles decreases, making it difficult to become amorphous.

かかる結晶質合金粉末とm*される前記気体は、酸化防
止のためにアルゴンガス、ヘリウムガス、窒素ガス、水
素ガス、もしくけこれらの2種以上−を含む混合ガスな
どの、不活性ガスもしくけ還元性ガスが好ましい。また
、該粉末と気体との混合比は、通常、0.01〜509
/Iが好ましい。
The gas that is mixed with the crystalline alloy powder may be an inert gas such as argon gas, helium gas, nitrogen gas, hydrogen gas, or a mixed gas containing two or more of these gases to prevent oxidation. A sulfur-reducing gas is preferred. Further, the mixing ratio of the powder and gas is usually 0.01 to 509
/I is preferred.

0.01g/J未満であると、溶融時の粉末の加熱効率
が低い。5011/Iを超えると、混合流中の結晶質合
金粉末の分散性が悪く、溶融時もしくは溶融後に溶融合
金粒子同志が再結合し、得られる非晶質合金粉末の粒度
分布がばらつきやすくなる為である。
If it is less than 0.01 g/J, the heating efficiency of the powder during melting will be low. If it exceeds 5011/I, the dispersibility of the crystalline alloy powder in the mixed flow is poor, and the molten alloy particles recombine during or after melting, making the particle size distribution of the obtained amorphous alloy powder more likely to vary. It is.

また、前記結晶質合金粉末と気体により形成される混合
流が、前記合金の粒子が溶融される前に、或いは溶融さ
れて溶融合金粒子となった後に、例えば細孔等を通過せ
しめられて噴霧化することが、結晶質合金粒子或いは溶
融合金粒子の混合流中における分散性が更に高いものと
なシ、これらの溶融或いは冷却効率が高いものとなる為
に好ましい。
In addition, the mixed flow formed by the crystalline alloy powder and the gas is passed through, for example, pores and sprayed before the alloy particles are melted or after they are melted to become molten alloy particles. It is preferable to increase the dispersibility of the crystalline alloy particles or molten alloy particles in the mixed flow and to increase the melting or cooling efficiency of the crystalline alloy particles or molten alloy particles.

前記粉末の溶融は、該粉末の融点(Mp)  より50
℃高い温度から、論融点より500℃高い温度までの範
囲の温度で行うのが好資しい。
The melting of the powder is 50% lower than the melting point (Mp) of the powder.
It is advantageous to carry out the reaction at a temperature ranging from 500° C. above the melting point to 500° C. above the melting point.

(Mp+50)’C未満であると、混合流中を分散して
移動する粉末を均一に溶融することが困難となり非晶質
化が不完全となる。(Mp+500)’Cを超えると、 溶融合金の蒸気圧が高くなり、溶融合金の組成が変化す
る。
If it is less than (Mp+50)'C, it will be difficult to uniformly melt the powder dispersing and moving in the mixed flow, resulting in incomplete amorphization. When it exceeds (Mp+500)'C, the vapor pressure of the molten alloy increases and the composition of the molten alloy changes.

又、溶融合金の冷却速度が低下して非晶質化が不完全と
なる為である。
Furthermore, the cooling rate of the molten alloy decreases, resulting in incomplete amorphization.

また、前記溶融合金粒子を捕獲して急速凝固せしめるに
際しては、該粒子の冷却速度を104℃/sec以上と
することが好ましい。
Further, when capturing and rapidly solidifying the molten alloy particles, it is preferable that the cooling rate of the particles is 104° C./sec or more.

かかる、本発明の非晶質合金粉末の製造方法を実施する
ための装置としては、結晶質合金粉*を供給する供給口
と、供給される該粉末と混合して混合流を形成するガス
の導入口と、形成される前記混合流を吐出するノズルを
具備する中空容器;該容器から吐出される前記混合流を
内部で通過せしめ、該混合流中に分散されて移動する前
記合金の粒子を溶融する炉;及び、前記炉内から搬出す
る溶融合金粒子を捕獲して急速凝固せしめる冷媒体を具
備することを特徴とするものが挙げられるO 本発明に用いる、前記の炉は、炉内を前記混合流が通過
で自る形状を有し、結晶質合金粉末を溶融するに十分な
る高温度な実現・維持できるものであれば何れてあって
も良い。例えば、電気炉、ガス炉、アーク炉、タン!ン
炉、高周波誘導加熱炉などが挙げられ、通常は、前記の
結晶質合金粉末の融点より200〜1000℃高い温度
を実現・維持で禽るものが好ましい。
The apparatus for carrying out the method for producing amorphous alloy powder of the present invention includes a supply port for supplying crystalline alloy powder* and a gas supply port for mixing with the supplied powder to form a mixed flow. A hollow container comprising an inlet and a nozzle for discharging the formed mixed flow; the mixed flow discharged from the container is allowed to pass therethrough, and the particles of the alloy that are dispersed and moved in the mixed flow are A furnace that melts; and a cooling medium that captures and rapidly solidifies the molten alloy particles carried out from the inside of the furnace. Any flow may be used as long as the mixed flow has its own shape as it passes through and can achieve and maintain a temperature high enough to melt the crystalline alloy powder. For example, electric furnace, gas furnace, arc furnace, tan! Examples include a high-frequency induction heating furnace, a high-frequency induction heating furnace, etc., and those that can achieve and maintain a temperature 200 to 1000° C. higher than the melting point of the crystalline alloy powder are usually preferred.

前記冷媒体としては、内部を冷却水が流通している、鋼
部金属もしくはセラミック製のロール状、ドラム状、r
イスタ状などの回転冷媒体が挙けられるが、第1図に示
した構成を有する冷媒液流通溜の本のであると、溶融合
金粒子の冷却効率が向上する為に好ましい。
The cooling medium may be a roll-shaped, drum-shaped, r
A rotating refrigerant such as a star-shaped refrigerant may be used, but a refrigerant liquid circulation reservoir having the configuration shown in FIG. 1 is preferable because the cooling efficiency of the molten alloy particles is improved.

前記回転冷媒体としては、周速2〜200 m/城で回
転するものが好宜しい。周速2IIZsec未満では、
溶融合金粒子の冷却効率が低く、非晶質化が十分に行わ
れない。200g/&Eを超えると、溶融合金粒子が細
分化され、粒径の均一な非晶質合金粉末が得られない。
The rotating refrigerant is preferably one that rotates at a circumferential speed of 2 to 200 m/cm. When the circumferential speed is less than 2IIZsec,
The cooling efficiency of the molten alloy particles is low, and the amorphization is not sufficiently performed. If it exceeds 200 g/&E, the molten alloy particles will be fragmented, making it impossible to obtain an amorphous alloy powder with a uniform particle size.

また前記冷媒液流a型の冷媒体としては、冷却水やその
他の通常用いられる、例えばアルコールなどの冷媒液を
、Jl!Illされる溶融合金粒子の20〜500倍の
量で供給する−のであることが好ましい。20倍来満で
あると、溶融合金粒子の冷却効率が低く、非晶質化が十
分に達成されない。
Further, as the refrigerant of the refrigerant liquid flow type a, cooling water or other commonly used refrigerant liquid such as alcohol may be used. It is preferred that the molten alloy particles be supplied in an amount of 20 to 500 times the amount of molten alloy particles to be added. If it is less than 20 times, the cooling efficiency of the molten alloy particles will be low and amorphousization will not be achieved sufficiently.

500倍を超えると、回収効率が着しく低下し、量産上
好宜しくない為である。
This is because if the ratio exceeds 500 times, the recovery efficiency will drop sharply, which is not convenient for mass production.

第1図の例では、横臥した円筒状の中空容I11の上部
に1ホツパー2と連結し、前記$1!1の内部に結晶質
合金粉末3を供給する供給口4、前記容器lの一方の開
口端に、供給される前記粉末3と混合して混合流を形成
するガスの導入口5が、夫★設けられている。前記粉末
3とガスとで形成される混合流はこの春allの外部へ
導出されるのであるが、第1図の例では、形成される混
合流を吐出するノズル6が前記客allのガス導入口5
と反対側の開口端に設けられていゐ、かかるノズル6が
設けられていると、前記混合流の流速を高めて、該混合
流が噴−化して前記粉末の混合流中における分散度を高
めることができる為に好ましい。
In the example of FIG. 1, a supply port 4 is connected to the upper part of the lying cylindrical hollow volume I11 with a hopper 2, and supplies crystalline alloy powder 3 into the interior of the $1!1, and one side of the container L. An inlet 5 for a gas that mixes with the supplied powder 3 to form a mixed flow is provided at the open end of the tube. The mixed flow formed by the powder 3 and the gas is led out to the outside of all the customers this spring, but in the example shown in FIG. Mouth 5
If such a nozzle 6 is provided at the opening end on the opposite side, the flow velocity of the mixed flow will be increased, the mixed flow will be jetted, and the degree of dispersion of the powder in the mixed flow will be increased. It is preferable because it can be done.

第18!i!#)例で社、前記容器1のノズル6側に該
容器と直列して横臥し1容allから吐出される前記混
合流を内部で通過せしめ、該混合流中に分散されて移動
する前記合金の粒子を溶融する管状炉7が配置されてい
る。
18th! i! #) In the example, the alloy is lying in series with the nozzle 6 side of the container 1, and the mixed flow discharged from the container 1 is allowed to pass therethrough, and the alloy is dispersed and moved in the mixed flow. A tubular furnace 7 is arranged for melting the particles.

前記炉7の、前記中空容器1と反対側の開口端の外II
(は、諌炉γ内から搬出する溶融合金粒子をWIIして
急速凝固せしめる冷媒体が設けられているのであるが、
第1図の例では、該冷媒体が冷媒液8を図中矢印9,9
′の方向IIC循環する冷媒液流通蓋のものが用−られ
ており、捕獲・凝固された合金粒子韓貯液槽10内に収
容される。
Outside II of the open end of the furnace 7 opposite to the hollow container 1
(In this case, a cooling medium is provided to rapidly solidify the molten alloy particles carried out from the furnace γ by WII, but
In the example of FIG. 1, the refrigerant moves the refrigerant liquid 8 to
A refrigerant liquid circulation lid that circulates in the direction IIC is used, and the captured and solidified alloy particles are stored in the liquid storage tank 10.

本発明の非晶質合金粉末の製造装置として社、上述した
装置の他に、結晶質合金粉末を供給する供給口と、供給
される験粉末と混合して混合流を形成するガスの導入口
と、該混合流中に分散されて移動する前記合金の蒙子を
溶融する加熱器と・前記混合流中で形成される溶融合金
粒子を吐出するノズルを具備する中空容器、及び前記容
器から吐出される溶融合金粒子を捕獲して急速凝固せし
める冷媒体を具備することを特徴とする亀のが挙げられ
る。
In addition to the above-mentioned apparatus, the apparatus for producing the amorphous alloy powder of the present invention includes a supply port for supplying the crystalline alloy powder and an inlet for the gas that mixes with the supplied test powder to form a mixed flow. a heater for melting the particles of the alloy that are dispersed and moved in the mixed flow; and a hollow container having a nozzle for discharging the molten alloy particles formed in the mixed flow, and discharged from the container. The method is characterized in that it is equipped with a cooling medium that captures and rapidly solidifies the molten alloy particles.

前記加熱器としては、グッズマ溶射溶融装置、ガス溶射
溶融装置であることが、結晶質合金粉末を溶融するに十
分なゐ高温が容易に実現、維持できる為に好ましい。ま
たプラズマ溶射溶融製雪においてけ、プラズマガスと前
記の結晶質合金粉末と混合して混合流を形成するガスが
、同一の、例えばアルゴンガス又は一部として水素ガス
、窒素ガス、ヘリウムガスを含むアルゴンガスなどのガ
スであることが、取扱上好ましい。また前記ノズルが設
けられていると、前記混合流を噴霧化して溶融合金粒子
の混岑流中における分散性を更に高める為に好ましい。
The heater is preferably a Goodsma spray melting device or a gas spray melting device because a high temperature sufficient to melt the crystalline alloy powder can be easily achieved and maintained. In addition, in plasma spray melting snow making, the gas that mixes the plasma gas and the crystalline alloy powder to form a mixed flow is the same, for example, argon gas or partially contains hydrogen gas, nitrogen gas, or helium gas. A gas such as argon gas is preferable in terms of handling. Further, it is preferable that the nozzle is provided in order to atomize the mixed flow and further improve the dispersibility of the molten alloy particles in the mixed flow.

前記冷媒体としては、前述した内部に冷却水を流通した
、ロール状、ドラム状、ディスク吠などO回転冷媒体、
或いは第1図に示した冷媒液流通SO冷媒体などが挙げ
られる。
The refrigerant may be an O-rotating refrigerant such as a roll-shaped, drum-shaped, or disk-shaped refrigerant with cooling water flowing inside it;
Alternatively, the refrigerant liquid circulating SO refrigerant shown in FIG. 1 may be used.

第2図の例では、横臥した円筒状の中空容優110上部
に、ホッパー12と連結し、前記各@11の内部に結晶
質合金粉末13を供給する供給口14、騎配容器11の
一方O開口jllに、アルジンなど0プツズマIス及び
供給される前記粉末IBと混合して混合流を形成するブ
スの導入口15が、夫々設けられている。この例で杜、
前記各I1110内部に設けられている陰極1@と、骸
容1ullを陽極としてグラズマアーク炎が発生され、
前記ガス中に分散されて移動する前記合金粒子を滴融し
て、生成するaim合金粒子t−前記容器11の他方の
開口端に設けられ良ノズル17から容器外部へ吐出・噴
−化する。
In the example shown in FIG. 2, a supply port 14 connected to a hopper 12 and supplying the crystalline alloy powder 13 into each @ 11 is connected to the upper part of the cylindrical hollow container 110 lying on its side, and one side of the distribution container 11 is connected to the hopper 12. The O openings Jll are each provided with an inlet 15 of a bus that mixes with the powder IB such as aldine and the supplied powder IB to form a mixed flow. In this example, Mori,
A glazma arc flame is generated using the cathode 1@ provided inside each I1110 and the skeleton 1ull as an anode,
The alloy particles dispersed and moving in the gas are melted dropwise, and the generated aim alloy particles t are discharged and jetted from a good nozzle 17 provided at the other open end of the container 11 to the outside of the container.

藺配容a1110//ル1711Ka内11に冷却水力
導入1れ、図中矢印tlKl!!つて回転するロール伏
OwA転冷謀体1−が配置されてお)、審@11から吐
出される1IIII会金粒子を捕獲すると共に、該粒子
を急速凝固して、111120内に貯留せしめて−る。
Cooling hydraulic power is introduced into 11 inside 11 of 1110//1711Ka, arrow tlKl in the figure! ! A rotating roll OwA refrigerating body 1-) is arranged to capture the 1III gold particles discharged from the inspection@11, rapidly solidify the particles, and store them in the 111120. Ru.

本発明の、非晶質合金粉末の製造方法及びその装置によ
れ社、原料である結晶質合金粉末を、粒径の均一なもの
とし、これを気体と混合し″C混合流を形成すると共に
、該混合流中に分散されて移動する前記合金の粉末を溶
融した後、この溶融合金粉末を捕獲して急速凝固するこ
とKより、粒径の均一な非晶質合金粉末を、高効率で、
大量に製造することができる。
According to the method and apparatus for producing amorphous alloy powder of the present invention, the crystalline alloy powder as a raw material is made uniform in particle size, and mixed with gas to form a "C mixed flow". After melting the alloy powder dispersed and moving in the mixed flow, the molten alloy powder is captured and rapidly solidified. By this, amorphous alloy powder with uniform particle size can be produced with high efficiency. ,
Can be manufactured in large quantities.

従って、本発明の非晶質合金粉末の製造方法及びその装
置は、レータ−、テレビ、無線通信機、搬送通信機器、
或いは走電圧定電流電源などのための高周波シランス、
濾波器、高周波チ冒−り、マイクロ同調コイル用などの
磁心材料として用いられる磁気等方性で、透磁率が高く
、且つヒステリシス損失が少ない非晶質合金粉末を製造
する方法及びそれに用−る装置として有用なばかりか、
他の非晶質単体金属粉末、ガラス粉末、セラミック粉末
の製造に際しても極めて有用なものである。
Therefore, the method for producing amorphous alloy powder and the apparatus thereof of the present invention are applicable to
Or high frequency silance for running voltage constant current power supply, etc.
A method for producing an amorphous alloy powder that is magnetically isotropic, has high magnetic permeability, and has low hysteresis loss, and is used as a magnetic core material for filters, high-frequency filters, micro-tuned coils, etc., and its use therein Not only is it useful as a device, but
It is also extremely useful in the production of other amorphous single metal powders, glass powders, and ceramic powders.

これらの酸化物系の粉末から非晶質粉末を製造する場合
においては、粉末と混合して混合流を形成する、前記気
体として、隼ろ、空気、炭酸ガスもしくは酸素分圧を含
むガス等の酸化性ガスを使用するのが好ましい。
When producing amorphous powder from these oxide-based powders, the gas that is mixed with the powder to form a mixed flow may be air, air, carbon dioxide gas, or a gas containing oxygen partial pressure. Preference is given to using oxidizing gases.

実施例1 大略第1図に示した装置を用いイ、本発明方法により非
晶質合金粉末を作製した。
Example 1 Amorphous alloy powder was produced by the method of the present invention using the apparatus roughly shown in FIG.

図面と同一要素を同一符号で表わすと、予め高周波誘導
加熱炉で均一に溶融、徐冷した後、粉砕して得られた粒
径50μmの均一な、組成Fe5tS1・ Bl(原子
比)の合金粉末(融点・、1180℃)を、ホッパー2
内に入れ、これを、供給口4を介して中空容器1内に供
給すると共に1導入口5から2気圧のアルゴンガスを導
入し、該容器内で前記粉末とアルゴンガスとの混合流(
粉末とガスの混合比、約211/l’)を形成し、該混
合流をノズル6を介して容器lから5011/nn1n
の速度で吐出した。かくしてノズル6かも吐出した混合
流中において前記粉末が霧状に分散した。次いで該混合
流を、前記容器1と直列して横臥した炉内温度1400
″GK保持された均熱電気炉内に導入し、該混合流中で
分散され【移動する前記合金粒子を溶融した・ 次いで、該炉内から搬出した溶融合金粒子を冷却水8を
図中矢印9,9′の方向に@顧している冷媒体の冷却面
に衝突せしめ、該溶融合金粒子を捕獲すると共に急速凝
固せしめて、非晶質合金粉末ノを得た。
Elements that are the same as those in the drawings are represented by the same symbols. An alloy powder with a uniform composition of Fe5tS1/Bl (atomic ratio) with a particle size of 50 μm obtained by uniformly melting in a high-frequency induction heating furnace, slow cooling, and then pulverizing. (melting point: 1180℃) in hopper 2
This is supplied into the hollow container 1 through the supply port 4, and 2 atmospheres of argon gas is introduced from the 1 introduction port 5, so that a mixed flow of the powder and argon gas (
A mixing ratio of powder and gas of about 211/l') is formed, and the mixed flow is passed through the nozzle 6 from the container l to 5011/nn1n.
It was discharged at a speed of In this way, the powder was dispersed in the form of mist in the mixed stream discharged from the nozzle 6. Then, the mixed flow was heated to a temperature of 1400 in a furnace lying in series with the container 1.
The molten alloy particles are introduced into a soaking electric furnace in which GK is maintained, and dispersed in the mixed flow [melting the moving alloy particles].Then, the molten alloy particles taken out from the furnace are poured into cooling water 8 as shown by the arrow in the figure. The molten alloy particles were made to collide with the cooling surface of a cooling medium in the direction of 9 and 9', and the molten alloy particles were captured and rapidly solidified to obtain an amorphous alloy powder.

かくして得られた、本発明に係る非晶質合金粉末をX線
粉末回折決で調べたところ、結晶回折線は全く得られず
、該粉末が全て非晶質であることが確認された。また、
光学顕微鏡を用いて、この粉末の粒子形状及び粒度を観
察、測定したところ、粒径50μmの均一な離形粉であ
ることが確認され、また粒度分布曲線線、第3図に示し
た様に極めてシャープな分布曲線であった。更に、得ら
庇た非晶質合金粉末より無作為に10ケ所から0.03
9ずつ採取し、試料振動型磁化測定装置を用いて飽和磁
化を測定したところ、全てのサンプルについて1纂=1
83±30mu/lの値を示し、均一な磁気特性を示し
た。
When the thus obtained amorphous alloy powder according to the present invention was examined by X-ray powder diffraction analysis, no crystal diffraction lines were obtained, confirming that the powder was entirely amorphous. Also,
When the particle shape and particle size of this powder was observed and measured using an optical microscope, it was confirmed that it was a uniform release powder with a particle size of 50 μm, and the particle size distribution curve line was as shown in Figure 3. The distribution curve was extremely sharp. Furthermore, from the obtained amorphous alloy powder, 0.03
When 9 samples were taken and the saturation magnetization was measured using a vibrating sample magnetization measuring device, it was found that 1 set = 1 for all samples.
The value was 83±30 mu/l, indicating uniform magnetic properties.

実施例2 大略第2図で示した装置を用いて、本発明方法により非
晶質合金粉末を作製した。
Example 2 Amorphous alloy powder was produced by the method of the present invention using the apparatus roughly shown in FIG.

図面と同一要素を同一符号で表わすと、予め高周波誘導
加熱炉で均−Kl¥W1、徐冷した後、粉砕して得られ
た粒ll50μmの均一な、組成Co、。Fe・511
6&I(原子比)の合金粉末(w1点、1050 ’C
)を、ホッパー12内に入れ、これを、供給口14を介
して中空容器11内に供給すると共に1導入口15から
高圧アルゴンガスを導入し、該容器11を陽極とし、こ
の陽極と、前記容器11内に設けた陰極16との間に4
0Vの電圧を印加して8o。
Elements that are the same as those in the drawings are represented by the same reference numerals. After being uniformly cooled in advance in a high-frequency induction heating furnace and then pulverized, the composition Co is uniform and has a grain size of 50 μm. Fe・511
6&I (atomic ratio) alloy powder (w1 point, 1050'C
) is placed in the hopper 12, and is supplied into the hollow container 11 through the supply port 14, and high-pressure argon gas is introduced from the first inlet 15, and the container 11 is used as an anode. 4 between the cathode 16 provided in the container 11
8o by applying a voltage of 0V.

ムの電流を流通して、高温(約10,000”C)のプ
ラズマ炎を発生させて、前記アルゴンガス中に分散され
て移動する(形成される混合流中における粉末とガスと
の混合比、約1’ll/l)前記合金の粒子を溶融して
、ノズル17からwallの外部へ吐出せしめた。
A high temperature (approximately 10,000"C) plasma flame is generated by passing an electric current through the argon gas, and the plasma flame is dispersed and moved in the argon gas. , approximately 1'll/l) The particles of the alloy were melted and discharged from the nozzle 17 to the outside of the wall.

かくしてノズル17かも吐出した溶融合金粒子を内部に
冷却水が導入され、図中矢印18に従って周速29 @
 / @tで回転しているロール状の銅製回転冷媒体1
90屑wK衝突させて、該粒子を捕獲すると共に急速凝
固せしめ、槽20内に貯留せしめて、非晶質合金粉末を
得た。
In this way, cooling water is introduced into the molten alloy particles discharged from the nozzle 17, and the circumferential speed is 29 @ according to the arrow 18 in the figure.
/ Roll-shaped copper rotating refrigerant 1 rotating at @t
The particles were collided with 90 wK of debris to capture and solidify them rapidly, and were stored in the tank 20 to obtain an amorphous alloy powder.

かくして得られた、本発明に係る非晶質合金粉末をxi
it1粉末回折法で調べたところ、結晶回折線は全く得
られず、該粉末が全て非晶質であることが確認された。
The thus obtained amorphous alloy powder according to the present invention is
When examined using the it1 powder diffraction method, no crystalline diffraction lines were obtained, confirming that the powder was entirely amorphous.

また光学顕微鏡を用いて、この粉末の粒子形状を観察し
、粒度を測定したところ、長軸200±10μm1短軸
50±3xm s厚さ20±1μmの均一な楕円板状の
粒子から構成されていることが確認された。
In addition, when the particle shape of this powder was observed using an optical microscope and the particle size was measured, it was found that it was composed of uniform elliptical plate-shaped particles with a major axis of 200 ± 10 μm, a short axis of 50 ± 3 m, and a thickness of 20 ± 1 μm. It was confirmed that there is.

また、得られた非晶質合金粉末より無作為に10ケ所か
ら0.05 IIずつ採取し、試料振動型磁化測定装置
を用い【飽和磁化りSを協定したところ、全てのサンプ
ルについてσ@ wx 85±2emu / 9の値を
示し、均一な磁気特性を示した。
In addition, samples of 0.05 II were taken from 10 locations at random from the obtained amorphous alloy powder, and using a sample vibrating magnetization measuring device [the saturation magnetization S was agreed upon, σ@wx for all samples. It showed a value of 85 ± 2 emu/9 and exhibited uniform magnetic properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、本発明の非晶質合金粉末の製造製
電の構成を示した模式図である。 第3図社、「実施例」において作製された本発明に係る
非晶質合金粉末の粒径分布曲線図である。
FIG. 1 and FIG. 2 are schematic diagrams showing the configuration of an electrical production system for producing an amorphous alloy powder according to the present invention. FIG. 3 is a particle size distribution curve diagram of an amorphous alloy powder according to the present invention produced in "Example" published by Sha.

Claims (1)

【特許請求の範囲】 1、結晶質合金粉末と気体との混合流を彫威すると共に
、験混合流中に分散されて移動する前記合金の粒子を溶
融111−後・この溶融合金粒子をjllllして愈速
凝tW−tしめることを特徴とする非晶資金金粉末の製
造方法〇 λ 結晶質合金粉末が、粒径2GGμm以下の粒子から
虞る特許請求の範囲第1項記載の方法。 3、気体が不活性ガスもしくは還元性ガスである特許請
求の範囲第1項記載の方法。 4、混合流を、結晶質合金粉末の溶融前又は溶融IIk
噴−化する特許請求の範囲第1項記載の方法。 1 全金粒子の溶融温度が、該合金の融点より50℃高
一温度から、該融点より600℃高い温度までの範囲の
温度である特許請求の範■111項記載の方法・ 6、結晶質合金粉末を供給する供給口と、供給される酸
粉末と混合して混合流を形成するガスの導入口と、廖處
宴れゐ前記混合流を吐出するノズルを具備する中空容−
;験容器から吐出される前記混合流を内部で通過せしめ
、該混合流中に分散されて移動する前記合金の粒子を溶
融する炉;及び、前記炉内から搬出する溶融合金粒子な
IIIIIして急速凝固せしめる冷媒体を具備すること
を特徴とする非晶質合金粉末の製造装置。 7、  冷II体#、71112〜200a/I1m”
t’li転する回転冷媒体である特許請求の範囲第6項
記載の1L 8、冷媒体が、冷媒筐流運渥のものであ〉、溶融合金粒
子の捕獲量の2ON1500倍の量で冷媒液を供給する
ものである特許請求の範囲第@項記載の装置0 9、結晶質合金粉末を供給する供給口と、供給される酸
粉末と混合して混合流を形成するIスの導入口と、該混
合流中に分散されて移動する前記合金の粒子を溶融する
加熱器と、前記混合流中で形成される溶融合金粒子を吐
出するノズルを具備する中空容器、及び前記容器から吐
出される溶融合金粒子を捕穫して急連凝−せしめる冷媒
体を具備することを特徴とする非晶質合金粉末の製造製
電。
[Claims] 1. After creating a mixed flow of crystalline alloy powder and gas and melting the particles of the alloy that are dispersed and moving in the mixed flow, the molten alloy particles are A method for producing an amorphous gold powder, characterized in that the crystalline alloy powder is made of particles having a particle size of 2 GG μm or less. 3. The method according to claim 1, wherein the gas is an inert gas or a reducing gas. 4. Mixed flow before melting of crystalline alloy powder or melting IIk
A method as claimed in claim 1 in which the atomizing process is carried out. 1. The method according to claim 111, wherein the melting temperature of the whole gold particles is in the range from 50° C. higher than the melting point of the alloy to 600° C. higher than the melting point. 6. Crystalline A hollow volume comprising a supply port for supplying alloy powder, an inlet for gas that mixes with the supplied acid powder to form a mixed flow, and a nozzle for discharging the mixed flow.
; a furnace through which the mixed flow discharged from the test vessel passes through and melts the particles of the alloy dispersed and moving in the mixed flow; and molten alloy particles carried out from the furnace. An apparatus for producing amorphous alloy powder, characterized by comprising a cooling medium for rapid solidification. 7. Cold II body #, 71112~200a/I1m”
1L according to claim 6, which is a rotating refrigerant that undergoes t'li rotation. 8, the refrigerant is one of refrigerant casing flow transport, and the refrigerant is used in an amount of 2ON1500 times the amount of captured molten alloy particles. A device according to claim 09 for supplying a liquid, a supply port for supplying a crystalline alloy powder, and an inlet for an Is that mixes with the supplied acid powder to form a mixed flow. a heater for melting the particles of the alloy dispersed and moving in the mixed flow; a hollow container comprising a nozzle for discharging the molten alloy particles formed in the mixed flow; 1. A manufacturing electrical appliance for amorphous alloy powder, characterized by comprising a cooling medium that captures and rapidly solidifies molten alloy particles.
JP56118442A 1981-07-30 1981-07-30 Amorphous alloy powder manufacturing method and device Expired JPS595641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56118442A JPS595641B2 (en) 1981-07-30 1981-07-30 Amorphous alloy powder manufacturing method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56118442A JPS595641B2 (en) 1981-07-30 1981-07-30 Amorphous alloy powder manufacturing method and device

Publications (2)

Publication Number Publication Date
JPS5822309A true JPS5822309A (en) 1983-02-09
JPS595641B2 JPS595641B2 (en) 1984-02-06

Family

ID=14736737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56118442A Expired JPS595641B2 (en) 1981-07-30 1981-07-30 Amorphous alloy powder manufacturing method and device

Country Status (1)

Country Link
JP (1) JPS595641B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126707A (en) * 1984-07-13 1986-02-06 Riken Corp Production of metallic powder
JPS61150831U (en) * 1985-03-12 1986-09-18
JPS6345309A (en) * 1986-08-11 1988-02-26 ジ−・テイ−・イ−・プロダクツ・コ−ポレイシヨン Production of globular powdery particle
JPH02163370A (en) * 1988-12-17 1990-06-22 Mitsubishi Kasei Corp Production of rare earth alloy target
CN113305293A (en) * 2021-04-13 2021-08-27 河北工业职业技术学院 Preparation method of amorphous hollow microsphere electromagnetic wave absorption material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126707A (en) * 1984-07-13 1986-02-06 Riken Corp Production of metallic powder
JPS61150831U (en) * 1985-03-12 1986-09-18
JPS6345309A (en) * 1986-08-11 1988-02-26 ジ−・テイ−・イ−・プロダクツ・コ−ポレイシヨン Production of globular powdery particle
JPH02163370A (en) * 1988-12-17 1990-06-22 Mitsubishi Kasei Corp Production of rare earth alloy target
CN113305293A (en) * 2021-04-13 2021-08-27 河北工业职业技术学院 Preparation method of amorphous hollow microsphere electromagnetic wave absorption material

Also Published As

Publication number Publication date
JPS595641B2 (en) 1984-02-06

Similar Documents

Publication Publication Date Title
JP3383608B2 (en) Apparatus for synthesizing nanocrystalline materials
US6808568B2 (en) Metal powder with nano-composite structure and its production method using a self-assembling technique
EP1398101B1 (en) Method for manufacturing metal powder by thermal decomposition
JP2009221550A (en) Powder production machine, and powder production method
JP2002336688A (en) Method for treating powder, method for manufacturing inorganic powder and apparatus for treating object to be treated
JP4264873B2 (en) Method for producing fine metal powder by gas atomization method
JP2010007100A (en) Alloy powder and method for producing the same
JPS6317884B2 (en)
JPS5822309A (en) Manufacture of amorphous alloy powder and apparatus therefor
US4502885A (en) Method for making metal powder
JPS6263604A (en) Production of pulverous spherical copper powder
JP3270118B2 (en) Method and apparatus for producing spheroidized particles by high-frequency plasma
KR20010020142A (en) Process for Production of Nickel Powder
JP2002241807A (en) Method for manufacturing titanium-aluminum alloy powder
CA3084963C (en) Method for manufacturing atomized metal powder
JP2007084849A (en) Method and device for producing metal hyperfine particle
JPH04350106A (en) Alloy hiper fine particle and production thereof
JP6412220B2 (en) Atomizing device
JPH0472894B2 (en)
JPS6024302A (en) Production of amorphous alloy powder
JPH02218431A (en) Powder for plasma pulverizing and its supply method
JPS6283407A (en) Production of fine metallic powder
JP6185286B2 (en) Method for producing amorphous body for hexagonal ferrite powder and method for producing hexagonal ferrite powder
CN117840422A (en) Manganese-based amorphous nanocrystalline composite powder and preparation method thereof
JP2024034263A (en) Soft magnetic alloy powder, magnetic core, magnetic parts and electronic equipment