JPS58214532A - Production of flameproofed fiber - Google Patents

Production of flameproofed fiber

Info

Publication number
JPS58214532A
JPS58214532A JP9297282A JP9297282A JPS58214532A JP S58214532 A JPS58214532 A JP S58214532A JP 9297282 A JP9297282 A JP 9297282A JP 9297282 A JP9297282 A JP 9297282A JP S58214532 A JPS58214532 A JP S58214532A
Authority
JP
Japan
Prior art keywords
fibers
rollers
yarn
flame
high polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9297282A
Other languages
Japanese (ja)
Inventor
Kosuke Katsuki
勝木 康介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP9297282A priority Critical patent/JPS58214532A/en
Publication of JPS58214532A publication Critical patent/JPS58214532A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To obtain the titled fibers with a high productivity without deterioration in mechanical characteristics nor fluffs or broken fibers, by threading organic high polymer fibers through plural pairs of grooved rollers having a specific groove width, and treating the organic high polymer fibers for flame proofing in a flameproofing furnace in an oxidizing atmosphere at a specified temperature. CONSTITUTION:Organic high polymer fibers, e.g. acrylic type fibers, are made flameproof in a flameproofing furnace having plural pairs of grooved rollers in an oxidizing atmosphere at 200-400 deg.C. In the process, the organic high polymer fibers are threaded through the grooved rollers having a groove pitch [P (mm.)] specified by the formula [P is the groove pitch (mm.); D is the value obtained by dividing the total denier of the organic high polymer fibers by 1,000; L is the roller gap in the respective pairs of the rollers (mm.); A is 0.76; B is 0.036] and calcined to give the aimed flameproofed fibers.

Description

【発明の詳細な説明】 本発明は耐炎化繊維の製造方法、特に高生産性に適合し
得る耐炎化炉の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing flame-resistant fibers, and in particular to an improvement in a flame-resistant furnace that is compatible with high productivity.

炭素繊維は、その比強度、比弾性率が極めて高く、耐熱
性、耐薬品性能も極めて優れていることから航空宇宙用
途の補強材料、ゴルフクラブ、釣竿等のスポーツ用品の
補強材料等に広く使われている。
Carbon fiber has extremely high specific strength and specific modulus, as well as excellent heat resistance and chemical resistance, so it is widely used as a reinforcing material for aerospace applications and for sporting goods such as golf clubs and fishing rods. It is being said.

炭素繊維の製造法としてアクリル系繊維に例をとれば、
前駆体繊維をいわゆる耐炎化炉中で、酸化性雰囲気中2
00〜340℃で比較的長時間かけて酸化させて耐炎化
糸となし、しかる後これを1000℃以上の非酸化性雰
囲気中で加熱分解、炭化することによって得られる。
Taking acrylic fiber as an example of a carbon fiber manufacturing method,
The precursor fibers are heated in an oxidizing atmosphere in a so-called flameproofing furnace.
It is obtained by oxidizing at 00 to 340°C for a relatively long period of time to obtain a flame-resistant yarn, which is then thermally decomposed and carbonized in a non-oxidizing atmosphere at 1000°C or higher.

この工程中、特健初期のい、わゆる耐炎化工程では、酸
化反応による発熱が著しく、また繊維の処理に数十ない
し数時間の長時間を要するため、炭素繊維の生産性は該
工程が最大のネックであった。
During this process, the so-called flame-retardant process at the early stage of the process generates a significant amount of heat due to oxidation reaction, and the fiber treatment takes a long time of tens to several hours, so the productivity of carbon fibers is limited by this process. This was the biggest bottleneck.

かかる耐炎化]、程での生産性の低さをカバーするには
、何はともあれ単位時間当りの繊維処理量を増すこと、
つまり処理糸条の構成フィメント数を増加するか、ある
いは糸速を増すことに係っている。
In order to compensate for the low productivity caused by flame resistance], it is necessary to increase the amount of fiber processed per unit time.
In other words, it is related to increasing the number of filaments constituting the processed yarn or increasing the yarn speed.

これに対して、従来処理糸条を太くすることについては
、たとえば特開昭56−96015で提案されているが
、かかる方法による生産性の向上にも限度があり、あま
り処理糸条が太くなると炭素繊維の機械的性質が低下す
るという欠点があった。
On the other hand, making the conventionally treated yarn thicker has been proposed, for example, in JP-A-56-96015, but there is a limit to the productivity improvement by such a method, and if the treated yarn becomes too thick, There was a drawback that the mechanical properties of the carbon fiber were deteriorated.

一方糸速を増すことについては前述したように耐炎化時
における酸化反応速度上の制約から、いきなり炉体自体
の大型化によって炉内における処理糸条の滞留時間を稼
ぐことが必要になる。
On the other hand, in order to increase the yarn speed, as mentioned above, due to constraints on the oxidation reaction rate during flame resistance, it is necessary to increase the residence time of the treated yarn in the furnace by suddenly increasing the size of the furnace body itself.

ちなみに、耐炎化炉内における所定の滞留時間を必要と
する処理糸条について、糸速を2倍に増すだめには2倍
以上の糸道を確保せねばならず、これに見合った炉自体
の大型化が必要となる。
By the way, in order to double the yarn speed for treated yarn that requires a certain residence time in the flameproofing furnace, it is necessary to secure more than twice the yarn path, and the furnace itself must be designed to accommodate this. It will be necessary to increase the size.

かかる耐炎化炉自体は通常炉内または炉外に糸条を案内
するためのローラが複数対設けられており、該耐炎化炉
の大型化に伴ない当然のこと乍ら対向するローラ間距離
も大きくなり、しかも糸速か増加する。このだめ処理糸
条はや\もすれば糸道が不安定となり、しかもローラ間
における糸条の撓わみに伴なう絡み合いが発生し易く、
これが毛羽、単糸切れ発生の原因となり、更に処理斑が
生じ易いという問題があった。
Such a flameproofing furnace itself is usually provided with a plurality of pairs of rollers for guiding the yarn into or out of the furnace, and as the flameproofing furnace becomes larger, the distance between the opposing rollers naturally increases. The size increases, and the yarn speed also increases. This spoiled yarn will cause the yarn path to become unstable, and moreover, it will easily become entangled due to the yarn deflection between the rollers.
This causes the occurrence of fuzz and single yarn breakage, and there is also the problem that processing spots are likely to occur.

かかる問題に対して、炉内における糸条の案内を多数の
溝を設けたローラ、即ち連句ローラによって行なうこと
(特開昭52−77298)が提案されているが、炉内
におけるローラ間距離が大巾に長くなると、単に溝付ロ
ーラを用いただけでは前述した如き耐炎化炉の大型化に
伴なう問題は解消できなかった。
To solve this problem, it has been proposed (Japanese Patent Laid-Open No. 52-77298) to guide the yarn in the furnace using rollers provided with a large number of grooves, that is, couplet rollers, but the distance between the rollers in the furnace is When the width becomes large, the problems associated with the increase in the size of the flameproofing furnace described above cannot be solved simply by using grooved rollers.

本発明の目的は炭素繊維製造時の耐炎化工程における生
産性を一層向上せしめるにある。
An object of the present invention is to further improve the productivity in the flame-retardant process during the production of carbon fibers.

また他の目的は前記耐炎化工程における毛羽、単糸切れ
、および処理斑を防止するにある。
Another purpose is to prevent fuzz, single thread breakage, and processing unevenness during the flame-retardant process.

更に他の目的は強度、弾性率のバラツキが小さく、しか
も低コストの炭素繊維乃至黒鉛繊維を提供するにある。
Still another object is to provide carbon fibers or graphite fibers with small variations in strength and modulus of elasticity and at low cost.

かかる本発明の目的は、有機重合体繊維を複数対の溝付
ローラを有する耐炎化炉で酸化性雰囲気中、200〜4
00℃にて耐炎化するに際し、下記(1)式で規定する
範囲内の溝ピッチP (mm ) k有する溝付ローラ
対に糸掛けして焼成することを特徴とする耐炎化繊維の
製造法によって達成できる。
The object of the present invention is to heat organic polymer fibers in an oxidizing atmosphere in a flameproofing furnace having a plurality of pairs of grooved rollers.
A method for producing flame-resistant fibers, which is characterized in that, when flame-resistant at 00°C, yarn is threaded onto a pair of grooved rollers having a groove pitch P (mm) k within the range defined by the following formula (1) and fired. This can be achieved by

60A 2AD  +2BL  ≧P≧AD  十BL’°5・
・・(1)ここでDは有機重合体繊維のトータル・デニ
ール=i1000で割った値、Lは各ローラ対における
ローラ間距離(ffl)、Aは0.76、Bは0.03
6’t’ある。
60A 2AD +2BL ≧P≧AD 10BL'°5・
...(1) Here, D is the value divided by the total denier of organic polymer fibers = i1000, L is the distance between the rollers in each roller pair (ffl), A is 0.76, and B is 0.03.
There is 6't'.

以下、本発明の構成要件及びノ効果について詳細に説明
する。
Hereinafter, the constituent elements and effects of the present invention will be explained in detail.

まず、本発明における有機重合体繊維とは酸化性雰囲気
中での加熱・酸化によって耐炎化し、更に非酸化性雰囲
気中での高温焼成によって炭素繊維となし得る繊維であ
って、例えばアクリル系繊維、ポリビニルアルコール系
繊維、石油系または石炭系のピッチ繊維であり、好まし
くはアクリル系繊維である。この繊維は通常単糸デニー
ル0.5〜1.5d、構成フィラメント敷1000〜3
0,000本の連続フィラメント糸条(以下単に糸条と
いう)であり、またこの糸条には2〜20回/m程度の
撚りを与えてもよく、更に必要とあれば2〜8本程度を
合糸することも自由である。
First, the organic polymer fiber in the present invention is a fiber that can be made flame resistant by heating and oxidation in an oxidizing atmosphere and can be made into carbon fiber by firing at a high temperature in a non-oxidizing atmosphere, such as acrylic fiber, These are polyvinyl alcohol fibers, petroleum-based or coal-based pitch fibers, and preferably acrylic fibers. This fiber usually has a single yarn denier of 0.5 to 1.5 d and a constituent filament of 1000 to 3
0,000 continuous filament threads (hereinafter simply referred to as threads), and this thread may be twisted at a rate of about 2 to 20 twists/m, and if necessary, about 2 to 8 twists. You are also free to combine the threads.

上記糸条は複数対の連句ローラを設けた耐炎化炉に通常
1.0〜20.0”/ ・ の糸速で案内され、ln ここで酸性性雰囲気の下200〜400℃で耐炎化処理
か施こされるが、本発明の骨子とするところは該連句ロ
ーラの溝ピッチP(mm)k処理系条のD及び対向する
ローラ間距離L(m)との関連において 2AD06+2BL15≧P≧AD06+BL15・・
・(1)(但し、A”、0.76、Bo、056)と規
定したところにある。
The above-mentioned yarn is guided into a flameproofing furnace equipped with multiple pairs of couplet rollers at a yarn speed of usually 1.0 to 20.0''/·, where it is flameproofed at 200 to 400°C under an acidic atmosphere. However, the gist of the present invention is that 2AD06+2BL15≧P≧AD06+BL15 in relation to the groove pitch P (mm) of the couplet roller, the D of the processing system line, and the distance L (m) between opposing rollers.・・・
- (1) (However, A", 0.76, Bo, 056) is specified.

すなわち、前述したように耐炎化炉は大型化に伴ないロ
ーラ間距離りが長く、糸速が従来に較べて速くなり、こ
のため炉内における糸条の糸道が不安全となり、しかも
糸条のローラ間における撓わみとこれにもとずく糸条相
互の絡み合いが増加し、毛羽や単糸切れが発生し、更に
全糸切れが生じるという問題まで惹起するようになるが
、この点本発明は連句ローラにおける溝ピッチ、Pi上
式(1)で規定する範囲としたことによって前記問題を
解決したものである。
In other words, as mentioned above, as the flame-retardant furnace becomes larger, the distance between the rollers becomes longer and the yarn speed becomes faster than in the past. The deflection between the rollers and the intertwining of yarns due to this increase, leading to problems such as fuzz, single yarn breakage, and even total yarn breakage. The invention solves the above-mentioned problem by setting the groove pitch in the couplet roller to a range defined by Pi above equation (1).

本発明における上記(1)式は幾多の実験を重ねた結果
導き出されたもので、溝付ローラにおける溝ピッチPと
該ローラ間距離及び処理糸条のデニール(/、。。。)
、Dとの関係を示すと第1〜3図のとおりであり、ここ
で○は得られた耐炎化糸の毛羽も少なく操業上全く問題
がなかったもの×は糸切れ又は毛羽多発によって操業上
問題が大きいもの、△は○と×との中間位にあるもの、
すなわち得られた耐炎化糸に若干毛羽が認められるもの
である。
The above formula (1) in the present invention was derived as a result of numerous experiments, and is based on the groove pitch P of the grooved roller, the distance between the rollers, and the denier of the treated yarn (/,...)
, and D are shown in Figures 1 to 3, where ○ indicates that the obtained flame-resistant yarn had little fuzz and there were no problems during operation. Things with big problems, △ is somewhere between ○ and ×,
That is, the obtained flame-resistant yarn has some fluff.

図(第2図)において、例えばL−10mの溝付ローラ
でD=18の糸条を処理するとき、少なくとも5.5 
mmの溝ピッチ、Pが必要であることを示している。な
おこの点見方を換えれば溝1ツチ、Pが5,5咽である
連句ローラではローラ間距離、Lが1omb上限とする
意味が含まれているのは勿論である。
In the figure (Fig. 2), for example, when processing a yarn of D=18 with a grooved roller of L-10m, at least 5.5
This indicates that a groove pitch of mm, P, is required. If you look at this point another way, it goes without saying that in a couplet roller with one groove and P of 5 and 5 grooves, the distance between the rollers, L, is the upper limit of 1 omb.

このようにして導き出された上記(1)式において溝ピ
ッチPがAD”6+BL1°5より小さい場合、ローラ
間における糸条の撓わみとこれにもとづく糸条相互の絡
み合いが増加し、毛羽、単糸切れ、及び全糸切れが著し
く発生するようになる。
In the equation (1) derived in this way, if the groove pitch P is smaller than AD''6+BL1°5, the deflection of the yarn between the rollers and the entanglement of the yarns based on this will increase, causing fuzz, Single yarn breakage and total yarn breakage begin to occur significantly.

一方溝ピツチPが2AD06+2BL15を越えると糸
条間隔が大きくなり、所定のローラ長の下では糸道を長
くとることが不可能となったり、もしくは糸条処理量が
減少するので、経済的に不利である。
On the other hand, if the groove pitch P exceeds 2AD06+2BL15, the yarn spacing becomes large, and it becomes impossible to take a long yarn path under a certain roller length, or the yarn throughput decreases, which is economically disadvantageous. It is.

かくして得られた耐炎化繊維は引きつづき行なう非酸化
性雰囲気中、1000℃以上の加熱焼成によって炭素繊
維となり、更に同雰囲気中、2000〜6000℃の加
熱処理によって黒鉛化繊維となり得ることは勿論である
It goes without saying that the flame-resistant fiber thus obtained can be turned into carbon fiber by subsequent heating and firing at 1000°C or higher in a non-oxidizing atmosphere, and can also be turned into graphitized fiber by further heat treatment at 2000 to 6000°C in the same atmosphere. be.

以上述べたように、本発明は有機重合体繊維の耐炎化工
程における耐炎化炉に設けられた溝イ」ローラについて
、繊維のトータルデニールD及び対向するローラ間距離
りとの関連において溝ピッチルt規定したところを骨子
としたもので、これにより特に炭素繊維の耐炎化工程で
の生産性向上を意図した前記耐炎化炉の大型化と糸速ア
ップに伴なうトラブル、即ち耐炎化炉内での毛羽、単糸
切れ、及び全糸切れ等の発生が大rl]K″減少すると
いう格別の効果を奏する。
As described above, the present invention concerns the grooved pitch roller provided in the flameproofing furnace in the process of flameproofing organic polymer fibers, in relation to the total denier D of the fibers and the distance between opposing rollers. The outline of the regulations is to improve productivity in the process of flameproofing carbon fibers, and to solve problems associated with the increase in the size of the flameproofing furnace and the increase in yarn speed. The occurrence of fuzz, single yarn breakage, total yarn breakage, etc. is reduced by a large amount [rl]K'', which is a special effect.

以下実施例を挙けて本発明を具体的に説明する。The present invention will be specifically described below with reference to Examples.

実施例 アクリル系繊維を1対の連句ローラを有し、かつ空気中
250℃に加熱された耐炎化炉に通し、糸速3.0/、
□inで、80分間耐炭化処理を11々い耐炎化糸とし
た。このときアクリル系繊維のトータルデニールD、対
向するローラ1司距肉弧し、及び溝ピッチを第1表記載
の如く一変更した。
Example Acrylic fibers were passed through a flameproofing furnace equipped with a pair of couplet rollers and heated to 250°C in air at a yarn speed of 3.0/.
The flame-retardant yarn was subjected to carbonization treatment for 80 minutes at □in. At this time, the total denier D of the acrylic fibers, the distance between the opposing rollers, and the groove pitch were changed as shown in Table 1.

この結果は第1表のとおりである。The results are shown in Table 1.

(以下余白) 第1表 備考欄 O印本発明の実施例 第1〜3図は溝付ローラにおける溝ピッチ、Pと該ロー
ラ間距離、L及び処理糸条のデニール(1/1ooo)
、Dとの関係を示した図である。
(Margin below) Table 1 Remarks column O-marked Examples of the present invention Figures 1 to 3 show the groove pitch of the grooved roller, P, the distance between the rollers, L, and the denier of the treated yarn (1/1ooo)
, D. FIG.

ここで ○は得られた耐炎化糸の毛羽も少なく、操業上
問題がなかったもの。
Here, ○ indicates that the obtained flame-resistant yarn had little fluff and did not pose any operational problems.

×は糸切れ又は毛羽多発によって操 業上問題が大きいもの。× is due to thread breakage or excessive fuzz. A major problem in business.

△は○と×との中間位にあるものす なわち得られた耐炎化糸に若干毛 羽が認められるもの。△ is somewhere between ○ and ×. In other words, the flame-resistant yarn obtained has some hair. Those with recognizable feathers.

特許出願人  東 し 株 式 会 社り 第2図 ρ 第 3 図Patent Applicant Higashi Shikaisha Ltd. Figure 2 ρ Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)  有機重合体繊維を複数対の連句ローラを有す
る耐炎化炉で酸化性雰囲気中、200〜400℃にて耐
炎化するに際し、下記(1)式で規定する範囲内の溝ピ
ッチ、P (am )を有する溝付ローラ対に糸掛けし
て焼成することを特徴とする耐炎化繊維の製造法。 1.5 2AD0°’+2BL  ≧P≧AD  +BL  ・
・・(1)ここでDは有機重合体繊維のトータル・デニ
ール11000で割った値、Lは各ローラ対におけるロ
ーラ間距離Cm)、Aは0.76、BはDが1〜30、
Lが6〜15fflである耐炎化繊維の製造法。 体繊維の走行速度が1〜20 n14である耐炎化ある
いは黒鉛化繊維の前駆体となり得る耐炎化繊維の製造法
(1) When flameproofing organic polymer fibers at 200 to 400°C in an oxidizing atmosphere in a flameproofing furnace with multiple pairs of couplet rollers, the groove pitch, P, within the range specified by the following formula (1). 1. A method for producing flame-resistant fibers, which comprises threading a thread over a pair of grooved rollers having a diameter of (am) and firing. 1.5 2AD0°'+2BL ≧P≧AD +BL ・
...(1) Here, D is the value divided by the total denier 11000 of the organic polymer fiber, L is the distance between the rollers in each roller pair (Cm), A is 0.76, B is D is 1 to 30,
A method for producing flame-resistant fibers in which L is 6 to 15 ffl. A method for producing flame-resistant fibers that can be used as precursors of flame-resistant or graphitized fibers having a body fiber running speed of 1 to 20 n14.
JP9297282A 1982-06-02 1982-06-02 Production of flameproofed fiber Pending JPS58214532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9297282A JPS58214532A (en) 1982-06-02 1982-06-02 Production of flameproofed fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9297282A JPS58214532A (en) 1982-06-02 1982-06-02 Production of flameproofed fiber

Publications (1)

Publication Number Publication Date
JPS58214532A true JPS58214532A (en) 1983-12-13

Family

ID=14069315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9297282A Pending JPS58214532A (en) 1982-06-02 1982-06-02 Production of flameproofed fiber

Country Status (1)

Country Link
JP (1) JPS58214532A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4992327A (en) * 1973-01-12 1974-09-03
JPS5277298A (en) * 1975-12-23 1977-06-29 Toho Beslon Co Flame proofing of acrylic fiber yarn

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4992327A (en) * 1973-01-12 1974-09-03
JPS5277298A (en) * 1975-12-23 1977-06-29 Toho Beslon Co Flame proofing of acrylic fiber yarn

Similar Documents

Publication Publication Date Title
JP5161604B2 (en) Carbon fiber manufacturing method
JP5496214B2 (en) Carbon fiber bundle manufacturing method
JP4017772B2 (en) Continuous heat treatment method for acrylic fiber bundles
JPS58214532A (en) Production of flameproofed fiber
JP2003055843A (en) Method for producing carbon fiber
JP2010071410A (en) Grooved roller, and manufacturing device and manufacturing method of carbon fiber using the same
JP2007314901A (en) Method for producing carbon fiber
JP2005060871A (en) Method for producing flame-proofed fiber and method for producing carbon fiber
JPS58214525A (en) Production of carbon fiber
KR890005273B1 (en) Process for producing carbon fibers
JPS62257422A (en) Production of carbon fiber
JP2590638B2 (en) Method and apparatus for producing flame-resistant yarn
JP3733688B2 (en) Carbon fiber manufacturing method
JPH04222229A (en) Production of graphite fiber
WO2019146487A1 (en) Flame-retardant fiber bundle and method for manufacturing carbon fiber bundle
JP2001073232A (en) Flameproofing of carbon filament bundle precursor and apparatus for flameproofing
JP2008019526A (en) Method for producing carbon fiber
JP2001020140A (en) Device for driving carbon fiber precursor
JPS5887321A (en) Continuous production of carbon fiber
JPH09268437A (en) Continuous production of carbon fiber
JP3899649B2 (en) Carbon fiber manufacturing method
JP2005256201A (en) Heat-treating oven and method for imparting flame retardance
JPH08158163A (en) Carbon fiber bundle and its production
JP5573531B2 (en) Wet spinning machine and carbon fiber manufacturing apparatus equipped with a guide roll unit for fiber tow and the same guide roll unit
JPS62257424A (en) Production of carbon fiber having high strength and elastic modulus