JPS58207369A - Vacuum deposition device - Google Patents

Vacuum deposition device

Info

Publication number
JPS58207369A
JPS58207369A JP8946782A JP8946782A JPS58207369A JP S58207369 A JPS58207369 A JP S58207369A JP 8946782 A JP8946782 A JP 8946782A JP 8946782 A JP8946782 A JP 8946782A JP S58207369 A JPS58207369 A JP S58207369A
Authority
JP
Japan
Prior art keywords
film thickness
crucibles
turntable
vapor
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8946782A
Other languages
Japanese (ja)
Other versions
JPS6130029B2 (en
Inventor
Takeshi Ichibagase
一番ケ瀬 剛
Katsumi Itagaki
板垣 克己
Masaaki Niwa
正昭 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electronics Corp
Priority to JP8946782A priority Critical patent/JPS58207369A/en
Publication of JPS58207369A publication Critical patent/JPS58207369A/en
Publication of JPS6130029B2 publication Critical patent/JPS6130029B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/548Controlling the composition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide a titled device which enables the control of the grade in the component ratio in the thickness direction of vapor deposited films as desired with good accuracy by the constitution wherein the degrees of openings of evaporating sources are controlled selectively in accordance with the output signals of two film thickness monitors disposed so as to face each other in the two evaporating sources. CONSTITUTION:A vacuum deposition device is provided with circular through- holes 3a and 15 pieces of glass discs 3b-3p of substrates to be vapor-deposited along the circufmerence of a turntable 2 rotated at a constant speed in an arrow direction together with a revolving shaft 1 in a bell-jar (not shown) and is arranged with the 1st, the 2nd crucibles 5, 6 of evaporating sources, wherein the 1st, the 2nd film thickness monitos 7, 8 are provided so as to face each other through said crucibles 5, 6 and the holes 3a to detect film thicknesses at every one rotation of the table 2, and the degrees of opening of the crucibles 5, 6 are controlled by rotating the 1st, the 2nd irises 18, 20 having wedgelike openings 18, 21 coaxially with the shaft 1, thereby controlling the grade in the component ratio of the vapor-deposited films to be formed on the glass discs 3b, etc.

Description

【発明の詳細な説明】 本発明は、とくに膜厚方向の成分比勾配が問題となる光
導電膜まだはその他の真空蒸着膜の製造に適した真空蒸
着装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vacuum evaporation apparatus suitable for producing photoconductive films and other vacuum-deposited films in which the component ratio gradient in the film thickness direction is particularly problematic.

従来、複数種の元素からなる光導電膜を真空蒸着により
形成する場合、この膜を成分比の異なる多数の層でもっ
て多層構造に形成することが行なわれている。しかし、
このような積層法では、各層の厚みを十分に小さくしな
い限り、各層間で光のモ渉を生じる惧れがある。また、
膜厚方向における成分比勾配の規正が容易でなく、荷電
キャリアの移動にばらつきを生じるなど、良好な光導電
膜を得難い欠点がある。
Conventionally, when a photoconductive film made of a plurality of types of elements is formed by vacuum evaporation, the film is formed into a multilayer structure with a large number of layers having different component ratios. but,
In such a lamination method, unless the thickness of each layer is made sufficiently small, there is a risk of light interference between the layers. Also,
It is difficult to regulate the component ratio gradient in the film thickness direction, which causes variations in the movement of charge carriers, making it difficult to obtain a good photoconductive film.

本発明の真空蒸着装置によると、第1の元素の蒸発源と
蒸着処理位置との間に第1のアイレスを、そして、前記
元素とは異なる第2の元素の蒸発源と前記蒸着処理位置
との間に第2のアイレスをそれぞれ挿入自在に設け、前
記第1および第2のアイレスの各開口度を膜厚モニタか
らの信号にもとづき選択的に制御することにより、両蒸
発源から前記蒸着処理位置へ向う蒸気流の量を制御する
のであって、これを以下図面に示しだ実施例とともに詳
しく説明する。
According to the vacuum evaporation apparatus of the present invention, the first airless is provided between the evaporation source of the first element and the evaporation processing position, and the evaporation source of the second element different from the above element is connected to the evaporation processing position. The vapor deposition process is performed from both evaporation sources by selectively controlling the opening degree of each of the first and second eyeres based on the signal from the film thickness monitor. The control of the amount of steam flow to a location will be described in more detail below with reference to the embodiments shown in the drawings.

第1図において、回転シャフト1とともに一定速度の回
転をなすターンテーブル2fd、その円周に沿う板面領
域に16個の円形の透孔3a、’3b。
In FIG. 1, a turntable 2fd rotates at a constant speed together with the rotary shaft 1, and 16 circular through holes 3a, '3b are formed in the plate surface area along the circumference of the turntable 2fd.

3C3pを有し、蒸着膜厚検出用の透孔3aを除く15
個の透孔3 b 、 3 c −3p内には、15個の
被蒸着基板としてのガラス円板4b、4c4pがそれぞ
れ嵌め込みにより装着されている。ガラス円板4b、4
cm ・4pは、撮像管のフェースプレートとなるもの
で、その下面には透明導電膜がすでに付設されており、
この透明4 ′ty膜の膜面上に光導電膜が真空蒸着さ
れる。
3C3p, excluding the through hole 3a for detecting the thickness of the deposited film 15
Fifteen glass disks 4b, 4c4p serving as substrates to be deposited are fitted into the through holes 3b, 3c-3p, respectively. Glass discs 4b, 4
cm ・4p is the face plate of the image pickup tube, and a transparent conductive film is already attached to the bottom surface of the face plate.
A photoconductive film is vacuum deposited on the surface of this transparent 4'ty film.

前記光導電膜がセレン(Se)とひ素(As)とからな
る場合、第1の元素たるSeが第1のルツボ6内に納め
られ、第2の元素たるAsが第2のルツボ6内に納めら
れる。第1および第2のルツボ5.6は、それぞれの中
心軸5a、6aが透孔3dの中心部で交差するように傾
斜配置されており、中心軸5aの延長線上に第1の膜厚
モニタ7が設けられ、中心軸6aの延長線−Lに第2の
膜厚モニタ8が設けられている。すなわち、第1のルツ
ボ5は透孔3aを通じて第1の膜厚モニタ7と向き合い
、第2のルツボ6は透孔3aを1・bじて第2の膜厚モ
ニタ8と向き合う。
When the photoconductive film is made of selenium (Se) and arsenic (As), the first element, Se, is contained in the first crucible 6, and the second element, As, is contained in the second crucible 6. It can be paid. The first and second crucibles 5.6 are arranged at an angle so that their central axes 5a and 6a intersect at the center of the through hole 3d, and the first film thickness monitor is located on an extension of the central axis 5a. 7 is provided, and a second film thickness monitor 8 is provided on an extension line -L of the central axis 6a. That is, the first crucible 5 faces the first film thickness monitor 7 through the through hole 3a, and the second crucible 6 faces the second film thickness monitor 8 through the through hole 3a.

ターンテーブル2は蒸着処理期間中、図示矢印の方向へ
回転するから、図示した透孔3dの位置、つまり単一の
蒸着処理゛位置Aに、その他の透孔3b、3C・ 3p
およびガラス円板4b、4cm4pが順次に送り込まれ
ることになり、この巡回動作が繰り返えされる。
Since the turntable 2 rotates in the direction of the arrow shown in the figure during the vapor deposition process, the other through holes 3b, 3C, and 3p are placed at the position of the illustrated through hole 3d, that is, the single vapor deposition process position A.
Then, the glass disks 4b and 4cm 4p are sequentially fed in, and this circular operation is repeated.

第1および第2のルツボ5,6は加熱用ヒータ9.10
によって加熱され、加熱温度は各ルツボ5.6の底部に
設けられだ熱電対11.12によって検出される。捷た
、両ルツボ5,6の周囲には円筒状のカバー13.14
が設けられており、カバー13.14および仕切り板1
6は、輻射熱を遮断するとともに蒸気流の好ましくない
方向への発散を防止する。なお、カバー13.14およ
び仕切り板15は、必要により水や液体窒素等の寒剤に
より冷却される。
The first and second crucibles 5 and 6 are heated by heating heaters 9.10
The heating temperature is detected by a thermocouple 11.12 provided at the bottom of each crucible 5.6. A cylindrical cover 13, 14 is placed around both the broken crucibles 5 and 6.
are provided, a cover 13.14 and a partition plate 1
6 blocks radiant heat and prevents vapor flow from dispersing in undesirable directions. Note that the covers 13, 14 and the partition plate 15 are cooled with water or a cryogen such as liquid nitrogen, if necessary.

膜厚モニタ7.8は水晶振動子形の膜厚計からなり、こ
、#1を囲繞する第1および第2の筒状カバー16 、
17は、それぞれに対応するルツボ5゜6からの蒸気の
みを当該膜厚モニタ7.8に導くだめのものであり、そ
の内径を小さくして筒長を大きくすればするほど他の蒸
発源からの蒸気混入を少なくすることができる。しかし
その反面、膜厚モニタの感度に低下をきたすので、蒸発
材料に応じて適当な内径および筒長に選ぶ必要がある、
1第1のルツボ5と蒸着処理位置Aとの間に挿入自在に
設けられた箱形の第1のアイレス18はその天板部18
aに、ルツボ中心軸5dの延長線を深く入り込ませるこ
とのできるくさび状の開[119を有している。また、
第2のルツボ6と蒸着処理位置Aとの間に挿入自在に設
けられた箱形の第2のアイレス2oはその天板部20 
aに、ルツボ中心軸6aの延長線を深く入り込ませるこ
とのできるくさび状の開口21を有している。したがっ
て、第1および第2のアイレス18.20を図示矢印の
方向へ移動させると、その移動(五に応じて両蒸発源か
ら蒸着処理位置Aへ向う蒸気流の量を制御することがで
きる。なお、両アイレス18.20の回転中IL・は、
ターンテーブル2の回転中心と同軸である3゜ 第1図に示す構体は、第2図にzl:すようにベルジャ
22内に納められ、ベルジャ22外から駆動制御を受け
る3、ギヤー機構23は、第1および第2のアイレス1
8 、20を駆動させるだめのもので、真空ポンプ24
および真空弁25は、ベルジャ22内を真空に保つため
のものである。また、筒状カバー16.17は仕切り板
26にとりつけられており、第1.第2のルツボ6.6
およびカバー13.14は台座27にとりつけられてお
り、仕切り仮28には蒸気導入筒29がとりつけられて
いる。
The film thickness monitor 7.8 consists of a crystal oscillator type film thickness meter, and includes first and second cylindrical covers 16 surrounding #1;
17 is for guiding only the vapor from the corresponding crucible 5.6 to the film thickness monitor 7.8, and the smaller the inner diameter and the longer the cylinder length, the more the vapor from other evaporation sources is removed. can reduce steam contamination. However, on the other hand, the sensitivity of the film thickness monitor decreases, so it is necessary to select an appropriate inner diameter and tube length depending on the evaporation material.
1. The box-shaped first eyeless 18, which is freely inserted between the first crucible 5 and the vapor deposition processing position A, has a top plate portion 18.
a has a wedge-shaped opening [119] into which an extension of the crucible central axis 5d can be deeply inserted. Also,
A box-shaped second eyeless 2o, which is freely inserted between the second crucible 6 and the vapor deposition processing position A, has a top plate portion 20.
A has a wedge-shaped opening 21 into which an extension of the crucible center axis 6a can be deeply inserted. Therefore, by moving the first and second eyeres 18, 20 in the direction of the arrow shown in the figure, the amount of vapor flow from both evaporation sources toward the vapor deposition processing position A can be controlled depending on the movement. In addition, during rotation of both eyelets 18.20, IL.
The structure shown in FIG. 1 is housed in the bell jar 22 as shown in FIG. , first and second eyeless 1
8, 20, and the vacuum pump 24
And the vacuum valve 25 is for keeping the inside of the bell jar 22 in a vacuum. Further, the cylindrical covers 16 and 17 are attached to the partition plate 26, and the first cylindrical cover 16.17 is attached to the partition plate 26. Second crucible 6.6
The covers 13 and 14 are attached to a pedestal 27, and a steam introduction tube 29 is attached to the temporary partition 28.

前述のように構成されたA空蒸着装置によって、たとえ
ば90原子%Se、10原子%As組成の薄膜を形成す
るには、ベルジャ22内を1X 10−6To rr以
下の真空度に保ち、ターンテーブル2を30rp、m 
 の速度で回転させ、ヒータ9,10に加熱電流を通じ
る。このとき、第1および第2のアイレス18 、20
はともに相互接近しており、開11度は零であるが、両
ルツボ5,6からの蒸発か略一定の速度となった時点で
相反方向へ移動させる第1および第2のアイレス18 
、20の開II I&か徐々に大きくなる。
In order to form a thin film having a composition of, for example, 90 atomic % Se and 10 atomic % As using the A empty evaporation apparatus configured as described above, the inside of the bell jar 22 is kept at a vacuum level of 1X 10-6 Torr or less, and the turntable is 2 at 30rp, m
The heating current is passed through the heaters 9 and 10. At this time, the first and second eyelets 18, 20
are both close to each other, and the opening 11 degrees is zero, but when the evaporation from both crucibles 5 and 6 reaches a substantially constant rate, the first and second eyelets 18 are moved in opposite directions.
, 20's opening II I& or gradually becomes larger.

これによって、ターンテーブル2に嵌め込1れている1
5個のガラス円板のそれぞれに、5el−1・よびAs
が同時に真空蒸着されていくことになる、1そして、タ
ーンテーブル2が一回転する都度、第1および第2の膜
厚モニタ7.8から、SsおよびAsの実質的蒸着量に
比例した大きさのデータ信号が送り出されるから、この
2種のデータGl弓によるSe対Asが原子比換算で9
対1になるように両アイレノ) 18 、20を移動さ
せてその開[’1度を調整すればよい。ただし、両アイ
レット18 、20の開口度制御だけでは十分に調整し
きれないときは、併用手段として、ヒータ9,1゜に流
れる電流の大きさを制御してもよい。
This allows the 1 that is fitted into the turntable 2 to
5el-1 and As on each of the five glass disks.
will be vacuum-deposited at the same time, 1. Then, each time the turntable 2 makes one rotation, the first and second film thickness monitors 7.8 show that the thickness is proportional to the actual amount of Ss and As deposited. Since data signals of
All you have to do is move both Airenos) 18 and 20 so that they are one pair and adjust their opening ['1 degree. However, if the degree of opening of both eyelets 18 and 20 cannot be adjusted sufficiently by controlling the opening degree alone, the magnitude of the current flowing through the heaters 9 and 1° may be controlled as a combined means.

膜厚モニタ7.8からのデータ(m号を演算し、この演
舞結果にもとづぐ信号をアイレス駆動部またはヒータ電
流制御部に短時間でフィードバックさせるのに、コンビ
ーータを利用するのが好ましい。ただし、所定成分比の
演算値を前もって計算j〜でおき、この演算値となるよ
うに前記アイレス駆動部壕だはヒータ電流制御部を手動
操作してもよく、この場合はコ/ピ=−夕を要しない。
It is preferable to use a conbeater to calculate the data (m) from the film thickness monitor 7.8 and feed back a signal based on the performance result to the airless drive unit or heater current control unit in a short time. However, it is also possible to calculate the calculated value of the predetermined component ratio in advance and manually operate the airless drive section or heater current control section so as to obtain this calculated value.In this case, the copy/pi = -Doesn't require evening.

手動操作では、たとえば、ペンレコーダを用い、その記
録紙に蒸着予定社を示す制御曲線をfめ描いておく。そ
して、膜厚セ/ザの出力信号を前記ペンレコーダに4え
、ペンレコーダの出力ペン指示が前記制御曲線と一致す
るようにアイレス駆動部まだはヒータ電流制御部を操作
すればよい。
In the manual operation, for example, a pen recorder is used and a control curve indicating the company to be deposited is drawn on the recording paper. Then, the output signal of the film thickness sensor is input to the pen recorder, and the eyeless drive unit and heater current control unit are operated so that the output pen instruction of the pen recorder matches the control curve.

Ssを主成分とし、テルル(Te)が膜厚方向に特定の
分布で添加きれている厚さ4μmの薄膜を形成する場合
には、第1および第2のルツボ5゜6にSeおよびTe
をそれぞれ充填しておき、ベルジャ22内を1x1o 
 Torr以下の真空度に保つ。ター/テーブル2を3
 Or、 p、 m、の速度で回転させつつ、前述と同
様に第1および第2のアイレス18.20の各開口度お
よび要すればヒータ9,1oに流れる電流を膜厚モニタ
7.8からの信号にもとづき制御し、SeおよびTeの
蒸着膜を調整する。そして、蒸着膜厚の総計が4μmに
達した時点で両アイレス18.20の開口度を零にする
When forming a thin film with a thickness of 4 μm containing Ss as the main component and tellurium (Te) added in a specific distribution in the film thickness direction, Se and Te are placed in the first and second crucibles at 5°6.
Fill each bell jar 22 with 1x1o
Maintain the degree of vacuum below Torr. tar/table 2 to 3
While rotating at speeds of Or, p, m, the opening degrees of the first and second eyelets 18.20 and, if necessary, the current flowing through the heaters 9 and 1o are measured from the film thickness monitor 7.8 in the same manner as described above. control based on the signal of , and adjust the deposited films of Se and Te. Then, when the total thickness of the deposited film reaches 4 μm, the opening degree of both eyelets 18 and 20 is made zero.

以上のように、本発明の真空蒸着装置は、蒸気圧の異な
る多元素系薄膜を多源回転蒸着法に1こり形成するもの
であるが、複数種の元素蒸気を膜J!、3モニタからの
信号にもとづき量制御して被蒸着面一ヒで混合させるだ
め、膜厚方向の成分比勾配を任意に制御でき、しかも、
完全に連続した勾配となすことができる。−1だ、多数
の膜を同一条件Fで精度よく高能率で形成することがで
き、従来のノラノシング蒸着法に比べて欠陥の少ない蒸
着膜を・得ることができる。その上、蒸着速度が安定化
するため、膜の電気的欠陥がほとんどみられず、尤の干
渉の問題もないので、とくに撮像管もしくは撮像素子の
光導電膜、受光素子−または干渉フィルタ等の製造に適
用し7て頗るすぐれた効果を得ることができる。
As described above, the vacuum evaporation apparatus of the present invention forms multi-element thin films with different vapor pressures in one step using the multi-source rotary evaporation method. By controlling the amount based on the signals from the three monitors and mixing on the deposition surface, the component ratio gradient in the film thickness direction can be controlled arbitrarily.
It can be made into a completely continuous slope. -1, a large number of films can be formed with high precision and high efficiency under the same conditions F, and a deposited film with fewer defects can be obtained compared to the conventional nolanosing vapor deposition method. Furthermore, since the deposition rate is stabilized, there are almost no electrical defects in the film and there is no problem with interference, so it is especially useful for photoconductive films of image pickup tubes or image sensors, light receiving elements, or interference filters. It can be applied to manufacturing to obtain excellent effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施した真空蒸着装置の装部の斜視図
、第2図は同装置の側断面図である。 2  ターンテーブル、3a−−・蒸着膜厚検出用透孔
、3b〜3p・ 被蒸着基板装着用透孔、5.6  ル
ツボ、7,8・・・膜厚モニタ、18゜2o−−−アイ
レス、A・・−蒸着処理位置。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名@1
図 第2図
FIG. 1 is a perspective view of the mounting section of a vacuum evaporation apparatus embodying the present invention, and FIG. 2 is a side sectional view of the apparatus. 2 Turntable, 3a--Through hole for detecting the thickness of the deposited film, 3b-3p, Through-hole for attaching the substrate to be evaporated, 5.6 Crucible, 7, 8... Film thickness monitor, 18゜2o---Eyeless , A... - Vapor deposition processing position. Name of agent: Patent attorney Toshio Nakao and 1 other person @1
Figure 2

Claims (1)

【特許請求の範囲】[Claims] 蒸着膜厚検出用の透孔と被蒸着基板装着用の多数の透孔
とを円周に沿う板面領域に有し一定速度で回転するター
ンテーブル、前記透孔の通過位置に設定された単一の蒸
着処理位置に向き合うように前記ターンテーブルの下方
に配置された第1および第2のルツボ、前記第1および
第2のルツボにそれぞれ向き合うように前記ターンテー
ブルの上方に配置された第1および第2の膜厚モニタ、
前記第1のルツボと前記蒸着処理位置との間に挿入自在
に配置されて前記第1の膜厚モニタの出力信号にもとづ
き開口度が制御される第1のアイレスならびに前記第2
のルツボと前記蒸着処理位置との間に挿入自在に配置さ
れて前記第2の膜厚モニタの出力信号にもとづき開口度
が制御される第2のアイレスを備えてなることを特徴と
する真空蒸着装置。
A turntable that has a through hole for detecting the thickness of a deposited film and a large number of through holes for attaching a substrate to be deposited in a plate surface area along the circumference and rotates at a constant speed, and a turntable that is set at a position where the through holes pass. first and second crucibles arranged below the turntable so as to face one vapor deposition processing position; and a first crucible arranged above the turntable so as to face the first and second crucibles, respectively. and a second film thickness monitor,
a first eyeless that is freely inserted between the first crucible and the vapor deposition processing position and whose opening degree is controlled based on the output signal of the first film thickness monitor;
Vacuum evaporation characterized by comprising a second eyeless that is freely inserted between the crucible and the evaporation processing position and whose opening degree is controlled based on the output signal of the second film thickness monitor. Device.
JP8946782A 1982-05-26 1982-05-26 Vacuum deposition device Granted JPS58207369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8946782A JPS58207369A (en) 1982-05-26 1982-05-26 Vacuum deposition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8946782A JPS58207369A (en) 1982-05-26 1982-05-26 Vacuum deposition device

Publications (2)

Publication Number Publication Date
JPS58207369A true JPS58207369A (en) 1983-12-02
JPS6130029B2 JPS6130029B2 (en) 1986-07-10

Family

ID=13971509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8946782A Granted JPS58207369A (en) 1982-05-26 1982-05-26 Vacuum deposition device

Country Status (1)

Country Link
JP (1) JPS58207369A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0152577A2 (en) * 1984-02-16 1985-08-28 Siemens Aktiengesellschaft Process for the control and the regulation of the composition of layers of metallic conducting alloys during their production
JP2010121215A (en) * 2010-01-14 2010-06-03 Semiconductor Energy Lab Co Ltd Deposition apparatus and deposition method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0152577A2 (en) * 1984-02-16 1985-08-28 Siemens Aktiengesellschaft Process for the control and the regulation of the composition of layers of metallic conducting alloys during their production
JP2010121215A (en) * 2010-01-14 2010-06-03 Semiconductor Energy Lab Co Ltd Deposition apparatus and deposition method

Also Published As

Publication number Publication date
JPS6130029B2 (en) 1986-07-10

Similar Documents

Publication Publication Date Title
US4121537A (en) Apparatus for vacuum deposition
US3636916A (en) Coating apparatus and system
JPS59208069A (en) Evaporation device having radiation heat portion for evaporating many substances
US2369764A (en) Apparatus for forming optical wedges
JPS58207369A (en) Vacuum deposition device
JPS6115964A (en) Vacuum deposition device
JPS563443A (en) Information recording component
JPH055895B2 (en)
JPS619574A (en) Vacuum vapor deposition device
JPS5837952Y2 (en) Vacuum deposition equipment
JPH07109569A (en) Formation of thin film
JPH0693426A (en) Thin film forming device
GB1428702A (en) System for vapour deposition of thin films
JPH06212403A (en) Production of in/sn oxide transparent conductive film
JPS58126979A (en) Vacuum vapor deposition device
Thun New Electron Diffraction Apparatus for Continuous Recording
JPS58204173A (en) Device and method for vapor deposition
JPH06172999A (en) Method for controlling film thickness of thin film and layer thickness of multilayered thin film
JPS6182347A (en) Apparatus for producing optical recording medium
Hopkins et al. The performance of a small rotating substrate holder for vacuum deposition
JPS6327870B2 (en)
JPS5812336B2 (en) How to make a living
JPS58215610A (en) Manufacture of artificial thin grating film
JPS60218469A (en) Vacuum deposition method
JPH021910B2 (en)