JPS58126979A - Vacuum vapor deposition device - Google Patents

Vacuum vapor deposition device

Info

Publication number
JPS58126979A
JPS58126979A JP831982A JP831982A JPS58126979A JP S58126979 A JPS58126979 A JP S58126979A JP 831982 A JP831982 A JP 831982A JP 831982 A JP831982 A JP 831982A JP S58126979 A JPS58126979 A JP S58126979A
Authority
JP
Japan
Prior art keywords
evaporation
vapor
film thickness
sources
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP831982A
Other languages
Japanese (ja)
Inventor
Takeshi Ichibagase
一番ケ瀬 剛
Masaaki Niwa
正昭 丹羽
Susumu Kakumoto
角本 進
Seizo Nakajima
中嶋 精三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electronics Corp
Priority to JP831982A priority Critical patent/JPS58126979A/en
Publication of JPS58126979A publication Critical patent/JPS58126979A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To vapor-deposit a film having a desired component proportion or component proportion gradient by vapor-depositing a specified component to a specified position of a vapor deposition base plate by using a cylindrical vapor introducing jig and a box-shaped shutter, and detecting by a film thickness monitor provided in each vaporization source. CONSTITUTION:A horizontal rotary disk 8 provided with plural vapor deposition base plates 9 along its periphery is rotated through a motor 7 and a rotation shaft 5. Plural vaporization sources 11 surrounded by shrouds 10 are provided below the disk 8, and film thickness monitors 20 corresponding to the vaporization sources 11 are installed right above the vaporization sources 11. Coming- round of vapor from other vaporization sources is prevented by >=1 partition plates 23 provided between vaporization sources 11 and cylindrical vapor introducing jigs (shields) 15, 17 provided for each evaporation sources 11. The film thickness is controlled uniformly only in the direction of rotation of the base plate by shifting a box-shaped shutter 13 by operation of a gear 22 and changing the area of opening of a wedge-shaped window 24 and thereby changing the quantity of passing of vaporized substance.

Description

【発明の詳細な説明】 本発明は真空蒸着装置、特に蒸気圧の異なる成、  分
元素を所望の成分比または成分比の勾配を有する蒸着膜
を得るだめの真空蒸着装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vacuum evaporation apparatus, and particularly to a vacuum evaporation apparatus for obtaining a vapor-deposited film having a desired component ratio or a gradient of component ratios using components or elements having different vapor pressures.

従来、2種類以上の蒸着源を用いる真空蒸着装置におい
て、各元素の成分比または成分比の勾配を変えるために
、蒸発源と蒸着基板との間にシャッタを配置し、その開
口形を変化させて各成分を同時蒸着することにより、所
望の蒸着膜を得る装置が提案されている。しかしながら
、セレ/のように蒸気圧か他の成分、たとえばテルル、
砒素に比べて比較的高い場合には、各成分を同時蒸着し
ようとすると、高い蒸気圧成分の118i′Iり込みに
より、各成分の膜厚モニタに高蒸気圧成分が重畳され、
実際に蒸着される組成と、蒸着時に水晶振動子膜厚計等
で監視した組成とが異なり、所定の膜組成を得ることが
困難になる。たとえば蒸気圧の低い物質を10OA、蒸
気圧の高い物質を500八というように順次重ね合わせ
て蒸着して行く場合などには、この回り込みの影響が著
しく認められる。
Conventionally, in a vacuum evaporation apparatus that uses two or more types of evaporation sources, a shutter is placed between the evaporation source and the evaporation substrate and the opening shape of the shutter is changed in order to change the component ratio or the gradient of the component ratio of each element. An apparatus has been proposed in which a desired vapor-deposited film is obtained by simultaneously vapor-depositing each component. However, the vapor pressure or other components such as tellurium,
If it is relatively high compared to arsenic, if you try to simultaneously evaporate each component, the high vapor pressure component will be superimposed on the film thickness monitor of each component due to the 118i'I intrusion of the high vapor pressure component.
The composition actually deposited differs from the composition monitored using a crystal resonator film thickness meter or the like during deposition, making it difficult to obtain a predetermined film composition. For example, when evaporating a substance with a low vapor pressure at 10 OA and a substance with a high vapor pressure at 500 OA, the influence of this wraparound is noticeable.

さらに回り込み蒸気は、蒸着基板上の所定の位置以外へ
も達し、望みどおりの成分比の勾配を有する蒸着膜を作
ることが困難である。
Furthermore, the wraparound vapor reaches other than the predetermined position on the deposition substrate, making it difficult to form a deposited film having a desired gradient of component ratios.

3へ一部 本発明の装置では、筒形の蒸気導入用治具や箱形のスリ
ットなどを採用することにより、上記の欠点をとり除き
、蒸着基板の所定の位置にのみ所定の成分を蒸着し、し
かも、その成分だけを各蒸発源ごとに設定された膜厚モ
ニタで正確に検出することができるようにしたものであ
る。本発明によれば、複数の蒸発源を持ち彦がら膜面内
では均一な成分比を有し、しかも膜厚方向の成分比は、
各成分ごとに、10Aの精度で望みどおりに制御するこ
とが可能である。
Part 3 The apparatus of the present invention eliminates the above-mentioned drawbacks by employing a cylindrical steam introduction jig, a box-shaped slit, etc., and deposits a predetermined component only at a predetermined position on a deposition substrate. Moreover, only that component can be accurately detected using a film thickness monitor set for each evaporation source. According to the present invention, although having a plurality of evaporation sources, the component ratio is uniform within the film surface, and the component ratio in the film thickness direction is
Each component can be controlled as desired with an accuracy of 10A.

第1図は本発明にかかる装置の一部切欠側面図である。FIG. 1 is a partially cutaway side view of the device according to the invention.

図に示すように、基体1とベルジャ2によって形成され
る真空容器は、真空バルブ3を介して排気系4に接続さ
れている。容器内中央の回転柱6には、ウィルソンシー
ル6を介して、電動機7の回転が伝達される。この支持
柱5に回転円盤8が水平に固定されてお9、この円盤周
辺部に沿って複数個の蒸着基板が配置されている。蒸発
源11の中の蒸発材料は、電極12で導かれた電流によ
って加熱蒸発させられる。蒸発源11の周囲は、不必要
な蒸発で蒸着装置を汚染したり、蒸気が回り込んだりす
ることを防ぐためンユラウド10、および仕切板23で
おおわれており、シヨラウド1oの上部には基板9に所
定の位置にのみ均一な蒸着膜を形成するためスリット窓
26が設けられている。蒸発速度を制御するために、蒸
発源11と回転円盤8の間には、箱形あるいは箱形と類
似の形状のシャッタ13が配置されており、実効的にス
リット巾を変化させることができる。
As shown in the figure, a vacuum container formed by a base 1 and a belljar 2 is connected to an exhaust system 4 via a vacuum valve 3. The rotation of an electric motor 7 is transmitted to a rotating column 6 at the center of the container via a Wilson seal 6. A rotary disk 8 is horizontally fixed to the support column 5, and a plurality of vapor deposition substrates are arranged along the periphery of the disk. The evaporation material in the evaporation source 11 is heated and evaporated by the electric current conducted by the electrode 12. The area around the evaporation source 11 is covered with a shield 10 and a partition plate 23 to prevent unnecessary evaporation from contaminating the evaporation apparatus or vapor from going around. A slit window 26 is provided to form a uniform deposited film only at predetermined positions. In order to control the evaporation rate, a box-shaped or box-like shutter 13 is arranged between the evaporation source 11 and the rotating disk 8, and the slit width can be effectively changed.

シャッタ13の開閉はギア22を介してハンドル21に
よって行なう。また、シャッタ13と回転円盤8との間
には、蒸発源11側の蒸気雰囲気と回転円盤8を分離す
るための遮蔽板14.26と、蒸発源11からの蒸気を
基板9上の所定の位置にのみ導くためのシールド16が
設置されている。
The shutter 13 is opened and closed by a handle 21 via a gear 22. Further, between the shutter 13 and the rotating disk 8, there is a shield plate 14.26 for separating the vapor atmosphere on the evaporation source 11 side from the rotating disk 8, and a shielding plate 14.26 for separating the vapor atmosphere from the evaporation source 11 into a predetermined area on the substrate 9. A shield 16 is installed to guide only the position.

基板9の上方には、所定の基板9に蒸着するために導か
れる蒸気を、他の蒸発源からの回り込み蒸気の影響を受
けることなく正確に検出するため、     呼5  
+’;−: が設置され、蒸着膜の厚みを監視している。この膜厚モ
ニタ2oの上方には、蒸気流が雰囲気として存在する場
合、シールド18内に達した蒸気をもれなく検出するた
めに、シールド19が設置されている。
Above the substrate 9, there is a coil 5 for accurately detecting the vapor guided for vapor deposition on a predetermined substrate 9 without being affected by wraparound vapor from other evaporation sources.
+';-: is installed to monitor the thickness of the deposited film. A shield 19 is installed above the film thickness monitor 2o in order to detect all steam that has reached the shield 18 when a steam flow exists as an atmosphere.

第2図は回転円盤8の平面図である。回転円盤8には蒸
着基板9を保持するだめの孔が10〜30個あけられて
おり、蒸着に際してそのうちの少なくとも1個をモニタ
2oに付着する蒸発物のために空孔24として残してお
く。
FIG. 2 is a plan view of the rotating disk 8. The rotary disk 8 has 10 to 30 holes for holding the vapor deposition substrate 9, and at least one of them is left as a hole 24 for evaporated matter adhering to the monitor 2o during vapor deposition.

第3図はシャッター3.仕切り板23.ギア22、蒸発
シールド10の形状と、それらの位置関係を明らかにす
るための斜視図である。シャツ゛り13は、蒸発源から
の蒸着物質の回り込みを防ぐため箱型になっており、そ
の上部には楔形の蒸気流制御窓24を有している。/ヤ
ノタ13は、スリット窓25の上方において、回転円盤
8の回転方向に対(2てほぼ直角に移動するよう設置さ
れ、ている。このシャッタ13は前記ギア22にヨリ\ +−p作される。このシャッタ13を移動させることに
より、蒸発源11と、回転基板9を結ぶ線状の楔形の窓
24は、開孔面積を変え、蒸発物質の通過量を変化させ
ることができる。そして、シャッタ13が回転柱方向へ
移動し終ると、それにより蒸発物質が完全に遮蔽される
。蒸発源11より出た蒸気流は、シャッタの窓24と、
蒸発源シールド1o上に設けられたスリット窓25の形
状との関係により、回転基板9の回転方向にのみ均一な
膜厚となるよう制御される。また各蒸発源には、回転柱
5を中心とする放射方向に、仕切り板23が設置されて
いる。この仕切り板23により、各蒸発源から出た蒸気
は互いに他の蒸発源1i111へ回り込むことがなく、
所定の基板位置に所定の蒸発物のみを蒸着させることが
できる〇 セレンなどの蒸気圧の旨い物質は、−就任切板その細波
蒸着体に蒸着した後、しばしば再蒸発を起こす。この再
蒸発は室温近くでも生じるゾζめ、被着面積の大きい仕
切板23を室温以下に冷!、’ll Lで、再蒸発を抑
制することが望ましい。これはシャッタその他の被着体
についても同様である。
Figure 3 shows shutter 3. Partition plate 23. FIG. 2 is a perspective view for clarifying the shapes of the gear 22 and the evaporation shield 10 and their positional relationship. The shirt 13 has a box shape to prevent the vapor deposition material from flowing around from the evaporation source, and has a wedge-shaped vapor flow control window 24 in the upper part thereof. The shutter 13 is installed above the slit window 25 so as to move almost perpendicularly to the direction of rotation of the rotating disk 8. By moving this shutter 13, the opening area of the linear wedge-shaped window 24 connecting the evaporation source 11 and the rotating substrate 9 can be changed, and the amount of the evaporated substance passing through can be changed. When the shutter 13 finishes moving toward the rotating column, it completely blocks out the evaporated substances.
Depending on the relationship with the shape of the slit window 25 provided on the evaporation source shield 1o, the film thickness is controlled to be uniform only in the direction of rotation of the rotating substrate 9. Furthermore, a partition plate 23 is installed in each evaporation source in a radial direction centered on the rotating column 5. This partition plate 23 prevents the steam emitted from each evaporation source from going around to other evaporation sources 1i111.
Only a predetermined evaporator can be deposited on a predetermined substrate location. Materials with good vapor pressure, such as selenium, often reevaporate after being deposited on a thin wave evaporator. This re-evaporation occurs even near room temperature, so the partition plate 23, which has a large surface area, is cooled to below room temperature! , 'll L, it is desirable to suppress re-evaporation. This also applies to shutters and other adherends.

7 l −1 第4図は、シュラウド10.蒸発源11の位置関係、及
び内部構造を明らかにするための、一部切欠斜視図であ
る。蒸発源11より蒸発する蒸気流が回転基板の所定の
位置に均一に蒸着するための窓25を持つ蒸発源シール
ド10の内部は、蓋26.27を具備した蒸発源11が
設置されている。蒸着基板の谷部分に、蒸着便質を均一
に付着させるための窓25は、回転柱5の中心を同心表
する二つの同心円によって切られた扇形になっている。
7 l -1 Figure 4 shows the shroud 10. FIG. 2 is a partially cutaway perspective view for clarifying the positional relationship and internal structure of the evaporation source 11. FIG. The evaporation source 11 equipped with lids 26 and 27 is installed inside the evaporation source shield 10, which has a window 25 through which the vapor stream evaporated from the evaporation source 11 is uniformly deposited at a predetermined position on the rotating substrate. The window 25 for uniformly adhering the vapor-deposited stool substance to the valley portion of the vapor-deposited substrate has a fan shape cut by two concentric circles concentrically representing the center of the rotating column 5.

蒸発源11の蓋は、4ケ所の透孔を有する蓋27と、中
心に1ケ所の透孔を有する蓋26とで構成されている。
The lid of the evaporation source 11 is composed of a lid 27 having four through holes and a lid 26 having one through hole in the center.

この蓋26.27は、蒸発源11内に設置した蒸発材料
29が急激に溶解、蒸発することにより、蒸発速度の急
激な変動をきたし、蒸着膜に欠陥、傷が発生することを
防ぐ働きをする。すなわち、蒸気流の速度を平均化する
働きをする。このほかに蓋26は、蒸発源11を理想的
なりヌーセンセル構造に近づける働きをし、膜厚を均一
化するのに役立つ。蒸発源11の下部には、蒸発材料2
9の温度を正確に検出するため、白金−白金ロジウムよ
りなる熱電対28が設[dされている。蒸発源11は、
電極12からの電流が流れ、発熱するタング・ステンヒ
ータの内部に設置されている。
The lids 26 and 27 serve to prevent the evaporation material 29 placed in the evaporation source 11 from rapidly melting and evaporating, causing rapid fluctuations in the evaporation rate and causing defects and scratches on the deposited film. do. That is, it serves to average the velocity of the steam flow. In addition, the lid 26 serves to bring the evaporation source 11 closer to an ideal Nutsen cell structure and helps to make the film thickness uniform. At the bottom of the evaporation source 11, there is an evaporation material 2
In order to accurately detect the temperature of 9, a thermocouple 28 made of platinum-platinum rhodium is provided. The evaporation source 11 is
It is installed inside a tungsten heater that generates heat through the flow of current from the electrode 12.

蒸発材料29は、蓋26.27内で、蒸気流速度が変化
するので、液相あるいは固相にもどり、目づまりを生じ
ることがある。これを防ぐため、26.27は、蒸発材
料29よりも高温にしておく必要があり、ヒータは蓋2
6.27に近つくほど密に巻かれた構造となっている。
The evaporated material 29 may return to the liquid or solid phase within the lid 26, 27 and cause clogging as the vapor flow rate changes. To prevent this, 26 and 27 must be kept at a higher temperature than the evaporation material 29, and the heater should be placed on the lid 2.
The closer it gets to 6.27, the more tightly wound the structure becomes.

上記のような、電極12.蒸発源11.シャッター3.
シールド10.15,17,18,19,23,25.
膜厚モニタ20の組は、蒸着材料ごとに1組必要でfb
 ;L (JJ、T ′″ie&g、i、a“12° 
 製以下に、上記実施例を用いて蒸着膜を作峨する蒸発
系2組を有する装置を用い、蒸着中の回り! 込み防止効果を調べた結果について述べる0蒸発材料と
して、セレン9o原子係、砒素1o原子チを含むセレン
合金を一方の蒸発系にのみ入れる。
Electrode 12. as described above. Evaporation source 11. Shutter 3.
Shield 10.15, 17, 18, 19, 23, 25.
One set of film thickness monitors 20 is required for each vapor deposition material.
;L (JJ, T ′″ie&g, i, a “12°
Below, we will explain the process of vapor deposition using an apparatus having two evaporation systems to form a vapor-deposited film using the above example. We will discuss the results of investigating the anti-fouling effect.As an evaporation material, a selenium alloy containing 90 atoms of selenium and 10 atoms of arsenic is introduced into only one evaporation system.

9 。9.

これにベルジャ2をかぶせて内部を2 X 10−6T
orrまで排気する。いずれの蒸発系シャッタ13をも
完全に閉じておき、上記セレン合金の蒸発系に電流を通
じて、400℃まで加熱し、一定速度で蒸発を開始する
まで数分間放置する。蒸着に先だって電動機7に通電し
、回転円盤8を毎分26回の速度で回転させる。上記セ
レン合金を入れた第1の蒸発系、およびセレン合金を入
れない第2の蒸発系のシャッタ13を同時に全開にする
と、それぞれの膜厚モニタ20によって、第1の蒸発系
にはセレン合金の膜厚が、第2の蒸発系にはセレン合金
蒸気が回9込むことにょる膜厚が、それぞれ指示される
。このようにして、第1の蒸発系にて4μmの蒸着膜を
作製した。その結果を第1表に示す。あわせて蒸発源1
回転基板、および膜厚モニタのみで構成される従来の蒸
着装置における結果も同表に示す。これから明らかであ
るように、従来の装置の第1の蒸発系にょシ検出される
膜厚の74%の膜厚が、検出されている。これに・対し
て本発明の実施例においては、第1の蒸発系1゜ には第1の蒸発系の0.5%とほとんど検出されず、捷
わり込み防止効果が十分認められる。
Cover this with Belljar 2 and make the inside 2 x 10-6T.
Exhaust to orr. All of the evaporation system shutters 13 are completely closed, and an electric current is passed through the selenium alloy evaporation system to heat it to 400° C., and the system is left for several minutes until evaporation starts at a constant rate. Prior to vapor deposition, electric motor 7 is energized to rotate rotary disk 8 at a speed of 26 times per minute. When the shutters 13 of the first evaporation system containing selenium alloy and the second evaporation system containing no selenium alloy are fully opened at the same time, the film thickness monitors 20 of each of them indicate that selenium alloy is present in the first evaporation system. The film thickness is indicated as the film thickness due to the selenium alloy vapor entering the second evaporation system 9 times. In this way, a 4 μm deposited film was produced in the first evaporation system. The results are shown in Table 1. In addition, evaporation source 1
The same table also shows the results obtained using a conventional vapor deposition apparatus consisting of only a rotating substrate and a film thickness monitor. As is clear from this, a film thickness that is 74% of that detected by the first evaporation system of the conventional apparatus is detected. On the other hand, in the embodiment of the present invention, the amount of evaporation in the first evaporation system at 1° is 0.5% of that in the first evaporation system, which is almost undetectable, and the effect of preventing kinking is sufficiently recognized.

第1表 回り込み防止の効果 ■ ト 1鼾 〔注〕0内は4μmに対する比率 #112 セレン5o原子係、テルル40原子係および砒素10原
子チの合金を第2の蒸発系に入れ、第1の蒸発系には蒸
発材料を入れないで、例1と同じ条件で蒸着を行った結
果を、第2表に示す。あわせて、従来の装置による結果
も同表に示す。
Table 1: Effect of preventing wrap-around ■ Note: 0 is the ratio to 4 μm #112 An alloy of 50 atoms of selenium, 40 atoms of tellurium, and 10 atoms of arsenic is placed in the second evaporation system, and the first Table 2 shows the results of evaporation performed under the same conditions as in Example 1 without adding any evaporation material to the evaporation system. In addition, the results obtained using the conventional device are also shown in the same table.

第2の蒸発系においてセレノ−テルル−砒素の合金を4
μm蒸着した場合、従来の蒸着装置では、回り込み蒸気
のために、第1の蒸発系の膜厚計に48%の膜厚が検出
される。これに対して、この実施例の蒸着装置において
は、0.6%であり、実施、例1と同様に効果が認めら
れる。
In the second evaporation system, the seleno-tellurium-arsenic alloy was
In the case of .mu.m evaporation, in the conventional evaporation apparatus, a film thickness of 48% is detected by the film thickness meter of the first evaporation system due to the wrap-around vapor. On the other hand, in the vapor deposition apparatus of this example, the amount was 0.6%, and the same effect as in Example 1 was observed.

i 1.ニー; 第2表 回り込み防止の効果 本発明の装置を用いて、膜厚方向にテルル成分が、特定
の分布をもつ蒸着膜の作製手順について述べる。2組の
蒸発系の蒸発源に、それぞれ、例1゜2で使用した七し
ン砒素合金、セレノーテルルー砒素合金を入れる。例1
に準じて、膜厚計を監視しながら、2組の蒸発系のシャ
ッタを操作し、蒸着膜を作製する。第6図に、従来の蒸
着装置で作製した蒸着膜、および本発明による蒸着装置
で作製した蒸着膜の膜内における、各成分の分布を示す
。実線で示す所定の分布に対し、従来の装置では、回り
込み蒸気のために、一点鎖線3oで示すように、所定の
分布ケ正確に作製することが非常にむずかしかった。こ
れに対して、本発明の蒸着り♂;:1昭58−1269
79 (4)装置を用いれば他の蒸発源からの回り込み
が無視できるので、破線31で示すように、実線で示し
た所定の分布に非常に近いテルル分布を実現することが
できた。
i1. Table 2: Effect of preventing wrap-around We will describe the procedure for producing a deposited film in which the tellurium component has a specific distribution in the film thickness direction using the apparatus of the present invention. The 7-arsenic alloy and the selenote-arsenic alloy used in Example 1.2 were placed in the evaporation sources of two sets of evaporation systems, respectively. Example 1
While monitoring the film thickness meter, two sets of evaporation system shutters are operated to produce a deposited film according to the method. FIG. 6 shows the distribution of each component in the vapor deposited film produced using the conventional vapor deposition apparatus and the vapor deposited film produced using the vapor deposition apparatus according to the present invention. In contrast to the predetermined distribution shown by the solid line, in the conventional apparatus, it is very difficult to accurately produce the predetermined distribution as shown by the dashed line 3o due to the wrap-around steam. In contrast, the vapor deposition method of the present invention
79 (4) Since the wrap-around from other evaporation sources can be ignored by using the device, it was possible to realize a tellurium distribution very close to the predetermined distribution shown by the solid line, as shown by the broken line 31.

一般に、セレンなど比較的蒸気圧の副い物質を主体とす
る多元蒸着膜を作製する場合には、蒸気圧の高い物質の
蒸気が回り込むために、相対的に蒸気圧の低いテルルな
どの不純物分布を、任意の組成で、精密に混入させるこ
とがきわめて困難である。本発明では、蒸発源、シャッ
タ、蒸気流監視機構等に関して改良を施すことにより、
上記難点を克服し、互いに他の蒸発源からの回り込み蒸
気の影響をなくすことに成功した。
In general, when producing a multi-component vapor deposition film mainly composed of a substance with a relatively low vapor pressure, such as selenium, the vapor of the substance with a high vapor pressure wraps around, so impurities such as tellurium, which has a relatively low vapor pressure, are distributed. It is extremely difficult to mix precisely with any composition. In the present invention, by improving the evaporation source, shutter, vapor flow monitoring mechanism, etc.,
We have succeeded in overcoming the above-mentioned difficulties and eliminating the influence of wraparound steam from other evaporation sources.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる蒸着装置の一実施り1]の一部
切欠断面図、第2図は第1図のA−へ′断面図、第3図
はこの実施例の要部を示す斜視図、第4図は同じく一部
切欠斜視図・第6図は′−0実施0      !効果
を従来の蒸発装置のそれに対比させて示す図である。 13′・−゛・ 8・・・・・・回転円盤、1o・・・・・・シュラウド
、9・・・・・・蒸着基板、15.17・・・・・・シ
ールド、11・・・・・・蒸着源、20・・・・・・膜
厚モニタ、23・・・・・仕切板。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 2 第2図 第3図 3 4図
Fig. 1 is a partially cutaway sectional view of an embodiment 1 of a vapor deposition apparatus according to the present invention, Fig. 2 is a sectional view taken along line A-' in Fig. 1, and Fig. 3 shows the main parts of this embodiment. A perspective view, Fig. 4 is a partially cutaway perspective view, and Fig. 6 is a '-0 implementation 0! FIG. 3 is a diagram showing the effect in comparison with that of a conventional evaporator. 13'・-゛・ 8... Rotating disk, 1o... Shroud, 9... Evaporation substrate, 15.17... Shield, 11... ... Vapor deposition source, 20 ... Film thickness monitor, 23 ... Partition plate. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 2 Figure 3 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 周辺部に沿って複数個の蒸着基板が配置された水平な回
転円盤をはさみ、下方に複数個の蒸着源を有し、前記蒸
着源それぞれの真上に、前記蒸着源に対応する膜厚モニ
タを備え、前記蒸着基板の中心の軌跡が前記蒸着源と対
応する前記膜厚モニタの中心を結ぶ鉛直線と直交する構
造であって、前記蒸着源の間に配設されている少なくと
も1枚の仕切板と、前記蒸着源を囲むシュラウドを有し
、前記蒸発源と前記蒸着基板および前記蒸着基板と前記
膜厚モニタの間に、それぞれ筒形の蒸気導入用治具が配
置されていることを特徴とする真空蒸着装置。
A horizontal rotating disk on which a plurality of evaporation substrates are arranged along the periphery is sandwiched, a plurality of evaporation sources are provided below, and a film thickness monitor corresponding to the evaporation source is placed directly above each of the evaporation sources. and a structure in which the trajectory of the center of the deposition substrate is orthogonal to a vertical line connecting the centers of the deposition sources and the corresponding film thickness monitors, and at least one film disposed between the deposition sources. It has a partition plate and a shroud surrounding the evaporation source, and cylindrical vapor introduction jigs are arranged between the evaporation source and the evaporation substrate, and between the evaporation substrate and the film thickness monitor, respectively. Features of vacuum evaporation equipment.
JP831982A 1982-01-21 1982-01-21 Vacuum vapor deposition device Pending JPS58126979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP831982A JPS58126979A (en) 1982-01-21 1982-01-21 Vacuum vapor deposition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP831982A JPS58126979A (en) 1982-01-21 1982-01-21 Vacuum vapor deposition device

Publications (1)

Publication Number Publication Date
JPS58126979A true JPS58126979A (en) 1983-07-28

Family

ID=11689835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP831982A Pending JPS58126979A (en) 1982-01-21 1982-01-21 Vacuum vapor deposition device

Country Status (1)

Country Link
JP (1) JPS58126979A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006340982A (en) * 2005-06-10 2006-12-21 Daio Paper Corp Individually packaged absorbent article
CN107034437A (en) * 2017-05-27 2017-08-11 郑州华晶新能源科技有限公司 A kind of adaptive aluminum metal steam diversion window of width

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006340982A (en) * 2005-06-10 2006-12-21 Daio Paper Corp Individually packaged absorbent article
CN107034437A (en) * 2017-05-27 2017-08-11 郑州华晶新能源科技有限公司 A kind of adaptive aluminum metal steam diversion window of width
CN107034437B (en) * 2017-05-27 2024-01-30 郑州华晶新能源科技有限公司 Width self-adaptive aluminum metal steam guide window

Similar Documents

Publication Publication Date Title
US4632059A (en) Evaporator device for the evaporation of several materials
JP4559543B2 (en) Thin oxide coating production equipment
US3747558A (en) Cross-mounted mask changer with thickness monitoring
US3238918A (en) Vacuum deposition chamber for multiple operations
JPS58126979A (en) Vacuum vapor deposition device
Bererhi et al. X-ray diffraction study on amorphous gallium
DE2361984C2 (en) Arrangement and method for depositing amorphous semiconductor thin films as well as method for producing the necessary sources of sublimation
JP6267442B2 (en) Apparatus and method for coating with evaporating material
JPS61235560A (en) Magnetron sputtering device
JPS6115964A (en) Vacuum deposition device
JPH02107757A (en) Production of amorphous superlattice alloy
JPS61280610A (en) Molecular beam epitaxial growing device
JPH0693426A (en) Thin film forming device
US3693583A (en) Vapor deposition apparatus
JPS6199669A (en) Method and device for vapor deposition
Ding-quan et al. The preparation of PLT thin films by multi-ion-beam reactive co-sputtering (MIBRECS) technique
JPS58207369A (en) Vacuum deposition device
JPS5837952Y2 (en) Vacuum deposition equipment
JPH03142921A (en) Manufacturing device for iii-v compound semiconductor thin film
JPS6381808A (en) Device for forming compound semiconductor single crystal thin film
JPS5812336B2 (en) How to make a living
JPS58204173A (en) Device and method for vapor deposition
JPH0726378A (en) Film forming substrate holding device in film forming device
JP3500172B2 (en) Molecular beam epitaxy equipment
JPH02179870A (en) Thin film forming device