JPS58206643A - Reinforced thermoplastic resin composition - Google Patents

Reinforced thermoplastic resin composition

Info

Publication number
JPS58206643A
JPS58206643A JP8877982A JP8877982A JPS58206643A JP S58206643 A JPS58206643 A JP S58206643A JP 8877982 A JP8877982 A JP 8877982A JP 8877982 A JP8877982 A JP 8877982A JP S58206643 A JPS58206643 A JP S58206643A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
weight
rock wool
resin composition
average fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8877982A
Other languages
Japanese (ja)
Inventor
Koji Nakase
中瀬 浩司
Taizo Okuno
奥野 泰造
Takuji Mogi
卓治 茂木
Hironori Kawasaki
河崎 洋徳
Hitoshi Inada
稲田 仁志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Tokuyama Corp
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp, Nippon Steel Chemical Co Ltd filed Critical Tokuyama Corp
Priority to JP8877982A priority Critical patent/JPS58206643A/en
Publication of JPS58206643A publication Critical patent/JPS58206643A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:The titled composition, prepared by incorporating a thermoplastic resin with inorganic fibers consisting of glass fibers and rock wool in a specific proportion, having improved Izod impact strength and mechanical strength, and useful for electric appliances, vehicular parts and business machines, etc. without warpage. CONSTITUTION:A composition obtained by incorporating (A) 50-95wt% crystalline thermoplastic resin, e.g. polypropylene, polyamide, polyester, polyphenylene sulfide, polyphenylene oxide or polysulfone, etc. with (B) 5-50wt% inorganic fibers consisting of (i) 95-30wt% glass fibers and (ii) 5-70wt% rock wool e.g. having 20-500mu average fiber length (L) and 2-10mu average fiber diameter (D) at 5-250 ratio (L/D) without particulate part. EFFECT:There is no problem, e.g. nonuniform incorporation due to the electrified glass fibers and stuck to the wall surface of a blender. etc.

Description

【発明の詳細な説明】 この発明は、補強材として無機質繊維を含有し、機械的
強度に優れた性能を発揮する強化熱可塑性樹脂組成物に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a reinforced thermoplastic resin composition containing inorganic fibers as a reinforcing material and exhibiting excellent mechanical strength.

従来より、熱可塑性樹脂の機械的強度、耐熱性、寸法安
定性等の性能を向上させる目的で補強材としてガラス繊
維を配合することが行なわれており、一般(二、繊維径
が小さく、これに比べて繊維長が充分に大きいガラス繊
維を熱可塑性樹脂中に均一(−分散させることができれ
ば、充分な補強効果を得られることが知られている。
Conventionally, glass fiber has been blended as a reinforcing material with the aim of improving performance such as mechanical strength, heat resistance, and dimensional stability of thermoplastic resin. It is known that if glass fibers having a sufficiently large fiber length can be uniformly dispersed in a thermoplastic resin, a sufficient reinforcing effect can be obtained.

ところが、ガラス繊維は、熱可塑性樹脂中への分散性に
劣り、特に繊維長が長くなればなるほどその分散性が低
下する。また、繊維長が短いと、分散性は改善されるが
、補強効果、特(二樹脂成型品のウェルド部の補強効果
が充分(=発揮されない。
However, glass fibers have poor dispersibility in thermoplastic resins, and in particular, as the fiber length increases, the dispersibility decreases. Furthermore, if the fiber length is short, the dispersibility is improved, but the reinforcing effect, especially the reinforcing effect of the weld part of the two-resin molded product, is not sufficiently exhibited.

また、このような樹脂成型品のウェルド部の強度を改善
したものとして、ポリプロピレンに平均横材を配合して
なるポリプロピレン樹脂組成物が提案されている(特開
昭56−127434号公報)。
In addition, as a method for improving the strength of the weld portion of such resin molded products, a polypropylene resin composition comprising polypropylene mixed with an average cross member has been proposed (Japanese Patent Application Laid-Open No. 127434/1982).

しかしながら、このポリプロピレン樹脂組成物において
は、その樹脂成型品の一般部における強度、特に衝撃強
度がガラス繊維のみを配合した場合に比べて著るしく低
下するという問題がある。
However, this polypropylene resin composition has a problem in that the strength, particularly the impact strength, of the resin molded product in the general area is significantly lower than when only glass fiber is blended.

本発明者等は、かかる観点に鑑み、樹脂成型品の一般部
のみならずそのウェルド部(二おいても補強効果が充分
に発揮さし手−る強化熱可塑性樹脂組成物について鋭意
研究を重ねた結果、驚くべきことにはガラス繊維とロッ
クウールとを使用することにより、単にガラス繊維のみ
を熱可塑性樹脂(二配合した場合に比べ、樹脂成型品の
ウェルド部の強度が改善され、しかも−股部の衝撃強度
も向上することを見い出し、本発明を完成したものであ
る。
In view of this point of view, the present inventors have conducted extensive research into reinforced thermoplastic resin compositions that can sufficiently exhibit a reinforcing effect not only in the general parts of resin molded products but also in their weld parts. As a result, surprisingly, by using glass fiber and rock wool, the strength of the welded part of the resin molded product was improved compared to the case where only glass fiber was combined with thermoplastic resin (two). The present invention was completed based on the discovery that the impact strength of the crotch region was also improved.

すなわち、本発明は、熱可塑性樹脂50〜95重量%と
無機質繊維5〜50重量%とを主体とする組成物であり
、上記無機質繊維のうち95〜30重量%がガラス繊維
であって5〜70重量係がロックウールである熱可塑性
樹脂組成物である。
That is, the present invention is a composition mainly containing 50 to 95% by weight of a thermoplastic resin and 5 to 50% by weight of inorganic fibers, of which 95 to 30% by weight is glass fiber and 5 to 95% by weight of inorganic fibers. 70 is a thermoplastic resin composition in which the weight percent is rock wool.

本発明において、熱可塑性樹脂としては、ポリエチレン
、ポリプロピレン等の炭化水素化合物の重合体、ポリ塩
化ビニル、ポリ弗化ビニリデン等のハロゲン化炭化水素
化合物の重合体、ポリビニルアルコール、ポリビニルエ
ーテル等の不飽和アルコール又はエーテルの重合体、ポ
リアクリル酸メチル、ポリメタクリル酸メチル、ポリ酢
酸ビニル等の不飽和カルボン酸又はそのエステルの重合
体、ポリアクリルニトリル等の不飽和ニトリルの重合体
、ポリビニルアミン、ポリ、アクリルアミド等の不飽和
アミン又はアミドの重合体、ポリスチレン、ポリ塩化ス
チレン等のスチレン系重合体、あるいは、上記各単量体
のうちの二種以上が重合して得られる共重合体、ポリア
ミド、ポリエチレンテレフタレートやポリブチレンテレ
フタレート等のポリエステル、ポリ−アセタール、ポリ
フェニレンスルフィド、ポリフェニレンオキナイド、ポ
リスルホン等を挙げることができる。これらの熱可塑性
樹脂は単独で用いてもよく、また、二種以上を組合せて
用いてもよい。
In the present invention, thermoplastic resins include polymers of hydrocarbon compounds such as polyethylene and polypropylene, polymers of halogenated hydrocarbon compounds such as polyvinyl chloride and polyvinylidene fluoride, and unsaturated resins such as polyvinyl alcohol and polyvinyl ether. Polymers of alcohols or ethers, polymers of unsaturated carboxylic acids or their esters such as polymethyl acrylate, polymethyl methacrylate, and polyvinyl acetate, polymers of unsaturated nitriles such as polyacrylonitrile, polyvinylamine, poly, Polymers of unsaturated amines or amides such as acrylamide, styrene polymers such as polystyrene, polystyrene chloride, copolymers obtained by polymerizing two or more of the above monomers, polyamides, polyethylene Examples include polyesters such as terephthalate and polybutylene terephthalate, polyacetals, polyphenylene sulfide, polyphenylene oquinide, and polysulfone. These thermoplastic resins may be used alone or in combination of two or more.

熱可塑性樹脂として好ましいものは、ポリプロピレン、
ポリアミド、ポリエステル、ポリアセタール、ポリフェ
ニレンスルフィト、ポリフェニレンオキサイド、ポリス
ルホン等の結晶性熱可塑性樹脂を挙げることができる。
Preferred thermoplastic resins are polypropylene,
Examples include crystalline thermoplastic resins such as polyamide, polyester, polyacetal, polyphenylene sulfite, polyphenylene oxide, and polysulfone.

このうち、ポリプロピレンとしては、従来公知の方法で
製造されるプロピレンホモポリマー及びプロピレンと炭
素数2〜18のα−オレフィンとのランダム共重合体又
はブロック共重合体があげられる。
Among these, examples of polypropylene include propylene homopolymers and random copolymers or block copolymers of propylene and an α-olefin having 2 to 18 carbon atoms, which are produced by conventionally known methods.

また、本発明で使用するガラス繊維は、Cab。Moreover, the glass fiber used in the present invention is Cab.

5i02及びAA203を主成分とするもので、通常C
aO10〜20重量%、5i0250〜70重量%及び
M2O32〜15重量%を含んでいるものが好ましい。
The main components are 5i02 and AA203, and usually C
Preferably, it contains 10 to 20% by weight of aO, 250 to 70% by weight of 5i, and 2 to 15% by weight of M2O.

このガラス繊維は樹脂の補強材として使用できるもので
あれば制限はなく、ロービング又はチョツプドストラン
ドのいずれであってもよく、また、表面無処理のもので
あってもポラン又はシラン化合物で繊維表面を処理し′
たものであ5てもよいが、短繊維で綿状をなすグラスウ
ールは好ましくない。
This glass fiber is not limited as long as it can be used as a reinforcing material for resin, and it may be either roving or chopped strand, and even if the surface is untreated, it can be made of poran or silane compound. Treat the surface
However, glass wool, which is made of short fibers and has a cotton-like appearance, is not preferable.

このガラス繊維としては、通常、平均繊維長(Llが1
〜10■、平均繊維径(D)が5〜20μ好ましくは1
0〜15μ、平均繊維長(L)と平均繊維径(DJとの
比%が50以上のものが使用される。このガラス繊維は
熱可塑性樹脂と混合する際C二切断されることがあり、
樹脂組成物中での平均繊維長は、使用するガラス繊維の
長さや混合条件部によっても異なるかもとの長さの約2
0%程度(二なることがあり、0.2〜2rLrIn1
好ましくは03〜1てである。
This glass fiber usually has an average fiber length (Ll of 1
~10μ, average fiber diameter (D) is 5~20μ, preferably 1
Glass fibers with a ratio of 0 to 15μ and an average fiber length (L) to an average fiber diameter (DJ) of 50 or more are used.When mixed with a thermoplastic resin, this glass fiber may be cut into two parts.
The average fiber length in the resin composition is approximately 2 times the base length, which varies depending on the length of the glass fibers used and the mixing conditions.
Approximately 0% (may be 0.2 to 2rLrIn1
Preferably it is 03-1.

上記ガラス繊維と共(二使用されるロックウールとは、
岩綿、スラグウール、鉱さい綿とも称されるものである
。ロックウールは、通常Ca020〜45重量%、5i
0230〜50重量%及びA12035〜20重量%を
主成分とし、その他にMgO等の成分を含有するもので
ある。ロックウールは、通常玄武岩等の自然石や製鉄の
際に副生する一高炉スラグを溶融して繊維化したもので
あり、繊維長数哩ないし数m1粒子含有率30〜40%
程度である。このようなロックウールをそのまま使用す
ることも可能ではあるが、このロックウールを回転円盤
型破砕機、圧縮破砕機等で破砕し、ついで繊維分と粒子
分を空気分級機等で分級したものが特に好適である。
The rock wool used (with the above glass fiber) is
It is also called rock wool, slag wool, or mineral wool. Rock wool usually has Ca020-45% by weight, 5i
The main components are 0230 to 50% by weight and A12035 to 20% by weight, and also contains components such as MgO. Rock wool is a fiber made by melting natural stones such as basalt and blast furnace slag, which is a by-product during iron manufacturing, and has a fiber length of several meters to several meters and a particle content of 30 to 40%.
That's about it. Although it is possible to use such rock wool as it is, it is better to crush this rock wool with a rotating disk crusher, compression crusher, etc., and then classify the fibers and particles with an air classifier. Particularly suitable.

かかるロックウールは、平均繊維長(L)が20〜50
0μ、好ましくはその70チ以上が100〜200μ、
平均繊維径(DJが2〜10μ、好ましくはその70%
以上が3〜5μであり、平均繊維長(L)と平均繊維径
(DJとの比%が5〜250の値を示すものである。。
Such rock wool has an average fiber length (L) of 20 to 50
0 μ, preferably 70 μ or more is 100 to 200 μ,
Average fiber diameter (DJ is 2 to 10μ, preferably 70%
The above is 3 to 5μ, and the ratio percentage of average fiber length (L) to average fiber diameter (DJ) is 5 to 250.

ガラス繊維の場合と同様に、このロックウールも熱可塑
性樹脂と混合する際に切断されることがある。切断を受
ける程度は、使用するロックウールの長さや混合条件等
(二よって異なり、事前(二破砕処理したものについて
は比較的小さく、また、繊維長の長いものは比較的大き
い。要は樹脂組成物中(二含まれるロックウールの長さ
及び%が重要であり、平均繊維長20〜500μ、好ま
しくは50〜200μとすることが望ましく、その長さ
のばらっ本発明において、熱可塑性樹脂に配合される無
機質繊維の配合量は、使用される熱可塑性樹脂の種類に
よって異なるが、通常、熱可塑性樹脂50〜95重量%
し対して、無機質繊維5〜50重量%であり、好ましく
は、熱可塑性樹脂60〜90重那チで無機質繊維10〜
40重量%である。無機質繊維が50重量%を越えると
形成された成形品が脆くなり、また、5重量係より少い
と無機質繊維の配合による補強効果が不十分である。
As with glass fibers, this rock wool can also be cut when mixed with thermoplastics. The extent to which the rock wool is cut depends on the length of the rock wool used and the mixing conditions (2), and it is relatively small for those that have been pre-pulverized, and relatively large for those with long fibers.The key is the resin composition. The length and percentage of rock wool contained in the material (2) are important, and it is desirable that the average fiber length is 20 to 500μ, preferably 50 to 200μ. The amount of inorganic fiber blended varies depending on the type of thermoplastic resin used, but is usually 50 to 95% by weight of the thermoplastic resin.
On the other hand, the inorganic fiber is 5 to 50% by weight, preferably the thermoplastic resin is 60 to 90% by weight and the inorganic fiber is 10 to 50% by weight.
It is 40% by weight. If the amount of inorganic fiber exceeds 50% by weight, the molded product will become brittle, and if it is less than 5% by weight, the reinforcing effect of the inorganic fiber will be insufficient.

また、上記無機質繊維の組成としては、その主体がガラ
ス繊維とロックウールであり、ガラス繊維が95〜30
重量%、好ましくは90〜40重量%であってロックウ
ールが5〜70重量%、好ましくは10〜60重量%で
あ乞。ロックウールが5重量%以下では樹脂成型品のウ
ェルド部(−おける補強効果が得られず、また−股部の
衝撃強度の増加も少ない。また、70重量%以上では樹
脂成型品の一般部の衝撃強度がガラス繊維のみを補強材
として使用した場合に比べて低下する傾向を示し好まし
くない。
In addition, the composition of the above-mentioned inorganic fiber is mainly glass fiber and rock wool, and glass fiber has a content of 95 to 30%.
% by weight, preferably from 90 to 40% by weight, and rock wool from 5 to 70% by weight, preferably from 10 to 60% by weight. If rock wool is less than 5% by weight, no reinforcement effect will be obtained at the weld part of the resin molded product, and there will be little increase in impact strength at the crotch part. This is not preferable because the impact strength tends to be lower than when only glass fiber is used as a reinforcing material.

上記熱可塑性樹脂、ガラス繊維及びロックウールを含有
する強化熱可塑性樹脂組成物の調製は、上述した配合割
合の範囲内で適宜のブレンダ等を用いて常法により均一
に混合することによってなされる。また、このようにし
て調製された強化熱可塑性樹脂組成物は、通常の押出成
形や射出成形等により所望の製品に成形される。
The reinforced thermoplastic resin composition containing the thermoplastic resin, glass fiber, and rock wool is prepared by uniformly mixing them within the range of the above-mentioned blending ratio using a suitable blender or the like by a conventional method. Further, the reinforced thermoplastic resin composition thus prepared is molded into a desired product by conventional extrusion molding, injection molding, or the like.

なお、上記ガラス繊維及びロックウールの表面は、熱可
塑性樹脂との密着性を向上させる処理剤によって処理さ
れたものであってもよい。また、組成物の調製に際して
、熱可塑性樹脂に通常添加して使用される難燃剤、顔料
、可塑剤、安定剤、酸化防止剤、紫外線吸収剤、架橋剤
その他の添加剤、補強材として無機質繊維を配合する場
合に使用される分散剤、アクリル酸系共重合体やマレイ
ン酸共重合体等の不飽和カルボン酸系共重合体等であっ
て接着性を有し無機質繊維と熱可塑性樹脂との間の密着
性を向上させる改質剤、無機充填材、その他強化月f繊
維等を添加してもよい。
Note that the surfaces of the glass fibers and rock wool may be treated with a treatment agent that improves adhesion to the thermoplastic resin. In addition, when preparing the composition, flame retardants, pigments, plasticizers, stabilizers, antioxidants, ultraviolet absorbers, crosslinking agents, and other additives, which are usually added to thermoplastic resins, and inorganic fibers as reinforcing materials are also used. Dispersants used when blending inorganic fibers and thermoplastic resins, such as unsaturated carboxylic acid copolymers such as acrylic acid copolymers and maleic acid copolymers, have adhesive properties and are used to bond inorganic fibers and thermoplastic resins. A modifier, an inorganic filler, and other reinforcing fibers may be added to improve the adhesion between the materials.

本発明(二よれば、補強材として単にガラス繊維やロッ
クウールのみを使用する場合(−比べて一般部の一度、
特にアイゾツト衝撃強度が向上するばかりでなく、樹脂
成型品のウェルド部における機械的強度が著るしく向上
する。また、樹脂成型品(二おけるそりの問題も生じな
いので、ウェルド部の機械的強度やそりの問題になるよ
うな電化製品、車輌部品、事務機器等の各種の機器の分
野において使用される強化熱可塑性樹脂組成物として特
(−有用である。しかも、ロックウールとガラス繊維と
を樹脂中(二配合すれば、ガラス繊維のみを樹脂中に配
合する際にガラス繊維が帯電すること(二より生じる種
々のトラブル、例えばブレンダ壁面への付着(二より配
合が不均一になる等の問題がなくなるという利点がある
According to the present invention (2), when only glass fiber or rock wool is used as a reinforcing material (- compared to the general part,
In particular, not only the isot impact strength is improved, but also the mechanical strength of the welded part of the resin molded product is significantly improved. In addition, since there is no problem with warpage caused by resin molded products, it is used in the field of various equipment such as electrical appliances, vehicle parts, and office equipment, where mechanical strength and warpage problems occur at the weld part. It is particularly useful as a thermoplastic resin composition.Moreover, if rock wool and glass fiber are blended into the resin, the glass fibers will be charged when only the glass fibers are blended into the resin. It has the advantage of eliminating various problems that occur, such as adhesion to the blender wall (second, resulting in non-uniform blending).

以下、本発明をその実施例及び比較例(二基づいて具体
的に説明する。
Hereinafter, the present invention will be specifically explained based on Examples and Comparative Examples.

〔実施例1〜4及び比較例1.2〕 熱可塑性樹脂としてポリプロピレン(徳山曹達(株)裂
開品名:徳山ポリプロME260.ポリプロピレンホモ
ポリマーMI22)60重量部に第1表に示す割合でガ
ラス繊維(平均繊維長3(転)、平均繊維径13μ、L
/D23o)とロックウール(新日本製鉄化学工業(株
)製、商品名ニスファイバーFF 、平均繊維長120
μ、平均繊維径4μ、Lろ30、  粒子(10μ以下
)含有率1重量%以下)の合計35重量部及び改質材(
ポリプロピレンME260(二無水マレイン酸05重量
係をグラフト化したもの)5重量部を配合し、押出機で
練り込んで強化ポリプロピレン樹脂組成物(ガラス繊維
の平均繊維長約o、13m++、ロックウールの平均繊
維長約100μ)を調製した。この強化ポリプロピレン
樹脂組成物(二ついて、射出成形ζこより一般部及びウ
ェルド部を有する試験片を成形し、引張強度(JISK
8871)、引張伸び率(JIS K 6871 )、
曲げ強度(ASTM D−790)及びス′アイゾツト
衝撃強度(ASTM D−256) (IZ 衝撃強度
と略す)を測定し、試験片の一般部及びウェルド部の強
度を求めた。ロックウール又はガラス繊維のみを使用し
た比較例1及び比較例2と併せて結果を第1表(二示す
[Examples 1 to 4 and Comparative Example 1.2] Glass fibers were added to 60 parts by weight of polypropylene (Tokuyama Soda Co., Ltd. splitting product name: Tokuyama Polypro ME260.Polypropylene homopolymer MI22) as a thermoplastic resin in the proportion shown in Table 1. (Average fiber length 3 (rolled), average fiber diameter 13μ, L
/D23o) and rock wool (manufactured by Nippon Steel Chemical Industry Co., Ltd., trade name Varnish Fiber FF, average fiber length 120
μ, average fiber diameter 4μ, L filter 30, total 35 parts by weight of particles (10μ or less, content 1% by weight or less) and modifying material (
5 parts by weight of polypropylene ME260 (grafted with 05% by weight of maleic dianhydride) was blended and kneaded in an extruder to form a reinforced polypropylene resin composition (average fiber length of glass fibers of approximately o, 13m++, average fiber length of rock wool). A fiber with a length of about 100μ) was prepared. This reinforced polypropylene resin composition was molded into a test piece having a general part and a weld part by injection molding.
8871), tensile elongation (JIS K 6871),
The bending strength (ASTM D-790) and the IZ impact strength (ASTM D-256) (abbreviated as IZ impact strength) were measured to determine the strength of the general part and weld part of the test piece. The results are shown in Table 1 along with Comparative Examples 1 and 2 in which only rock wool or glass fiber was used.

〔実施例5〜7及び比較例3.4〕 実施例1で使用したと同じポリプロピレン、ガラス繊維
、ロックウール及び改質材を第2表(二示す割合C二配
合し、実施例1と同様にして、一般部及び、ウェルド部
を有する試験片を成形し、実施例1と同様な試験を行な
った。無機質繊維未添加と、樹脂(ポリプロピレンと改
質材)40重量部に対して無機質繊維60重量部配合し
た比較例3、及び比較例4と併せて結果を第2表に示す
[Examples 5 to 7 and Comparative Example 3.4] The same polypropylene, glass fiber, rock wool, and modifier as used in Example 1 were blended in the proportion C2 shown in Table 2 (2), and the same as in Example 1 was used. A test piece having a general part and a weld part was molded, and the same test as in Example 1 was conducted. The results are shown in Table 2 together with Comparative Example 3 and Comparative Example 4 in which 60 parts by weight was blended.

第  2  表 〔実施例8.9及び比較例5.6〕 熱可塑性樹脂としてグレードの異なる2種のポリプロピ
レン、すなわちポリプロピレンA〔徳山曹達(株)製産
品名:徳山ポリプロMS−684、(フロピレンーエチ
レンブロックコポリマー、M■35)〕又はポリプロピ
レンB〔徳山曹達(株)製産品名:徳山ポリプロME−
150,(ポリプロピレンホモポリマー、M115):
]の65重量部に実施例1で使用したと同じガラス繊維
及びロックウールをそれぞれ2&5重量部及び65重量
部を配合し、実施例1と同様C二して試験片を成形し、
そのウェルド部の強度を実施例1と同様にして求め、ガ
ラス繊維35重量部を用いてロックウールを配合しない
比較例5.6と併せて結果を第3表C二示す。
Table 2 [Example 8.9 and Comparative Example 5.6] Two types of polypropylene of different grades as thermoplastic resins, namely polypropylene A [Product name of Tokuyama Soda Co., Ltd.: Tokuyama Polypro MS-684, (Flopylene) - Ethylene block copolymer, M■35)] or polypropylene B [Product name: Tokuyama Soda Co., Ltd. Product name: Tokuyama Polypro ME-
150, (polypropylene homopolymer, M115):
2 & 5 parts by weight and 65 parts by weight of the same glass fiber and rock wool used in Example 1 were blended with 65 parts by weight of ], and a test piece was formed by C2 in the same manner as in Example 1.
The strength of the weld portion was determined in the same manner as in Example 1, and the results are shown in Table 3C-2, together with Comparative Example 5.6, which used 35 parts by weight of glass fiber and did not contain rock wool.

第  3  表 なお、上記実施例1〜7及び比較例1〜4で求められた
各試験片の一般部及びウェルド部の物性の変化を第1図
及び第2図(二示す。これら第1図及び第2図(二おい
て、一般部の物性を実線で示し、また、ウェルド部の物
性を破線で示す。第1図及び第2図のグラフから明らか
なよう(二、いずれも上向きの曲線が得られ、ガラス繊
維とロックウールとを併用することによる相乗効果があ
ることを示している。
Table 3 The changes in the physical properties of the general part and weld part of each test piece determined in Examples 1 to 7 and Comparative Examples 1 to 4 are shown in Figures 1 and 2 (2). and Figure 2 (2), the physical properties of the general part are shown by a solid line, and the physical properties of the weld part are shown by a broken line. was obtained, indicating that there is a synergistic effect by using glass fiber and rock wool together.

〔実施例10及び比較例7〜10〕 熱可塑性樹脂として実施例8で使用したポリプロピレン
Aを使用し、このポリプレンA55 都にガラス繊維3
0部と実施例1で使用したロックウール10重量部とを
配合し、アクリル酸共重合体系改質材5重量部を添加し
、実施例1と同様にし1 でウェルド部を有する試験片
を成形し、曲げ強度及び%“ノツチ無しIZ衝撃強度を
測定すると共(二そり試験を行いそりの程度を求めた。
[Example 10 and Comparative Examples 7 to 10] Polypropylene A used in Example 8 was used as the thermoplastic resin, and glass fiber 3.
0 parts by weight and 10 parts by weight of the rock wool used in Example 1, 5 parts by weight of the acrylic acid copolymer modifier were added, and the same procedure as in Example 1 was carried out to form a test piece having a welded part. Then, the bending strength and the unnotched IZ impact strength (%) were measured (two warpage tests were conducted to determine the degree of warpage).

ロックウールζ二代えて細かく粉砕したガラス繊維ある
いはマイカ、タルク又は炭カルの粉末を使用した比較例
7〜10と併せて結果を第4表(二示す。
The results are shown in Table 4 (2) together with Comparative Examples 7 to 10 in which finely pulverized glass fiber or mica, talc, or charcoal powder was used instead of rock wool.

第  4  表 ついては実施例10の値をlOOとして換算した値であ
る。
Table 4 shows the values obtained by converting the values of Example 10 into lOO.

なお、そり試験は、直径15Qmm、厚さ2W+の円盤
を下記の条件で射出成形し、23°C1湿度50チ↓ で48時間放置後、この円盤を平面上に置き、最大変位
量を示す点及びこの点と円盤の中心を通る直線が円盤の
円周と交わる点C−おける変位量(al及びa2)を測
定すると共(二各変位量ILl及びa2を測定した点の
間隔(I工)を測定し、次にこの円盤を反転させて同様
に変位量(113及びa4)と間隔(!2)とを測定し
、下記の計算式によりそりの値を求めた。
In addition, in the warpage test, a disk with a diameter of 15Qmm and a thickness of 2W+ was injection molded under the following conditions, and after being left at 23°C and humidity of 50℃ for 48 hours, the disk was placed on a flat surface and the point showing the maximum displacement was measured. And measure the displacement (al and a2) at point C, where a straight line passing through this point and the center of the disk intersects with the circumference of the disk. Next, the disk was inverted, the displacement (113 and a4) and the distance (!2) were similarly measured, and the warpage value was determined using the following formula.

射出成形条件 使用射出機  8鋼製13oz射出機 樹脂温度 230℃ 射出圧力 400kg/cm2 射出速度 40M、、/see 金型温度 40℃ そりの計算式 %式% ) また、上記実施例10及び比較例7〜10(二おいては
、それぞれ10個の円盤を成形し、各円盤(二関してそ
りの値を求め、求められた各そりの値の平均値をそりの
程度として第4表(=示した。
Injection molding conditions Injection machine used: 8 steel 13oz injection machine Resin temperature: 230°C Injection pressure: 400kg/cm2 Injection speed: 40M, /see Mold temperature: 40°C Warpage calculation formula: % formula 7 to 10 (for 2), mold 10 discs each, calculate the warpage value for each disc (2), and use the average value of each warpage value as the degree of warp in Table 4 (= Indicated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1〜4ならび(二比較例1及び2(−お
ける−股部及び、ウェルド部の物性値を示すグラフであ
り、第2図は実施例3.5.6.7ならびに比較例3及
び4(=おける一般部及びウェルド部の物性値を示すグ
ラフである。
FIG. 1 is a graph showing the physical property values of the crotch portion and weld portion of Examples 1 to 4 and Comparative Examples 1 and 2 (-), and FIG. It is a graph showing the physical property values of the general part and the weld part in Comparative Examples 3 and 4 (=).

Claims (3)

【特許請求の範囲】[Claims] (1)熱可塑性樹脂50〜95重量係と無機質繊維5−
50重量%とを主体とする組成物であり、上記無機質繊
維のうち95〜30軍量係がガラス繊維であって5〜7
0重M’lyがロックウールであることを特徴とする強
化熱可塑性樹脂組成物。
(1) Thermoplastic resin 50-95% by weight and inorganic fiber 5-
50% by weight, and 95-30% of the above inorganic fibers are glass fibers, and 5-7% by weight.
A reinforced thermoplastic resin composition characterized in that 0 weight M'ly is rock wool.
(2)熱可塑性樹脂がポリプロピレン、ポリアミド、ポ
リエステル、ポリフェニレンスルフィド、ポリフェニレ
ンオキサイド、ポリスルホン等の結晶性熱可塑性樹脂で
ある特許請求の範囲第1項記載の強化熱可塑性樹脂組成
物。
(2) The reinforced thermoplastic resin composition according to claim 1, wherein the thermoplastic resin is a crystalline thermoplastic resin such as polypropylene, polyamide, polyester, polyphenylene sulfide, polyphenylene oxide, or polysulfone.
(3)ロックウールは、粒子部分が除去されていると共
(二、平均繊維長(L)20〜500μで平均繊維径(
D)2〜10μであって%が5〜250の範囲内である
特許請求の範囲第1項記載の強化熱可塑性樹脂組成物。
(3) Rock wool has particle parts removed (2), average fiber length (L) of 20 to 500μ, and average fiber diameter (
D) The reinforced thermoplastic resin composition according to claim 1, wherein the % is in the range of 5 to 250.
JP8877982A 1982-05-27 1982-05-27 Reinforced thermoplastic resin composition Pending JPS58206643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8877982A JPS58206643A (en) 1982-05-27 1982-05-27 Reinforced thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8877982A JPS58206643A (en) 1982-05-27 1982-05-27 Reinforced thermoplastic resin composition

Publications (1)

Publication Number Publication Date
JPS58206643A true JPS58206643A (en) 1983-12-01

Family

ID=13952334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8877982A Pending JPS58206643A (en) 1982-05-27 1982-05-27 Reinforced thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JPS58206643A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61254655A (en) * 1985-05-02 1986-11-12 Nippon Steel Chem Co Ltd Resin composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4960336A (en) * 1972-10-18 1974-06-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4960336A (en) * 1972-10-18 1974-06-12

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61254655A (en) * 1985-05-02 1986-11-12 Nippon Steel Chem Co Ltd Resin composition
JPH0116858B2 (en) * 1985-05-02 1989-03-28 Shinnittetsu Kagaku

Similar Documents

Publication Publication Date Title
US3764456A (en) Polymeric high performance composites
US4717743A (en) Polyolefin-base resin composition
US4207373A (en) Highly filled polyolefin compositions
JPS6234793B2 (en)
JPH0819320B2 (en) Reinforcing resin composition for molding
JPH0386753A (en) Polyester resin composition and its preparation
US4112036A (en) Preparing mica-reinforced composites
JPH0124815B2 (en)
EP0545625B1 (en) Damping material
JPH0341104B2 (en)
JPH0115526B2 (en)
JPS58206643A (en) Reinforced thermoplastic resin composition
JP3236803B2 (en) Method for producing calcium carbonate powder, calcium carbonate powder and polymer additive using the same
JPS5861149A (en) Reinforced thermoplastic resin composition
JPH039952A (en) Thermoplastic resin composition
JPS648658B2 (en)
JPS6132345B2 (en)
JP2684056B2 (en) Thermoplastic resin composition and molded article made of the same
JPH0144251B2 (en)
JPH11181181A (en) Resin composition
JPH08183878A (en) Thermoplastic resin composition and molding made therefrom
JPS6233888A (en) Flexible composite material
JP3491114B2 (en) Thermosetting resin composition for sliding members
JPH04225034A (en) Production of polyamide resin thin molded product
JP2885883B2 (en) Propylene resin composition