JPS58204332A - Measuring method of internal stress for steel material - Google Patents

Measuring method of internal stress for steel material

Info

Publication number
JPS58204332A
JPS58204332A JP8659282A JP8659282A JPS58204332A JP S58204332 A JPS58204332 A JP S58204332A JP 8659282 A JP8659282 A JP 8659282A JP 8659282 A JP8659282 A JP 8659282A JP S58204332 A JPS58204332 A JP S58204332A
Authority
JP
Japan
Prior art keywords
output
winding
internal stress
output signal
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8659282A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamamoto
浩 山本
Masaki Motomura
元村 雅記
Keisuke Kawaguchi
圭介 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8659282A priority Critical patent/JPS58204332A/en
Publication of JPS58204332A publication Critical patent/JPS58204332A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/12Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress
    • G01L1/127Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress by using inductive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/12Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress
    • G01L1/125Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress by using magnetostrictive means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To execute a simple and stable measurement, by subtracting a signal which adjust voltage and phase of an energizing current applied to an energizing winding, from an output signal of an output winding corresponding to a variation of magnetic permeability. CONSTITUTION:A detecting part 6 is energized by an output current which amplifies an output signal of a sine wave oscillator 2, and a magnetic line of force by this energizing winding 4 penetrates a material to be inspected 1. In this state, when internal stress of the material to be inspected 1 is varied, magnetic permeability of the material to be inspected 1 is varied. This variation of magnetic permeability becomes a voltage variation of an output signal of an output winding 5 of the detecting part 6. The output signal of the output winding 5 is amplified by an amplifier 9 through a subtracter 8, and a detecting output is obtained.

Description

【発明の詳細な説明】 この発明は鋼材の内部応力測定方法の改良に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for measuring internal stress in steel materials.

鋼材の内部応力は、腐食の起点や甚しい時には割れの起
点となったり、あるいはその鋼材を用いて製品に成形し
た時変形を生じせしめる一因となる。このようなことか
ら鋼材の内部応力を測定することは1品質管理あるいは
製造管理のために必要である。
Internal stress in steel materials can become a starting point for corrosion or, in severe cases, cracking, or can cause deformation when the steel material is formed into a product. For this reason, measuring the internal stress of steel materials is necessary for quality control or manufacturing control.

従来鋼材の内部応力を非接触で測定する手段としてX線
法および超音波法があるが、前者は被検材の表面性状の
厳密性が要求され、後者は、微少な内部応力の変化を非
接触で測定する事は困難で。
Conventional methods for non-contact measurement of internal stress in steel materials include the X-ray method and the ultrasonic method, but the former requires precision in the surface texture of the material to be tested, while the latter does not allow for slight changes in internal stress. It is difficult to measure by contact.

いずれも測定条件の悪い実操業ラインでは実用性に乏し
い。これらに対して鋼材の透磁率が内部応力によって変
化する現象を利用した磁気的内部応力測定手段が提案さ
れている。しかし、内部応力の変化に対する検出部の出
力信号の変化が微弱なるが故に、検出部に印加する励磁
電流の電圧変動の問題、電気回路の電気的安定性の問題
等のため。
Both methods are impractical in actual operating lines with poor measurement conditions. In response to these, a magnetic internal stress measuring means has been proposed that utilizes the phenomenon that the magnetic permeability of steel changes depending on internal stress. However, because the change in the output signal of the detection section due to changes in internal stress becomes weak, there are problems with voltage fluctuations in the excitation current applied to the detection section, problems with electrical stability of the electric circuit, etc.

出力の安定性が悪い。このためこれらの安定化をはかる
ため、種々の処置が講じられているが、いずれも実際上
はたいした効果がなく、依然として問題であった。
Output stability is poor. For this reason, various measures have been taken to stabilize these, but none of them have been very effective in practice, and the problem remains.

また従来の別の大きな問題として、検出部と被検材間の
距離変動の影参を受け、検出部の出力が変化し測定精度
が低下する。このため該距離変動が大なるが故に、その
対策も大がかりとなっていた。
Another major problem with the conventional method is that the output of the detection section changes due to changes in the distance between the detection section and the material being tested, resulting in a decrease in measurement accuracy. As a result, the distance fluctuation becomes large, and countermeasures against it have become extensive.

本発明は前記従来の問題点を解決するもので。The present invention solves the above-mentioned conventional problems.

透磁率の変化から鋼材の内部応力を測定する方法におい
て、検出される出力を安定化したものである。すなわち
本発明は正弦波電流で検出部の励磁捲線を励磁して被検
材に磁力線を与え、該被検材の透磁率の変化に応じて変
る検出部の出力捲線の出力信号にもとづいて、被検材の
内部応力を測定する方法において、前記励磁捲線に印加
される励磁電流の電圧と位相を調整した信号を、前記出
力捲線の出力信号から減算した信号にもとづいて。
This method stabilizes the detected output in a method of measuring internal stress in steel materials from changes in magnetic permeability. That is, the present invention excites the excitation winding of the detection section with a sine wave current to apply magnetic lines of force to the material to be tested, and based on the output signal of the output winding of the detection section that changes in accordance with changes in the magnetic permeability of the material to be tested, A method for measuring internal stress of a test material, based on a signal obtained by subtracting a signal obtained by adjusting the voltage and phase of an excitation current applied to the excitation winding from an output signal of the output winding.

被検材の内部応力を測定する点にある。The point is to measure the internal stress of the material being tested.

以下本発明を実施例にもとづき詳しく説明する。The present invention will be explained in detail below based on examples.

第1図は本発明の実施例における装rIItw成を示す
図である。図において1は被、横材、2は正弦波発振器
、3は正弦波発振器2の労力信号を電流増幅する電流増
幅器、4は検出部6の励磁捲線、5は検出部6の出力捲
線、7はレベル調整器、8は出力捲線5の出力信号とレ
ベル調整器7の出力信号との差分をとる減算器、9は減
算器8の出力信号を増幅する増幅器である。
FIG. 1 is a diagram showing the configuration of the device rIItw in an embodiment of the present invention. In the figure, 1 is a cross member, 2 is a sine wave oscillator, 3 is a current amplifier for current amplifying the effort signal of the sine wave oscillator 2, 4 is an excitation winding of the detection unit 6, 5 is an output winding of the detection unit 6, and 7 8 is a level adjuster, 8 is a subtracter that takes the difference between the output signal of the output winding 5 and the output signal of the level adjuster 7, and 9 is an amplifier that amplifies the output signal of the subtracter 8.

検出部6は正弦波発振器2の出力信号を増幅した出力電
流によって励磁されており、この励磁捲線4による磁力
線は、被検材lを貫いている。
The detection unit 6 is excited by an output current obtained by amplifying the output signal of the sine wave oscillator 2, and the lines of magnetic force due to this excitation winding 4 penetrate the material 1 to be inspected.

この状態において、被検材1の内部応力が変化すると、
被検材lの透磁率が変化する。、この透磁率の変化は、
検出部6の出力捲線5の出力信号の電圧変化となる。出
力捲線5の出力信号は、減算器8を軽て増幅器9で増幅
され、検出出力を得る。
In this state, when the internal stress of the test material 1 changes,
The magnetic permeability of the test material l changes. , this change in magnetic permeability is
This corresponds to a voltage change in the output signal of the output winding 5 of the detection section 6. The output signal of the output winding 5 is passed through a subtracter 8 and amplified by an amplifier 9 to obtain a detection output.

ところで出力捲線5の出力信号は、被検材1の内部応力
変化によって変化するほかに、正弦波発振器2および電
流増幅器3を動作させるための供給電源電圧変動や、各
回路の内部4品の定数変化および雰囲気温度変化等によ
り、測定目的である仮横材1の内部応力変化と無関係に
変動する。
Incidentally, the output signal of the output winding 5 changes not only due to internal stress changes in the test material 1, but also due to fluctuations in the power supply voltage for operating the sine wave oscillator 2 and current amplifier 3, and constants of the four internal components of each circuit. It fluctuates due to changes in the internal stress of the temporary cross member 1, which is the object of measurement, due to changes in the temperature of the atmosphere and changes in the ambient temperature.

これを式で表わすと、出力捲線の出力信号の電圧を↓。Expressing this in a formula, the voltage of the output signal of the output winding is ↓.

とするとき次式のようにな夛、右辺最終項のΔ↓6以外
は測定に有害な変動成分(ドリフト〕である。
Then, as shown in the following equation, everything other than Δ↓6 in the last term on the right side is a fluctuation component (drift) that is harmful to measurement.

門。” Kl (K+ (’o+Δ?(1)+Δ↓1)
+Δ;a    、、、、、、、(1)但し Kl;電
流増巾器3の伝達関数 に2;検出部6の伝達関数 縄 ;正弦波発振器2の出力電圧 Δ礼 ;         ドリフト Δ↓a ;電流増巾器3のドリフト Δ↓d;検出信号 一方、レベル調整器7の出力信号の電圧↓dは。
gate. ” Kl (K+ ('o+Δ?(1)+Δ↓1)
+Δ; a , , , , , (1) However, Kl: Transfer function of current amplifier 3 2: Transfer function of detection unit 6 ; Output voltage Δ of sine wave oscillator 2; Drift Δ↓a; Drift Δ↓d of current amplifier 3; detection signal On the other hand, voltage ↓d of the output signal of level regulator 7 is.

レベル調整器7の伝達関数をに、とすると1次式%式% (2) いまレベル調整器7の出力信号の電圧;dを、被検材に
内部応力がない状態において、出力捲線5の出力信号の
電圧;。と同相、同電圧になるように調整して、K2=
に3 とすれは、内部応力が存在するときの測定状態に
おける減算器つの出力信号の電圧・−〇は。
Letting the transfer function of the level adjuster 7 be, the linear formula % formula % (2) Now, the voltage of the output signal of the level adjuster 7; Output signal voltage;. Adjust so that it has the same phase and voltage as K2=
3 is the voltage of the output signal of the subtractor in the measurement state when internal stress is present.

y、  =  ?、  −?6 一Δ↓d      ・・・・・・(3)となって検出
信号のみとなシ、他の有害な変動成分は相殺される。な
お増幅器9のドリフトがあるため、最終的な出力はこの
影響を受けるが、このドリフトは、公知の技術1例えば
低温度係数の素子を用いるとか、増幅器全体を恒温槽に
入れるとかで、容易に抑圧することができるため問題と
ならない。またレベル調整器7は、コンデンサーあるい
は抵抗とポテンショメーター等により、公知の技術で容
易に構成し得る。
y, =? , -? 6 -Δ↓d (3), so that only the detection signal is present, and other harmful fluctuation components are canceled out. Note that the final output is affected by the drift of the amplifier 9, but this drift can be easily eliminated using known techniques 1, such as using elements with low temperature coefficients or placing the entire amplifier in a thermostatic oven. It is not a problem because it can be suppressed. Further, the level adjuster 7 can be easily constructed using a known technique using a capacitor, a resistor, a potentiometer, or the like.

本発明においては、励磁捲線4への励磁電流の電圧と位
相を出力捲線5の出力信号の電圧と位相とほぼ同じにな
るよう調整することにより、減算器日の出力信号の電圧
が小さくなるので、増幅器9の能動領域の制限を受ける
ことなく、各捲線の電圧値を高く採る事ができ、それだ
け検出感度を上げることができる。
In the present invention, by adjusting the voltage and phase of the excitation current to the excitation winding 4 to be almost the same as the voltage and phase of the output signal of the output winding 5, the voltage of the output signal of the subtractor is reduced. , the voltage value of each winding can be set high without being limited by the active area of the amplifier 9, and the detection sensitivity can be increased accordingly.

さらに本発明によれば、検出部6と被検材1間の距離変
動による測定精度の低下が防止される。
Further, according to the present invention, a decrease in measurement accuracy due to a change in the distance between the detection unit 6 and the test material 1 is prevented.

例えば、前記距離が若干離れたとすると、検出部6の出
力捲線5の出力値は減少する。従来は、これが測定誤差
の一要因となっていたが1本発明ζ二おいては該距離が
開くと、励磁捲線4側のインダクタンスが減少し、電流
増幅器3があるインピーダンスを持っているため、励磁
捲線4の電圧値が減少する。従って両捲線の電圧値が共
に減少するため、結果的に減算器8の出力値は変動を生
じにく  い 。
For example, if the distance is slightly greater, the output value of the output winding 5 of the detection unit 6 will decrease. Conventionally, this was a cause of measurement error, but in the present invention ζ2, when the distance increases, the inductance on the excitation winding 4 side decreases, and the current amplifier 3 has a certain impedance. The voltage value of the excitation winding 4 decreases. Therefore, the voltage values of both windings decrease together, and as a result, the output value of the subtracter 8 is less likely to fluctuate.

また前記距離が若干近づいたとすると、上記と全く逆の
動作により両捲線の電圧値が共に増加するため、減算器
8の出力値は変動を生じにくい。
Furthermore, if the distance becomes a little closer, the voltage values of both windings increase together due to an operation completely opposite to the above, so that the output value of the subtractor 8 is less likely to fluctuate.

すなわち検出部6と被検材1間の距離変動があったとし
ても、その影響は相殺され測定精度は低下しない。
That is, even if there is a change in the distance between the detection unit 6 and the test material 1, the influence is canceled out and the measurement accuracy does not deteriorate.

次に本発明法による測定結果の1例を従来法の場合と比
較して第2図、第3図に示す。第2図は増幅器9の出力
信号波形を示したもので、(a)が従来法、(b)が本
発明法の場合である。秩軸は測定可能範囲′t−1OO
とした場合の出力レベルを示す。
Next, an example of measurement results obtained by the method of the present invention is shown in FIGS. 2 and 3 in comparison with those obtained by the conventional method. FIG. 2 shows the output signal waveform of the amplifier 9, where (a) is the conventional method and (b) is the method of the present invention. Chichi axis is measurable range't-1OO
Indicates the output level when .

この図よシ明らかなように1本発明法によると内部応力
に関係しない出力の変動が少なく、出力が安定化し、測
定ln1度がよくなる。図中のピークSが内部応力変化
を示している。
As is clear from this figure, according to the method of the present invention, fluctuations in the output unrelated to internal stress are small, the output is stabilized, and the measured ln1 degree is improved. A peak S in the figure indicates a change in internal stress.

第3図は検出部6と被検材1間の距離変動の影響を示し
たもので、(a)が従来法、(b)が本発明法の場合で
ある。縦軸は測定可能範囲1100としたときの出力レ
ベル、横軸は検出部と被検材間の距離を示す。
FIG. 3 shows the influence of distance variation between the detection unit 6 and the specimen 1, in which (a) is the conventional method and (b) is the method of the present invention. The vertical axis shows the output level when the measurable range is 1100, and the horizontal axis shows the distance between the detection section and the test material.

この図かられかるように本発明法によると、距離変動の
影響を殆んど受けず、この面からも測定精度が確保され
ることが明らかである。なお内部応力測定時における該
距離変動を±1龍以内にすることは、簡便な倣い装置等
により容易に行えるので1本発明法によれば、距離変動
による影響は実用的に全く問題とならなくなる。
As can be seen from this figure, according to the method of the present invention, it is hardly affected by distance fluctuations, and it is clear that measurement accuracy is ensured from this aspect as well. Furthermore, since it is easy to keep the distance variation within ±1 when measuring internal stress using a simple copying device, etc.1, according to the method of the present invention, the influence of distance variation does not pose any practical problem at all. .

以上のように本発明法によれば、比較的簡単な手法によ
り、従来大きな問題であった出力変動。
As described above, according to the method of the present invention, output fluctuations, which have been a big problem in the past, can be solved using a relatively simple method.

距離変動問題を効果的に解決することができ、実ライン
操業において安定した内部応力測定を可能とするもので
ある。
This effectively solves the distance variation problem and enables stable internal stress measurement in actual line operations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における装置構成を示す説明図
、第2図および第3図は本発明法による効果の1例を示
す図表である。 1・・・被検材      2・・・正弦波発振器3・
・・電流増幅器    4・・・励磁捲線5・・・出力
捲線     6・・・検出部7・・・レベル調整器 
  8・・・減算器9・・・増幅器 第1図
FIG. 1 is an explanatory diagram showing the configuration of an apparatus in an embodiment of the present invention, and FIGS. 2 and 3 are charts showing an example of the effects of the method of the present invention. 1... Test material 2... Sine wave oscillator 3.
... Current amplifier 4 ... Excitation winding 5 ... Output winding 6 ... Detection section 7 ... Level adjuster
8...Subtractor 9...Amplifier Figure 1

Claims (1)

【特許請求の範囲】 正弦波電流で検出部の励磁捲線を励磁して被検材に磁力
線を与え、該被検材の透磁率の変化に応じて変る検出部
の出力捲線の出力信号にもとづいて、被検材の内部応力
を測定する方法において。 前記励磁捲線に印加される励磁電流の電圧と位相を調整
した信号を、前記出力捲線の出力信号から減算した信号
にもとづいて、被検材の内部応力を測定することを特徴
とする鋼材の内部応力測定方法・
[Claims] The excitation winding of the detection section is excited with a sine wave current to apply magnetic lines of force to the material to be tested, and based on the output signal of the output winding of the detection section that changes in response to changes in the magnetic permeability of the material to be tested. In a method for measuring the internal stress of a test material. The internal stress of a steel material is measured based on a signal obtained by subtracting a signal obtained by adjusting the voltage and phase of an excitation current applied to the excitation winding from an output signal of the output winding. Stress measurement method/
JP8659282A 1982-05-24 1982-05-24 Measuring method of internal stress for steel material Pending JPS58204332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8659282A JPS58204332A (en) 1982-05-24 1982-05-24 Measuring method of internal stress for steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8659282A JPS58204332A (en) 1982-05-24 1982-05-24 Measuring method of internal stress for steel material

Publications (1)

Publication Number Publication Date
JPS58204332A true JPS58204332A (en) 1983-11-29

Family

ID=13891269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8659282A Pending JPS58204332A (en) 1982-05-24 1982-05-24 Measuring method of internal stress for steel material

Country Status (1)

Country Link
JP (1) JPS58204332A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60169757A (en) * 1984-01-17 1985-09-03 ウエスチングハウス エレクトリック コ−ポレ−ション Method of measuring stress of ferromagnetic or nonmagnetic sample
CN102156010A (en) * 2010-12-30 2011-08-17 首钢总公司 Internal stress measuring method of opening plate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5619422A (en) * 1979-07-27 1981-02-24 Toshiba Corp Strain detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5619422A (en) * 1979-07-27 1981-02-24 Toshiba Corp Strain detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60169757A (en) * 1984-01-17 1985-09-03 ウエスチングハウス エレクトリック コ−ポレ−ション Method of measuring stress of ferromagnetic or nonmagnetic sample
CN102156010A (en) * 2010-12-30 2011-08-17 首钢总公司 Internal stress measuring method of opening plate

Similar Documents

Publication Publication Date Title
US5089781A (en) Electromagnetic conductivity meter and a conductivity measuring method
JP2622536B2 (en) Eddy current flaw detection method and device
JP3241087B2 (en) Method and apparatus for determining the end position of a metallic material body
JPS58204332A (en) Measuring method of internal stress for steel material
KR101999945B1 (en) Apparatus For Measuring Stess of ferromagnetic substance
US3577773A (en) Method and apparatus for measuring the percentage of elongation of metal strips
JPH05281063A (en) Measuring device for tension of steel material
JPH0989845A (en) Method and equipment for nondestructive inspection of hardening depth
JP3204073B2 (en) Stress measuring method and apparatus utilizing magnetostriction effect
JP2522732Y2 (en) Iron loss value measuring device
JPH01269049A (en) Method of inspecting deterioration of metallic material
SU1377616A1 (en) Device for contactless measurement of temperature of ferromagnetic bodies
JPH0754274B2 (en) Torque detection method
KR100415922B1 (en) Non-magnetic coating layer thickness calibration method using magnetic induction sensor
SU1216716A1 (en) Electromagnetic method of measuring specific electric conductance of non-ferromagnetic conducting articles
JPH02156113A (en) Linear displacement detector
JPS587331Y2 (en) Eddy current flaw detection equipment
SU372493A1 (en) DETERGENT DEFECTSCOPE METHOD
SU1260887A1 (en) Method of determining sensitivity of electromagnetic measuring converter
GB2169080A (en) Measurement system for the detection of defects in electrically conductive material
KR920002179B1 (en) Method and apparatus for detecting flaw with eddy current
Pal’a et al. Optimisation of amplitude distribution of magnetic Barkhausen noise
JP3173365B2 (en) Stress measurement method using magnetostriction effect
SU1153231A1 (en) Method of calibrating induction displacement transducer
JPS5821395B2 (en) How do you know what to do?