JPH0754274B2 - Torque detection method - Google Patents

Torque detection method

Info

Publication number
JPH0754274B2
JPH0754274B2 JP1110152A JP11015289A JPH0754274B2 JP H0754274 B2 JPH0754274 B2 JP H0754274B2 JP 1110152 A JP1110152 A JP 1110152A JP 11015289 A JP11015289 A JP 11015289A JP H0754274 B2 JPH0754274 B2 JP H0754274B2
Authority
JP
Japan
Prior art keywords
torque
winding
excitation
phase difference
detection method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1110152A
Other languages
Japanese (ja)
Other versions
JPH02287232A (en
Inventor
孝信 岩金
博文 猪ノ口
隆義 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP1110152A priority Critical patent/JPH0754274B2/en
Publication of JPH02287232A publication Critical patent/JPH02287232A/en
Publication of JPH0754274B2 publication Critical patent/JPH0754274B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Measuring Magnetic Variables (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁性体の磁気歪効果を利用した非接触トルク
検出方式に関するもので、例えばロボットの関節トルク
あるいは工作機に使用するモータのトルクを検出する方
式に関する。
Description: TECHNICAL FIELD The present invention relates to a non-contact torque detection method utilizing the magnetostriction effect of a magnetic material, for example, a joint torque of a robot or a torque of a motor used in a machine tool. Concerning the method of detecting.

〔従来の技術〕[Conventional technology]

磁歪方式のトルク検出方式は、一般的に、第12図に示す
ように被測定軸3に軸方向と一定角度をもって等間隔に
帯状に蒸着された磁歪膜2と、それと一定の空隙をもっ
て被測定軸3のまわりに巻回された励磁,検出の両巻線
11,12で構成されている(特開昭61−195323号公報参
照)。
As shown in FIG. 12, the torque detection method of the magnetostrictive method generally includes a magnetostrictive film 2 which is vapor-deposited on the shaft 3 to be measured in a band shape at a constant angle with the axial direction, and a constant gap therebetween. Excitation and detection windings wound around shaft 3
It is composed of 11 and 12 (see Japanese Patent Laid-Open No. 61-195323).

そして、従来においては、その信号処理部としては、例
えば特開昭62−220821号公報に見られるように、マルチ
バイブレータ方式が使用されている。
In the past, as the signal processing unit, a multivibrator system has been used, for example, as disclosed in Japanese Patent Laid-Open No. 62-220821.

通常、これらの方式は、被測定軸に印加されたトルクに
より被測定軸に蒸着された磁歪膜の磁気特性の変化を、
第13図に示すようにマルチバイブレータ方式により周波
数変化として捉え、f/V変換することにより処理され
る。
Usually, these methods change the magnetic characteristics of the magnetostrictive film deposited on the measured shaft by the torque applied to the measured shaft,
As shown in FIG. 13, it is treated as a frequency change by the multivibrator method and is processed by f / V conversion.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかし、この方式では、励磁、検出の2つの巻線を必要
とするため、部品点数が多くなり、回路の複雑化を招
く。また、回路がモータ等に組み込まれた場合、トルク
センサ部も温度が上昇するが、この方式では、励磁,検
出巻線の温度上昇及びトランジスタの温度特性等の影響
で、0点(無負荷時)のドリフトが非常に大きい。第6
図の被線で示す特性は20℃→80℃(60℃)までの巻線温
度変化による特性を示したものであるが、この場合、ト
ルクが全く印加されていないにも拘わらず、ほぼ定格ト
ルク程度(定格の約90%)の検出誤差を生じている。
However, this method requires two windings for excitation and detection, which increases the number of parts and complicates the circuit. When the circuit is built into a motor, etc., the temperature of the torque sensor also rises. However, in this method, due to the effects of excitation, temperature rise of the detection winding, temperature characteristics of the transistor, etc. ) Has a very large drift. Sixth
The characteristic indicated by the shaded line in the figure is the characteristic due to the winding temperature change from 20 ° C to 80 ° C (60 ° C). In this case, it is almost rated even though no torque is applied. There is a detection error of about the torque (about 90% of the rating).

本発明は、このような従来の問題点に鑑みてなされたも
のであり、検出回路の簡素化と温度特性の向上を図るこ
とを目的とする。
The present invention has been made in view of such conventional problems, and an object thereof is to simplify a detection circuit and improve temperature characteristics.

〔課題を解決するための手段〕[Means for Solving the Problems]

この目的を達成するため、本発明は、磁性体の磁気歪効
果を利用した非接触トルク検出方式において、磁性体の
回りに一定の空隙をもって巻いた巻線と並列にコンデン
サを接続し、このコンデンサのキャパシタンスと前記巻
線のインダクタンス分とで並列LC共振回路を構成し、そ
の共振周波数の近傍の周波数で交流励磁し、その励磁電
圧と励磁電流との位相差を測定することにより、トルク
の検出を行うことを特徴とする。
In order to achieve this object, the present invention is a non-contact torque detection method utilizing the magnetostriction effect of a magnetic material, in which a capacitor is connected in parallel with a winding wound around a magnetic material with a certain gap, A parallel LC resonance circuit is configured by the capacitance of the coil and the inductance of the winding, AC excitation is performed at a frequency near the resonance frequency, and torque is detected by measuring the phase difference between the excitation voltage and the excitation current. It is characterized by performing.

このトルク検出方法において、巻線の表皮効果及び磁性
膜や被測定軸に流れるうず電流等による高周波抵抗の増
加による検出温度の低下を、前記励磁電流から、励磁電
圧にあるゲインを乗じたものを減算した補償励磁電圧と
前記励磁電流との位相差を測定することにより補償する
ことができる。
In this torque detection method, a value obtained by multiplying the exciting current by a certain gain in the exciting voltage is used to reduce the detected temperature due to the skin effect of the winding and the increase in the high frequency resistance due to the eddy current flowing in the magnetic film or the shaft to be measured. Compensation can be performed by measuring the phase difference between the subtracted compensation excitation voltage and the excitation current.

〔実施例〕〔Example〕

以下、本発明を実施例に基づいて具体的に説明する。 Hereinafter, the present invention will be specifically described based on Examples.

第1図は本発明の実施例を示すものであり、被測定軸3
の軸方向と一定の角度をなすように、磁気歪効果をもつ
磁性膜2を等間隔に複数の帯状に蒸着し、被測定軸3を
磁路の一部とする磁気回路を構成するように、被測定軸
3の回りに一定の空隙をもって単数の巻線1を巻いてト
ルクセンサを形成する。
FIG. 1 shows an embodiment of the present invention.
The magnetic film 2 having a magnetostrictive effect is vapor-deposited into a plurality of strips at equal intervals so as to form a constant angle with the axial direction of the magnetic field. A single winding 1 is wound around the shaft 3 to be measured with a constant gap to form a torque sensor.

このトルクセンサにおいて、第2図に示すように、巻線
1に並列にコンデンサ4を接続し、このコンデンサ4の
キャパシタンスCと巻線1のインダクタンスLCとで並列
LC共振回路を構成し、その共振周波数の近傍の周波数
で、交流励磁して、その励磁電圧と励磁電流の位相差を
測定する。図中5は励磁電流検出用抵抗である。この並
列LC共振回路において、共振周波数の近傍の周波数で交
流励磁すると、その検出特性は第3図に示すようにイン
ダクタンスの微小変位区間ΔLにおいて位相差Δθに直
線部を持つ。本方式では、この直線部を利用すること
で、トルクと位相差の線形性を確保する。
In this torque sensor, as shown in FIG. 2, a capacitor 4 is connected in parallel to the winding 1, and the capacitance C of this capacitor 4 and the inductance LC of the winding 1 are connected in parallel.
An LC resonance circuit is configured, AC excitation is performed at a frequency near the resonance frequency, and the phase difference between the excitation voltage and the excitation current is measured. Reference numeral 5 in the drawing is an exciting current detecting resistor. In this parallel LC resonance circuit, when AC excitation is performed at a frequency near the resonance frequency, its detection characteristic has a linear portion in the phase difference Δθ in the minute displacement section ΔL of the inductance as shown in FIG. In this method, the linearity of the torque and the phase difference is secured by using this straight line portion.

被測定軸3にトルクが印加されると、被測定軸3に蒸着
された磁歪膜2は伸縮し、その磁気特性(透磁率)が変
化する。すなわち、被測定軸3の回りに巻いた巻線1の
インダクタンスLが変化するため、先の並列LC共振回路
の励磁電圧と励磁電流の位相差が変化する。本方式は、
この位相差の変化をトルク変化として検出する。
When torque is applied to the shaft 3 to be measured, the magnetostrictive film 2 deposited on the shaft 3 to be measured expands and contracts, and its magnetic characteristics (permeability) change. That is, since the inductance L of the winding 1 wound around the shaft 3 to be measured changes, the phase difference between the exciting voltage and the exciting current of the parallel LC resonance circuit changes. This method is
This change in phase difference is detected as a torque change.

このように、共振周波数近傍で巻線1を励磁したときの
温度特性の改善について説明する。第2図において、巻
線のインダクタンスをL,抵抗分をR、コンデンサのキャ
パシタンスをCとし、この回路に交流 を印加したとすると、励磁電流Iは次の通りとなる。
The improvement of the temperature characteristic when the winding 1 is excited in the vicinity of the resonance frequency will be described. In Fig. 2, the inductance of the winding is L, the resistance is R, and the capacitance of the capacitor is C. Is applied, the exciting current I becomes as follows.

したがって、励磁電圧Eに対する励磁電流Iの位相
は、次のように表される。
Therefore, the phase of the exciting current I with respect to the exciting voltage E is expressed as follows.

例えば、周波数ωを に設定すると、 R=R0(1+αt)とすると、 となる。ここでαは抵抗Rの温度係数、tは温度変化を
表す。
For example, the frequency ω When set to If R = R 0 (1 + αt), Becomes Here, α represents the temperature coefficient of the resistance R, and t represents the temperature change.

一方、従来のようにコンデンサCを接続しないときの位
相′は、 となる。
On the other hand, the phase 'when the capacitor C is not connected as in the conventional case is Becomes

ここで(1)式より温度係数k1を求めると、 (2)式より温度係数k2を求めると、 となる。温度係数の比を求めると、 k1/k2=1/(ω0L/R0 となる。ここで、(ω0L/R0は共振回路の電圧上昇
比に相当するものであり、通常、これは30〜50に設定さ
れるため、コンデンサを接続した場合の温度係数k1は、
接続しない従来の回路の温度係数k2に比較して、温度係
数が1/1000程度に小さくなることを意味している。した
がって、温度変化に対する位相の変動が著しく小さく
なる。
Here, when the temperature coefficient k 1 is calculated from the equation (1), When the temperature coefficient k 2 is calculated from the equation (2), Becomes When the ratio of temperature coefficients is calculated, k 1 / k 2 = 1 / (ω 0 L / R 0 ) 2 . Here, (ω 0 L / R 0 ) 2 corresponds to the voltage rise ratio of the resonant circuit, and normally this is set to 30 to 50, so the temperature coefficient k 1 when a capacitor is connected is ,
This means that the temperature coefficient is about 1/1000 smaller than the temperature coefficient k 2 of the conventional circuit that is not connected. Therefore, the fluctuation of the phase with respect to the temperature change is significantly reduced.

第6図に本方式によるトルク検出の温度特性を示す。従
来、印加トルクが零のとき、温度が20℃から80℃に上が
ると、被線で示すように定格トルク程度の誤差が生じる
が、本方式では、実線で示すように、従来と比較し、0
点ドリフトは3桁近く改善される。検出コイルの作り方
によっては、さらに大幅に改善することができる。
FIG. 6 shows the temperature characteristic of torque detection by this method. Conventionally, when the applied torque is zero and the temperature rises from 20 ° C to 80 ° C, an error of about rated torque occurs as shown by the line, but in this method, as shown by the solid line, compared with the conventional, 0
Point drift is improved by nearly three orders of magnitude. Depending on how to make the detection coil, it can be further improved.

第4図は、本発明のトルク検出方法を実施するための回
路例、第5図は各部の動作波形図を示す。図中31は励磁
交流電圧Vを矩形波に波形整形するコンパレータ、32は
励磁電流Iを矩形波に波形整形するコンパレータ、33は
クロックパルス(第5図(a)参照)を発生するクロッ
ク発振器である。なお、励磁電流Iは、第2図の検出抵
抗RDの両端電圧として検出することができる。コンパレ
ータ31の出力(第5図(b)参照)とクロックパルスは
アンドゲート34に入力されており、第5図(d)に示す
信号を出力する。一方、コンパレータ32の出力は第5図
(c)に示す波形となり反転器35で位相反転され(第5
図(e)参照)、アンドゲート36によりアンドゲート34
の出力との論理積をとって第5図(f)に示す波形が生
成される。この出力パルスはカウンタ37でカウントさ
れ、コンパレータ32の立ち上がりパルスでラッチされ、
1周期毎にラッチ38の記憶値が出力される。このカウン
ト出力は、励磁交流電圧Vと励磁電流Iの位相差に相当
する値となる。
FIG. 4 shows an example of a circuit for carrying out the torque detection method of the present invention, and FIG. 5 shows operation waveform diagrams of respective parts. In the figure, 31 is a comparator that shapes the excitation AC voltage V into a rectangular wave, 32 is a comparator that shapes the excitation current I into a rectangular wave, and 33 is a clock oscillator that generates a clock pulse (see FIG. 5 (a)). is there. The exciting current I can be detected as the voltage across the detection resistor R D in FIG. The output of the comparator 31 (see FIG. 5 (b)) and the clock pulse are input to the AND gate 34, which outputs the signal shown in FIG. 5 (d). On the other hand, the output of the comparator 32 has the waveform shown in FIG.
(See FIG. (E)), AND gate 34 makes AND gate 34
The logical product of the output and the output is generated to generate the waveform shown in FIG. This output pulse is counted by the counter 37 and latched by the rising pulse of the comparator 32,
The stored value of the latch 38 is output every cycle. This count output has a value corresponding to the phase difference between the exciting AC voltage V and the exciting current I.

このようにして、被測定軸3に加わるトルクを電気信号
として検出することができる。
In this way, the torque applied to the shaft 3 to be measured can be detected as an electric signal.

ところで、本発明のように磁気歪効果を利用したトルク
センサでは、被測定軸にトルクが印加されると、被測定
軸に蒸着された磁性膜の磁気特性が変化し、巻線のイン
ピーダンス変化が現れる。この変化を位相変化として検
出するが、第11図(a),(b)のベクトル図に示すよ
うに巻線部の抵抗に流れる電流(IR>IR′)が大きい
と、インピーダンスの変化分が同じでも(ΔIZ/IZ=ΔI
Z′/IZ′)位相変化は小さくなる(Δθ>Δθ′)。
By the way, in the torque sensor using the magnetostriction effect as in the present invention, when torque is applied to the shaft to be measured, the magnetic characteristics of the magnetic film deposited on the shaft to be measured change, and the impedance change of the winding changes. appear. This change is detected as a phase change, but if the current (I R > I R ′) flowing through the resistance of the winding part is large as shown in the vector diagrams of FIGS. 11 (a) and 11 (b), the impedance change will occur. Even if the minutes are the same (ΔI Z / I Z = ΔI
Z ′ / I Z ′) phase change becomes small (Δθ> Δθ ′).

そのため、巻線部の抵抗を下げることが感度の向上につ
ながる。実際、巻線の直流抵抗分は下げることができる
が、巻線の表皮効果及び磁性膜、被測定軸に流れるうず
電流等による高周波抵抗のため巻線部に流れる電流が大
きくなり、従来の方式ではこの分も含んで位相差を測定
するため、感度が低くなる。
Therefore, lowering the resistance of the winding portion leads to improvement in sensitivity. Actually, the DC resistance of the winding can be reduced, but the current flowing in the winding increases due to the skin effect of the winding and the high frequency resistance due to the magnetic film, eddy current flowing in the shaft to be measured, etc. However, since the phase difference is also measured including this amount, the sensitivity becomes low.

第7図は、このような問題点を解消して、検出感度の向
上を図った実施例を示している。
FIG. 7 shows an embodiment in which such a problem is solved and detection sensitivity is improved.

この実施例においては、第4図のコンパレータ32に入力
する励磁電流Iに比例する電圧Viに次のような補償を行
う。すなわち、第7図の補償回路は演算増幅器2個で構
成され、まず、一段目の演算増幅器41で励磁電流分Vi
RDIDsin(ωt+)を反転し、その出力と励磁電圧V
=V0sinωtに、ある一定ゲインK(ゲイン調整器43で
調整)を掛けて加え合わせ、反転させる。結果として2
段目の演算増幅器42の出力V′は、 となる。すなわち、巻線の全インピーダンス分として流
れる電流から、高調波抵抗分を任意に除去することがで
きる。上記式のθとの関係をベクトル図で表すと第8
図のようになる。この図が示すように、Kの値を適当に
選ぶことで、位相差の変化を大きく取り出すことができ
る(θ>)。
In this embodiment, the voltage V i proportional to the exciting current I input to the comparator 32 shown in FIG. 4 is compensated as follows. That is, the compensating circuit of FIG. 7 is composed of two operational amplifiers. First, the exciting current component V i =
R D I D sin (ωt +) is inverted, its output and excitation voltage V
= V 0 sin ωt is multiplied by a certain constant gain K (adjusted by the gain adjuster 43), added, and inverted. As a result 2
The output V'of the operational amplifier 42 of the stage is Becomes That is, the harmonic resistance component can be arbitrarily removed from the current flowing as the total impedance component of the winding. A vector diagram showing the relationship with θ in the above equation is
It becomes like the figure. As shown in this figure, by appropriately selecting the value of K, a large change in the phase difference can be extracted (θ>).

そこで、トルク検出を行うためにVとIの位相をとる
代わりに、本実施例ではVとV′の位相θをとり感度を
上げる。その一例として、K=1/2・RDID/V0、すなわち
V′の振幅V0をRDIDの1/2とする場合の印加トルクと位
相差の特性を従来例とあわせて第9図に示す。
Therefore, instead of taking the phase of V and I to detect the torque, in the present embodiment, the phase θ of V and V'is taken to increase the sensitivity. As an example, K = 1/2 · R D ID / V 0 , that is, the characteristics of the applied torque and the phase difference when the amplitude V 0 of V ′ is 1/2 of R D ID are combined with the conventional example. It is shown in FIG.

この場合では、高周波補償なしの場合と比較し、約2倍
の感度の向上が得られる。
In this case, as compared with the case without high frequency compensation, about twice the improvement in sensitivity can be obtained.

第10図に他の実施例を示す。この例では、センタタップ
のトランス6により、巻線1の抵抗分に流れる電流を検
出抵抗5に逆方向に流し、相殺することで感度を上げ
る。すなわち、センサ巻線1側の等価並列抵抗分をRP
すると、トランス6の他の側にRP/kの抵抗値をもつ抵抗
7を接続して、抵抗分電流を相殺する。ここでk=1/2
とすると、第9図のトルク−位相差特性と同等となる。
FIG. 10 shows another embodiment. In this example, the center tap transformer 6 causes the current flowing through the resistance of the winding 1 to flow in the opposite direction to the detection resistor 5 to cancel the current, thereby increasing the sensitivity. That is, assuming that the equivalent parallel resistance component on the sensor winding 1 side is R P , a resistor 7 having a resistance value of R P / k is connected to the other side of the transformer 6 to cancel the resistance component current. Where k = 1/2
Then, it becomes equivalent to the torque-phase difference characteristic of FIG.

〔発明の効果〕〔The invention's effect〕

以上に述べたように、本発明においては、磁気歪効果を
利用した非接触トルク検出方式において、磁性体の回り
に一定の空隙をもって巻いた巻線と並列にコンデンサを
接続して並列LC共振回路を構成し、その共振周波数の近
傍の周波数で交流励磁し、その励磁電圧と励磁電流との
位相差を測定することにより、トルクの検出を行ことと
している。このように共振周波数近傍の周波数で巻線を
励磁することにより、マルチバイブレータを用いた発振
方式に比較して、温度特性が著しく向上するため、発熱
や温度変化が大きな環境で使用されるロボットの関節駆
動アクチュエータの出力軸、工作機駆動用モータの出力
軸に直接組み込むことができる。また被測定軸回りの巻
線が一つでよいため、部品点数が少なく、装置の簡素化
が図れる。トルク検出の線形性は、磁歪膜に対する巻線
電流の値の影響が大きいが、本方式では巻線の印加電圧
を変えることにより、電流値を自由に設定することがで
きるため、最適動作点にすることが可能となる。
As described above, in the present invention, in the non-contact torque detection method utilizing the magnetostrictive effect, a parallel LC resonance circuit in which a capacitor is connected in parallel with a winding wound around a magnetic body with a constant gap Torque is detected by AC excitation at a frequency near the resonance frequency and measuring the phase difference between the excitation voltage and the excitation current. By exciting the winding at a frequency near the resonance frequency in this way, the temperature characteristics are significantly improved compared to the oscillation method using a multivibrator, so that the robot used in an environment where heat generation and temperature changes are large. It can be directly incorporated into the output shaft of the joint drive actuator and the output shaft of the machine tool drive motor. Further, since only one winding is required around the shaft to be measured, the number of parts is small and the device can be simplified. The linearity of torque detection is greatly affected by the value of the winding current with respect to the magnetostrictive film, but in this method, the current value can be set freely by changing the voltage applied to the winding. It becomes possible to do.

また励磁電流から、励磁電圧にあるゲインを乗じたもの
を減算した補償励磁電圧と前記励磁電流との位相差を測
定することにより、巻線の高周波抵抗の増加を補償する
ことができ、巻線の表皮効果及び磁性膜、被測定軸に流
れるうず電流等による影響を抑えて感度を上げることが
でき、耐ノイズ性が強くなる。そのため、ロボットの関
節駆動アクチュエータの出力軸、工作機駆動用モータの
出力軸に直接組み込むことができる。抵抗分を除くよう
にするため、温度特性が良くなる。
Further, by measuring the phase difference between the compensation excitation voltage obtained by subtracting the excitation voltage multiplied by a certain gain from the excitation current and the excitation current, it is possible to compensate for the increase in the high frequency resistance of the winding. It is possible to suppress the influence of the skin effect, magnetic film, eddy current flowing on the shaft to be measured, etc., and increase the sensitivity, and the noise resistance becomes stronger. Therefore, it can be directly incorporated into the output shaft of the joint drive actuator of the robot and the output shaft of the machine tool drive motor. Since the resistance component is removed, the temperature characteristic is improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明を実施するための巻線の例を示す図、第
2図は検出回路例を示す回路図、第3図はトルク変化に
対する位相変化を示す特性図、第4図は本発明の実施例
を示すブロック図、第5図はその動作を示す波形図、第
6図は従来例と比較した本発明の温度特性図、第7図は
高周波抵抗補償を行う例を示す回路図、第8図は検出位
相と補償位相との比較を示す図、第9図は印加トルクと
位相差の関係を示す特性図、第10図は高周波抵抗補償の
他の実施例を示す回路図、第11図は電流の間の位相関係
を示すベクトル図、第12図は従来の巻線の例を示す図、
第13図は従来の検出回路例を示す回路図である。 1:巻線、2:磁性膜 3:被測定軸、4:コンデンサ 5:検出抵抗、6:トランス 7:抵抗 31,32:コンパレータ 33:クロックパルス発生器 34,36:アンドゲート、35:反転器 37:カウンタ、38:ラッチ 41,42:演算増幅器、43:ゲイン調整器
FIG. 1 is a diagram showing an example of a winding for implementing the present invention, FIG. 2 is a circuit diagram showing an example of a detection circuit, FIG. 3 is a characteristic diagram showing a phase change with respect to a torque change, and FIG. FIG. 5 is a block diagram showing an embodiment of the invention, FIG. 5 is a waveform diagram showing its operation, FIG. 6 is a temperature characteristic diagram of the present invention in comparison with a conventional example, and FIG. 7 is a circuit diagram showing an example of performing high frequency resistance compensation. FIG. 8 is a diagram showing a comparison between the detected phase and the compensation phase, FIG. 9 is a characteristic diagram showing the relationship between the applied torque and the phase difference, and FIG. 10 is a circuit diagram showing another embodiment of the high frequency resistance compensation. FIG. 11 is a vector diagram showing a phase relationship between currents, and FIG. 12 is a diagram showing an example of a conventional winding,
FIG. 13 is a circuit diagram showing a conventional detection circuit example. 1: Winding, 2: Magnetic film 3: Axis to be measured, 4: Capacitor 5: Detection resistor, 6: Transformer 7: Resistor 31,32: Comparator 33: Clock pulse generator 34,36: AND gate, 35: Inversion 37: Counter, 38: Latch 41, 42: Operational amplifier, 43: Gain adjuster

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−162726(JP,A) 特開 昭64−9330(JP,A) 特開 昭48−99646(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-61-162726 (JP, A) JP-A-64-9330 (JP, A) JP-A-48-99646 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】磁性体の磁気歪効果を利用した非接触トル
ク検出方式において、磁性体の回りに一定の空隙をもっ
て巻いた巻線と並列にコンデンサを接続し、このコンデ
ンサのキャパシタンスと前記巻線のインダクタンス分と
で並列LC共振回路を構成し、その共振周波数の近傍の周
波数で交流励磁し、その励磁電圧と励磁電流との位相差
を測定することにより、トルクの検出を行うことを特徴
とするトルク検出方式。
1. In a non-contact torque detection method utilizing the magnetostriction effect of a magnetic material, a capacitor is connected in parallel with a winding wound around a magnetic material with a certain gap, and the capacitance of the capacitor and the winding. A parallel LC resonance circuit is configured with the inductance component of, the AC excitation is performed at a frequency near the resonance frequency, and the torque is detected by measuring the phase difference between the excitation voltage and the excitation current. Torque detection method.
【請求項2】励磁電流から、励磁電圧にあるゲインを乗
じたものを減算した補償励磁電圧と前記励磁電流との位
相差を測定することにより、巻線の高周波抵抗の増加を
補償したトルクの検出を行うことを特徴とする請求項1
記載のトルク検出方式。
2. A phase difference between a compensation excitation voltage obtained by subtracting a value obtained by multiplying an excitation voltage by a certain gain from the excitation current and a phase difference between the excitation current and a torque for compensating an increase in high-frequency resistance of a winding are measured. The detection is performed.
Torque detection method described.
JP1110152A 1989-04-28 1989-04-28 Torque detection method Expired - Fee Related JPH0754274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1110152A JPH0754274B2 (en) 1989-04-28 1989-04-28 Torque detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1110152A JPH0754274B2 (en) 1989-04-28 1989-04-28 Torque detection method

Publications (2)

Publication Number Publication Date
JPH02287232A JPH02287232A (en) 1990-11-27
JPH0754274B2 true JPH0754274B2 (en) 1995-06-07

Family

ID=14528372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1110152A Expired - Fee Related JPH0754274B2 (en) 1989-04-28 1989-04-28 Torque detection method

Country Status (1)

Country Link
JP (1) JPH0754274B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5902934A (en) * 1990-12-10 1999-05-11 Sensortech, L.P. Phase magnitude signal detector
JPH0519516A (en) * 1991-07-10 1993-01-29 Fuji Xerox Co Ltd Electrophotographic sensitive body
JP2001153737A (en) * 1999-09-13 2001-06-08 Tokin Corp Capacitance type torque sensor and torque detection method
CN113237592B (en) * 2021-05-28 2023-04-28 麦格纳动力总成(江西)有限公司 Rotation shaft torque testing system

Also Published As

Publication number Publication date
JPH02287232A (en) 1990-11-27

Similar Documents

Publication Publication Date Title
EP1386127B1 (en) Magnetoelastic torque sensor
US7132825B2 (en) Detection device
US5522269A (en) Apparatus and method for transducing torque applied to a magnetostrictive shaft while minimizing temperature induced variations
US4716773A (en) Stress detector
US6774618B2 (en) Magnetic flux sensor and method
JPH01503000A (en) Circuit arrangement for magnetoelastic sensor actuation
EP1498714A1 (en) Torque detector
JPH0754274B2 (en) Torque detection method
JP2816175B2 (en) DC current measuring device
Kohout et al. Evaluation of Mössbauer spectra linearization methods
JPH05316692A (en) Actuator fitted with thrust sensor
JPH0392782A (en) Magnetic field sensor
JP2816528B2 (en) Torque detector
JP2759303B2 (en) Stress detector
JPH0663876B2 (en) Method of manufacturing magnetostrictive torque sensor
JP4337180B2 (en) Magnetostrictive torque sensor
JPH0432787A (en) Magnetic field sensor
JPH10246607A (en) Displacement detector
RU2215985C2 (en) Method of compensation for temperature error of inductive primary converter
JPH0534220A (en) Zero-point-drift compensating device of torque sensor
JP3092755B2 (en) Temperature compensation device for differential magnetic sensor
JPS6315129A (en) Torque detector
JPH0574769B2 (en)
SU1753251A1 (en) Method and device for eddy-current testing of axial displacements of shafts
JPS58204332A (en) Measuring method of internal stress for steel material

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees