JPS58187210A - Method for controlling sheet thickness of material to be rolled - Google Patents

Method for controlling sheet thickness of material to be rolled

Info

Publication number
JPS58187210A
JPS58187210A JP57069769A JP6976982A JPS58187210A JP S58187210 A JPS58187210 A JP S58187210A JP 57069769 A JP57069769 A JP 57069769A JP 6976982 A JP6976982 A JP 6976982A JP S58187210 A JPS58187210 A JP S58187210A
Authority
JP
Japan
Prior art keywords
thickness
central part
measuring
edge
final stand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57069769A
Other languages
Japanese (ja)
Inventor
Yukio Matsuda
行雄 松田
Yorio Mukaikubo
向窪 順生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP57069769A priority Critical patent/JPS58187210A/en
Publication of JPS58187210A publication Critical patent/JPS58187210A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • B21B37/165Control of thickness, width, diameter or other transverse dimensions responsive mainly to the measured thickness of the product

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

PURPOSE:To improve product yield, by measuring the thicknesses at the central part and the edge parts of a material to calculate the proper target thickness at its central part, and changing a target set-value in the sheet thickness control of a final stand basing on the calculated value. CONSTITUTION:A thickness measuring device 5 is provided to the outlet side of a final stand of a hot or cold continuous rolling mill 3 to measure the thickness at the central part and edge parts of a material 1. The detected value is transmitted to a computor 6 for calculation of proper target sheet thickness to calculate the proper target thickness at the central part of the material 1, and its results are transmitted to an AGC controlling device 7 to perform an AGC control of the final stand 4. Further, the device 5 is constituted of a measuring unit 51 for measuring the thickness at the central part of the material 1 and a measuring unit 52 for measuring the thickness at the edge parts of the material 1.

Description

【発明の詳細な説明】 本発明は、銅帯等の圧延材料の厚み制御方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the thickness of rolled materials such as copper strips.

鋼帯等の圧延材料(以下、単に材料という。)の製品の
販売上の規格では実貫重量売り規格と計算重量売り規格
とが一般的であるが、計算重量売り規格における材料の
規格は、第1図に示すように、材料1の側端2から微小
距離aの位置での厚みtを公差0〜+αで定めている。
Sales standards for rolled materials such as steel strips (hereinafter simply referred to as materials) generally include actual weight selling standards and calculated weight selling standards, but the material standards in the calculated weight selling standards are: As shown in FIG. 1, the thickness t at a position a minute distance a from the side edge 2 of the material 1 is determined with a tolerance of 0 to +α.

これは同図に示すように材料にはエツジドロップおよび
板クラウンが生じることに鑑みて、現実的な範囲で厚み
の下限を規制したものであり、一般にa = 3 / 
8[インチ]とされる。以下、この材料1の側端2から
距離aにおける材料1の厚みtをエツジ部厚みという。
This is because the lower limit of the thickness is regulated within a realistic range, considering that edge drops and plate crowns occur in the material as shown in the same figure, and generally a = 3 /
It is assumed to be 8 [inches]. Hereinafter, the thickness t of the material 1 at a distance a from the side edge 2 of the material 1 will be referred to as the edge thickness.

しかし、従来はこのような側端2から微小距離&の位置
についてのみ厚み測定を連続的に行うことは!材料10
幅方向の寸法偏差、偏位等罠起因して極めて困離であり
、また、材料1の全幅について厚み分布を測定すれば距
離aの位置についても厚み測薙を行い得るが、この場合
には厚み測定装置が著しく複雑かつ高価なものになる。
However, conventionally, it has not been possible to continuously measure the thickness only at a minute distance & from the side edge 2! Material 10
This is extremely difficult due to dimensional deviations, deviations, etc. in the width direction.Also, if the thickness distribution is measured over the entire width of material 1, it is possible to measure the thickness at the position of distance a, but in this case, The thickness measuring device becomes significantly more complex and expensive.

このため、従来は第2図に示すように材料10幅方向中
心部で厚みTを測定し、中心部厚みTから予想されるエ
ツジ部厚みtが規格公差内[(t。
For this reason, conventionally, as shown in FIG. 2, the thickness T is measured at the center of the material 10 in the width direction, and the edge thickness t estimated from the center thickness T is within the standard tolerance [(t.

十Q)〜(to+α)〕に納まるように圧延条件を制御
し、ていた。しかし、コイル内および各コイル間で仮ク
ラウンにはばらつきが有り、拐料1の公称中6部厚みT
o [mm )に対するクラウン量(T−t)〔μm〕
の分布は第6図のようにばらり(ことになる。したがっ
て、Tにもとづいて予想されるtは板厚公差保証のため
(T−t)の分布における最大ばらつき(第6図におけ
る上限の線)によって算出されることになり、一般に実
際のエツジ部厚みt′は予想エツジ部厚みtよりも小さ
くなる。
The rolling conditions were controlled so that the rolling conditions were within the range 1Q) to (to+α)]. However, there are variations in the temporary crown within the coil and between each coil, and the nominal thickness T
Crown amount (T-t) [μm] for o [mm]
The distribution of (T-t) varies as shown in Figure 6. Therefore, t predicted based on T is the maximum variation in the distribution of (T-t) (the upper limit in Figure 6) to guarantee plate thickness tolerance. The actual edge thickness t' is generally smaller than the expected edge thickness t.

すなわち、従来の月相1は厚み規格値よりも厚く形成さ
れ、例えば第2図に示す交差ハツチング部に過剰の肉厚
を付加して出荷するため1歩留を十分向上させることが
できなかった。
In other words, the conventional lunar phase 1 is formed thicker than the standard thickness value, and for example, the cross hatching part shown in Fig. 2 is shipped with excessive thickness added, making it impossible to sufficiently improve the 1 yield. .

このような従来の問題点を解決するために、本発明者等
は材料エツジ部の厚み測定方法および装置を提案した(
特開昭56−128603号公報参照ン。この厚み測定
方法は、例えば放射線式の厚み測定装置を用いて前記鋼
板エツジ部において距離aの位置で直接部みを測定する
もので、微小な距離aの位置で放射線ビームの十分な放
射面積を確保するために、放射線ビームの断面を材料長
手方向にやや長い扁平形状にスリットしている。
In order to solve these conventional problems, the present inventors proposed a method and device for measuring the thickness of material edges (
See Japanese Unexamined Patent Publication No. 128603/1983. This thickness measuring method uses, for example, a radiation-type thickness measuring device to directly measure the edge portion of the steel plate at a distance a. In order to ensure this, the cross section of the radiation beam is slit into a flat shape that is slightly longer in the longitudinal direction of the material.

また、この厚みia+定装置は、放射線源と放射線検出
器とを相対量させつつ可動フレームに装着し。
Further, this thickness ia + constant device is mounted on a movable frame while adjusting the relative amounts of the radiation source and the radiation detector.

側端検1[にで材料のl111端を検出しつつ可動フレ
ームを走行させ、これによって放射線源の放射線ビーム
を側端かも所定距離の位置に常に照射するようにしてい
る。
The movable frame is moved while detecting the 1111 end of the material using side edge detection 1, so that the radiation beam from the radiation source is always irradiated to a position at a predetermined distance from the side edge.

しかし、このような厚み測定装置を用いて、材料のエツ
ジ部のみを測定して厚み制御を行った場合には1通常、
材料の長手方向にそって板クラウン値は変化しているの
で(例えば、熱間圧延材料は熱間圧延時のロールのヒー
ト・アップ、ロール摩耗等の影響を受けて利料の長手方
向にそって板クラウンは変化する。)、祠料中心部の厚
みは材料の長手方向にそって変化することになる。その
J:ラナ場合、ユーザにおいては、材料中心部の厚みを
主体に、打抜、切削、プレス等の二次加工をするので、
プレス金型な破損したり、プレス加工品にシワ等の不良
を生じる危険性があるOしたがって、本発明の目的は、
製品歩留を向上させるとともに製品の二次加工のさいの
トラブルを未然に防ぐことができる拐刺の厚み制御方法
を提供することにある。
However, when controlling the thickness by measuring only the edges of the material using such a thickness measuring device, 1.
Since the plate crown value changes along the longitudinal direction of the material (for example, in hot rolled materials, the rate of interest changes along the longitudinal direction due to the effects of roll heat-up, roll wear, etc. during hot rolling). ), the thickness of the center of the abrasive material will vary along the length of the material. Part J: In the case of Lana, the user performs secondary processing such as punching, cutting, and pressing mainly on the thickness of the center of the material, so
Therefore, the purpose of the present invention is to
It is an object of the present invention to provide a method for controlling the thickness of splinters, which can improve product yield and prevent troubles during secondary processing of products.

本発明の方法は、第4図に示すように、熱間または冷間
連続圧延機乙の最終スタンド4の出側に厚み測定装置5
を設けて材料1の中心部およびエツジ部の厚みを測寓し
、測定値を適正目標板厚計算機乙に送り、ここで後述す
る拐刺中心部における適正目標厚み計算をし、この計算
結果をAGC制御装置7に送・つて最終スタンド4のA
GC制御を行う。
In the method of the present invention, as shown in FIG.
is installed to measure the thickness of the center and edge portions of material 1, and send the measured values to the appropriate target plate thickness calculator B, which calculates the appropriate target thickness at the center of the cutout, which will be described later, and uses this calculation result. A of the final stand 4 sent to the AGC control device 7
Performs GC control.

厚み測定装置5は、第5図に示すように、月料1の中心
部厚みTを測定する中心部厚み測定ユニット51と、材
料1のエツジ部を測定するエツジ部測定ユニット52と
からできている。厚み測定装置5の構成については後に
詳述する。
The thickness measuring device 5, as shown in FIG. There is. The configuration of the thickness measuring device 5 will be described in detail later.

一般に、材料1は幅方向について良好な対称性をもって
圧延されるので、両エツジ部に厚み測定ユニット52を
配設する方が好ましいが、一方の側のエツジ部にのみエ
ツジ部測定ユニット52を設けても、実用上は十分な厚
み制御を行うことができる。
Generally, since the material 1 is rolled with good symmetry in the width direction, it is preferable to provide the thickness measuring unit 52 at both edge portions, but it is preferable to provide the edge portion measuring unit 52 only at the edge portion on one side. However, sufficient thickness control can be achieved for practical purposes.

本発明の方法の工程を第6図を参照して説明する。まず
、紀1工程61として、制御を開始する。
The steps of the method of the invention will be explained with reference to FIG. First, control is started as the first step 61.

第2工程62として、制御対象となるべき圧延材1が計
算重量売り製品か否かを確認する。第6エ程66として
、拐刺の厚み、幅等のデータを取り込む。第4王程64
として、厚み測定装置5の位置を設定する。第5王程6
5として、材料先端巻取完了後、月料中心部およびエツ
ジ部の厚み測定を行い、板クラウンを求める。第6エ程
として、材料中心部における適正目標厚み計算を行う。
As a second step 62, it is confirmed whether the rolled material 1 to be controlled is a product sold by calculated weight. In the sixth step 66, data such as the thickness and width of the splinter are taken in. 4th King Rule 64
The position of the thickness measuring device 5 is set as follows. 5th king level 6
Step 5: After winding up the leading edge of the material, the thickness of the central part and edge part of the material is measured to determine the plate crown. As the sixth step, an appropriate target thickness calculation at the center of the material is performed.

第7エ程67として、求められる適正目標厚みにもとづ
いて連続圧延機乙の最終スタンド#4のAGC制御を行
う。
As a seventh step 67, AGC control of the final stand #4 of the continuous rolling mill B is performed based on the required appropriate target thickness.

適正目標厚みを求めるための計算は、次のようにして行
う。
Calculations for determining the appropriate target thickness are performed as follows.

まず、材料1の先端部に対して材料の中心部厚みTと拐
刺エツジ部厚みtとを所定の時間間隔S(ifりえば0
.20秒)で複数回n(例えば、25回)実測し、平均
仮りラウzGRを求める。これは。
First, the thickness T of the center part and the thickness t of the cutting edge part of the material 1 are measured at a predetermined time interval S (if 0
.. 20 seconds) a plurality of times (for example, 25 times), and calculate the average temporary rhau zGR. this is.

次式(11で表される。It is expressed by the following formula (11).

従来法では、板エツジ部での目標厚み(to)に、板ク
ラウンバラツキの上限値(CmaX)を上乗せし。
In the conventional method, the upper limit of plate crown variation (CmaX) is added to the target thickness (to) at the plate edge.

板センタ部厚み(To=to+Cmax)を求め、この
値にもとづいてAGC制御を行っていた。このような場
合圧延材料の板クラウン(C)が一般的にC<Cmax
であるのでbcmaX−Cなる賛で、不必要に厚目に圧
延していることになり、0囮ニー〇)/ToX 100
 ’%)なるaの歩留損失となる。
The plate center thickness (To=to+Cmax) was determined and AGC control was performed based on this value. In such a case, the plate crown (C) of the rolled material is generally C<Cmax
Therefore, with bcma
'%) yield loss is a.

以上より、本発明法で求められた圧延材料の板クラウン
(OR)を用いて、不必要に厚目に圧延しない適正な目
標板厚、すなわちTo′=To十CR(またはTO’ 
”to+Cmax−CR)なる値で、板センタ部AGC
目標厚みをToからTo′に設定替をするものである。
From the above, using the plate crown (OR) of the rolled material obtained by the method of the present invention, it is possible to obtain an appropriate target plate thickness that does not make it unnecessarily thick, that is, To' = To + CR (or TO'
With the value "to + Cmax - CR), the board center AGC
This is to change the setting of the target thickness from To to To'.

次に、厚み測定装置5の構成について説明する。Next, the configuration of the thickness measuring device 5 will be explained.

本発明の方法においては、厚み測定装置として基本的に
は前述した拐料エツジ部厚み測定装置(特開昭56−1
28606号公報)を利用する。本発明の方法において
は、この装置をまず、エツジ地厚み測定ユニット52と
して使用する。
In the method of the present invention, the thickness measuring device is basically the above-mentioned particle edge thickness measuring device (Japanese Unexamined Patent Publication No. 56-1
28606). In the method of the present invention, this device is first used as the edge ground thickness measuring unit 52.

エツジ部厚み測定ユニット52は、第7図に示すように
、レール526にそって往復走行可能な可動フレーム5
26に放射線厚み削527および側端検出器528を装
着している。
As shown in FIG.
26 is equipped with a radiation thickness cutter 527 and a side edge detector 528.

1011端検出器528はレーザ光源529とイメージ
・センサ520とを材料1をかいして対向させ、レーザ
・ビームBf)’−拐科料1よってさえぎられた部分の
一端部を側端2としてイメージ・センサ520において
検出する。側端検出部528は制御器521に接続され
、割病1器521は側端検出部528の検出信号にもと
づいて流体圧シリンダ522によって可動フレーム52
6を走行させて放射線厚み泪527が常に側端2から距
離aの位置を臨むようにする。したがって、エツジ部厚
み測定ユニット52はIll!l端2から距離aの位置
の厚み(エツジ部厚み)tを常に測定し得るようになり
、距離aの位置につ(、・ての寸法管理が確実に行われ
る。
The 1011 edge detector 528 makes the laser light source 529 and the image sensor 520 face each other across the material 1, and generates an image with one end of the portion blocked by the laser beam Bf)'-the ablated material 1 as the side edge 2. Detected by sensor 520. The side edge detection section 528 is connected to the controller 521, and the split device 521 moves the movable frame 52 by the fluid pressure cylinder 522 based on the detection signal of the side edge detection section 528.
6 is run so that the radiation thickness layer 527 always faces a position a distance a from the side edge 2. Therefore, the edge thickness measuring unit 52 is Ill! It is now possible to always measure the thickness (edge portion thickness) t at a distance a from the l end 2, and dimensional control at the distance a is ensured.

さらに、可動フレーム526にはポテンショメータ53
0が設けられ、可動フレーム526の位置は常に制御器
521に狗帰還されて、流体圧シリンダ522による可
動フレーム526の位置設定力精密に行われるようにな
っている〇放射線厚み計527は、材料10表面を臨む
放射線源524と、放射線源524に対向する位置で材
料10表面を臨む放射線検出器525とからなり、放射
線源524から放射された放射線ビームXが材料1を透
過する量を放射線検出器525において検出する。
Furthermore, the movable frame 526 includes a potentiometer 53.
0 is provided, and the position of the movable frame 526 is always fed back to the controller 521, so that the position setting force of the movable frame 526 by the fluid pressure cylinder 522 is precisely performed. It consists of a radiation source 524 facing the surface of the material 10 and a radiation detector 525 facing the surface of the material 10 at a position opposite to the radiation source 524. It is detected in the device 525.

中心部厚み測定ユニット51は、第8図に示すように、
エツジ部厚み測定ユニット52の可動フレーム526上
に移動自在に装着される◎ユニット51は材料10幅方
向に流体圧シリンダ511によって位置調整がなされる
。ユニット51にはユニット52と同様に放射線厚み計
517が設けられる。
The center thickness measuring unit 51, as shown in FIG.
The unit 51 is movably mounted on the movable frame 526 of the edge thickness measuring unit 52, and its position is adjusted in the width direction of the material 10 by a fluid pressure cylinder 511. Like the unit 52, the unit 51 is provided with a radiation thickness gauge 517.

厚み1.0朋×幅1219mmX重量28 tonの冷
間圧延銅帯に対し、従来法では上乗せ菫として60μの
余分な厚みを付加していたが、本発明法に、上れば、圧
延拐料の仮クラウンが20μであり。
In the conventional method, an extra thickness of 60 μm was added to a cold-rolled copper strip with a thickness of 1.0 mm, a width of 1219 mm, and a weight of 28 tons. The temporary crown is 20μ.

10μ分板センタ目標厚みを下げて圧延することが可能
となり、最終スタンドの厚みの設定値を0.990mm
に変更し、1.0%の製品歩留の向上を得た。
It is now possible to roll by lowering the target thickness of the plate center by 10μ, and the final stand thickness setting value is 0.990mm.
The product yield was improved by 1.0%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は計算重量売り規格の圧延製品の横断面図。第2
図は従来の圧延方法によって製造された製品の横断面図
。第ろ図は公称厚みに対するクラウン量のバラツキを示
すグラフ。第4図は本発明の方法を示す概略説明図。第
5図は本発明の方法に使用する厚み測定装置の配置を示
す平面図。第6図は本発明の方法の工程を示すフロー・
チャー1・。第7図はエツジ部厚み測定ユニットの斜視
図。 第8図は中心部厚み測定ユニットの平面図。 1:圧延材料 2:側端 3二連続圧延機 4:最終ス
タンド 5:厚み測定装置 51:中心部厚み測定ユニ
ット 52:エッジ部厚み測定ユニット 517:放射
線厚み計 527:放射線厚み計 528:側端検出器
。 特許出願人 住友金属工業株式会社 (外2名)
Figure 1 is a cross-sectional view of a rolled product of calculated weight sales standard. Second
The figure is a cross-sectional view of a product manufactured by a conventional rolling method. Fig. 4 is a graph showing the variation in crown amount with respect to the nominal thickness. FIG. 4 is a schematic explanatory diagram showing the method of the present invention. FIG. 5 is a plan view showing the arrangement of the thickness measuring device used in the method of the present invention. FIG. 6 is a flowchart showing the steps of the method of the present invention.
Char 1. FIG. 7 is a perspective view of the edge thickness measuring unit. FIG. 8 is a plan view of the center thickness measuring unit. 1: Rolled material 2: Side edge 3 Double continuous rolling mill 4: Final stand 5: Thickness measurement device 51: Center thickness measurement unit 52: Edge thickness measurement unit 517: Radiation thickness meter 527: Radiation thickness meter 528: Side edge Detector. Patent applicant: Sumitomo Metal Industries, Ltd. (2 others)

Claims (1)

【特許請求の範囲】[Claims] 連続圧延機の最終スタンドの出側において、圧延材料の
エツジ部および中心部の厚みを同時測定すること、該測
定値から材料の板クラウンを求めること、該板クラウン
から適正な板センタ部の板厚制御用目標厚みを計算する
こと、該計算厚みにもとづいて前記最終スタンドの板厚
制御の目標設定値を変更することからなる圧延材料の厚
み制御方法。
At the exit side of the final stand of a continuous rolling mill, simultaneously measuring the thickness of the edge and center of the rolled material, determining the plate crown of the material from the measured values, and determining the appropriate plate center part from the plate crown. A method for controlling the thickness of a rolled material, comprising: calculating a target thickness for thickness control; and changing a target set value for thickness control of the final stand based on the calculated thickness.
JP57069769A 1982-04-26 1982-04-26 Method for controlling sheet thickness of material to be rolled Pending JPS58187210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57069769A JPS58187210A (en) 1982-04-26 1982-04-26 Method for controlling sheet thickness of material to be rolled

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57069769A JPS58187210A (en) 1982-04-26 1982-04-26 Method for controlling sheet thickness of material to be rolled

Publications (1)

Publication Number Publication Date
JPS58187210A true JPS58187210A (en) 1983-11-01

Family

ID=13412329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57069769A Pending JPS58187210A (en) 1982-04-26 1982-04-26 Method for controlling sheet thickness of material to be rolled

Country Status (1)

Country Link
JP (1) JPS58187210A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2014813A1 (en) * 2007-07-09 2009-01-14 Oskar Dilo Maschinenfabrik KG Method of manufacturing a consolidated nonwoven fabric

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2014813A1 (en) * 2007-07-09 2009-01-14 Oskar Dilo Maschinenfabrik KG Method of manufacturing a consolidated nonwoven fabric
US7581294B2 (en) 2007-07-09 2009-09-01 Oskar Dilo Maschinenfabrik Kg Method of manufacturing a nonwoven

Similar Documents

Publication Publication Date Title
CA1152189A (en) Method fo automatically controlling width of slab during hot rough-rolling thereof
JPS6160721B2 (en)
JPS58187210A (en) Method for controlling sheet thickness of material to be rolled
US3869892A (en) Feed forward gauge control system for a rolling mill
JPH0158444B2 (en)
JPS649086B2 (en)
JPS6277110A (en) Dimension and shape straightening apparatus for hot rolling steel plate
JPS6127125B2 (en)
JPS5924887B2 (en) Hot rolling mill strip width control method and device
JPS608881B2 (en) Cold rolling method of steel plate
JPH0581325B2 (en)
JPS6240081B2 (en)
JPS5923882B2 (en) Hot rolling mill strip width control method
JPH0133245B2 (en)
JP3095966B2 (en) Rolling roll grinding method
JPH07323314A (en) Method for estimating contact wear between rolls of rolling mill
JPS5939410A (en) Rolling method
JPH06312208A (en) Method and device for rolling thick plate
JPS6363285B2 (en)
JPS5926366B2 (en) Plate camber control device for thick plate rolling
JP2719216B2 (en) Edge drop control method for sheet rolling
JPH0557525B2 (en)
JPS59107713A (en) Method and device of rolling for controlling sheet width
JPS63299807A (en) Control method for plate width in hot rolling of steel plate
JPH0890030A (en) Method for controlling width of rolling stock