JPS62245902A - Method and device for measuring thickness of internal surface coating film of cladding tube of nuclear fuel - Google Patents

Method and device for measuring thickness of internal surface coating film of cladding tube of nuclear fuel

Info

Publication number
JPS62245902A
JPS62245902A JP8800786A JP8800786A JPS62245902A JP S62245902 A JPS62245902 A JP S62245902A JP 8800786 A JP8800786 A JP 8800786A JP 8800786 A JP8800786 A JP 8800786A JP S62245902 A JPS62245902 A JP S62245902A
Authority
JP
Japan
Prior art keywords
cladding tube
nuclear fuel
coil
thickness
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8800786A
Other languages
Japanese (ja)
Inventor
Yasuo Tominaga
冨永 康夫
Yoshimi Ogoshi
大越 由巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Nuclear Fuel Development Co Ltd
Original Assignee
Nippon Nuclear Fuel Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Nuclear Fuel Development Co Ltd filed Critical Nippon Nuclear Fuel Development Co Ltd
Priority to JP8800786A priority Critical patent/JPS62245902A/en
Publication of JPS62245902A publication Critical patent/JPS62245902A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To measure the film thickness of a coating nondestructively by a noncontacting method by measuring the film thickness from variation in the impedance of a detection coil due to an eddy current in the coating film. CONSTITUTION:A reference cladding tube 7 is inserted into a coil 5 and fixed by a support 11 so that the interval between the internal surface of the coil 5 and the external surface of the cladding tube 7 is constant. Then, the cladding tube 8 to be measured is inserted into a coil 6 and they are moved by a rotary roller 10 as shown by an arrow to change measurement positions. Those coils 5 and 6 are impressed with a high frequency voltage from a high frequency power source 3 through a bridge circuit 4 to produce a high frequency magnetic field, thereby generating eddy currents in the coating films of the cladding tubes 7 and 8. Then, electromagnetic induction is caused between the eddy currents and coil currents and the coils 5 and 6 vary in impedance. The varia tion is detected by the circuit 4 and displayed 12 through a measurement part 9, so that the film thickness of the coating is measured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、コーティングの膜厚測定、特に核燃料被覆管
内面コーティング膜厚測定方法および測定装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to measuring the thickness of a coating, particularly to a method and apparatus for measuring the thickness of a nuclear fuel cladding inner surface coating.

〔従来の技術〕[Conventional technology]

核燃料被覆管(以下被覆管と称する)内面のコーティン
グの膜厚測定に関しては、被覆管を切断して判定する破
壊式測定方法と1例えば特開昭58−166203号公
報、特IJI@59−67406号公報に開示されてい
るような非破壊式測定方法がある。
Regarding the film thickness measurement of the coating on the inner surface of a nuclear fuel cladding tube (hereinafter referred to as cladding tube), there are two methods: a destructive measurement method in which the cladding tube is cut and determined; There is a non-destructive measurement method as disclosed in Japanese Patent Application No.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

被覆管の切断による方法は、切断面を酸に漬け。 To cut the cladding, the cut surface is soaked in acid.

母管材とコーティング膜の耐食性の差により生ずる表面
液本状況の差を光学的に調べて厚さを求める方法である
が、破壊的検査方式であるため、抜取り検査には適用で
きても全品検査には適用できず、また測定に時間がかか
るという欠点がある。
This is a method to determine the thickness by optically examining the difference in the surface liquid condition caused by the difference in corrosion resistance between the parent tube material and the coating film, but since it is a destructive inspection method, it can be applied to sampling inspections but cannot be used for whole-item inspection. It has the disadvantage that it cannot be applied and that it takes time to measure.

非破壊式による膜厚測定方法は、第3図に示すようなも
ので、被覆管1の内側にコイルを具備するプローブ2を
挿入して行なうものであるが、被覆管1の内面とプロー
ブ2との距離を常に一定に保つため、リーフスプリング
等が設けられており、このスプリング等が被覆管lの内
面を移動する場合、コーティング膜KgJをつけるとい
う恐れがある。
The non-destructive film thickness measurement method is as shown in FIG. 3, and is carried out by inserting a probe 2 equipped with a coil inside the cladding tube 1. A leaf spring or the like is provided in order to maintain a constant distance from the cladding tube l at all times, and if this spring or the like moves on the inner surface of the cladding tube l, there is a risk that a coating film KgJ may be applied.

このように従来技術では、いずれの方法を用いてもコー
ティング膜に損傷を与え、あるいは測定に時間がかかる
などの問題があった。
As described above, the conventional techniques have problems such as damaging the coating film or taking a long time for measurement no matter which method is used.

本発明は、被覆管内面コーティングの膜厚を無接触法に
より、非破壊的に測定する核燃料被覆管内面コーティン
グ膜厚測定方法および測定装置を提供することを目的と
する。
An object of the present invention is to provide a method and apparatus for measuring the thickness of the inner surface coating of a nuclear fuel cladding tube, which non-destructively measures the thickness of the inner surface coating of the cladding tube by a non-contact method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記の目的を達成するため、コーティング膜
内に渦電流が流れるようにし、この渦′1iKよって被
覆管の外側に巻装された噴出コ〜rルのインピーダンス
を変化せしめ、このインピーダンスの変化からコーティ
ングの膜厚を無接触で測定する手段と、被覆管を軸方向
に移動可能とし、被覆管の全長にわたり連続的に膜厚を
測定する手段とを用い、問題点の解決を計ったものであ
る。
In order to achieve the above object, the present invention causes an eddy current to flow in the coating film, and changes the impedance of the jet coil wound around the outside of the cladding tube by the eddy current. We attempted to solve this problem by using a method to measure the coating thickness without contact based on changes in the coating thickness, and a method that allows the cladding tube to be moved in the axial direction and measures the coating thickness continuously over the entire length of the cladding tube. It is something that

〔作用〕[Effect]

以上のように本発明の測定方法pよび測定装置において
は、被覆管のコーティング膜の厚さは検出コイルのイン
ピーダンスの変化として求められ、被覆管の全長につい
て非破壊的測定が行なわれる。
As described above, in the measuring method P and the measuring device of the present invention, the thickness of the coating film on the cladding tube is determined as a change in the impedance of the detection coil, and non-destructive measurement is performed on the entire length of the cladding tube.

以下、本発明の測定方法および測定装置の作用について
説明する。
Hereinafter, the action of the measuring method and measuring device of the present invention will be explained.

ig1図は本発明の核燃料被覆管内面コーティング膜厚
測定方法の測定原理を示す説明図である。
Fig. ig1 is an explanatory diagram showing the measurement principle of the method for measuring the thickness of the inner coating of a nuclear fuel cladding tube according to the present invention.

図において、3は高周波電源、4はブリッジ回路で、ブ
リッジ回路4の電源端子には高周波IC源3の電圧が印
加されている。5および6は検出用のコイルで、それぞ
れのコイルはブリッジ回路4の二辺を形成している。7
および8はそれぞれ基準用被覆管および測定用被覆管で
、コイル5およびコイル6の中を貫通するようになって
いる。9はブリッジ4の出力側測定部で、増幅器、波形
整形回路々どを有する。
In the figure, 3 is a high frequency power supply, 4 is a bridge circuit, and the voltage of the high frequency IC source 3 is applied to the power supply terminal of the bridge circuit 4. 5 and 6 are detection coils, and each coil forms two sides of the bridge circuit 4. 7
and 8 are a reference cladding tube and a measurement cladding tube, respectively, which penetrate through the coils 5 and 6. Reference numeral 9 denotes an output side measuring section of the bridge 4, which includes an amplifier, a waveform shaping circuit, and the like.

ブリッジ4に高周波電圧が印加されると、コイル5.コ
イル6に高周波電流が流れ、高周波磁界が発生する。こ
の高周波磁界はコイル5および6を貫通している被6′
IF7および8と鎖交するから、被覆管7および8に渦
電流が発生する。渦電流が発生するとコイル5,6と被
覆管7.8の間にはそれぞれに電磁誘導作用が生じ、コ
イル5およびコイル6の端子からみたインピーダンスが
変化することになる。この場合、被覆f7,8に生ずる
渦電流は、電源の周波数を一定とすれば、それぞれの材
料が有する導電率、透磁率および直径、内径、肉厚等の
形状によって異なるものとなる。
When a high frequency voltage is applied to the bridge 4, the coil 5. A high frequency current flows through the coil 6, and a high frequency magnetic field is generated. This high frequency magnetic field passes through the coils 5 and 6.
Since it interlinks with IFs 7 and 8, eddy currents are generated in the cladding tubes 7 and 8. When an eddy current is generated, electromagnetic induction occurs between the coils 5 and 6 and the cladding tube 7.8, and the impedance seen from the terminals of the coils 5 and 6 changes. In this case, if the frequency of the power supply is constant, the eddy currents generated in the coverings f7 and f8 will vary depending on the electrical conductivity, magnetic permeability, and shape such as diameter, inner diameter, and wall thickness of each material.

したがって被覆管7および8が全く同じ材質。Therefore, the cladding tubes 7 and 8 are made of exactly the same material.

形状のものであるならば、ブリッジ4は平衡状態となり
、測定部9はこれに対応する値を指示する。
If the shape is the same, the bridge 4 will be in an equilibrium state, and the measuring unit 9 will indicate a value corresponding to this.

次に被覆管7,8がコーティングの厚さのみ異なり、他
の諸性質が全く同一とすれば、被覆管7゜8の渦電流、
シたがってコイル5.6のインピーダンスがこのコーテ
ィングの厚さによって異るものとなる。この場合、例え
ば被#W7にコーティング厚さが既知のものを用い、被
覆管8にはコーティング厚さが未知のものを用いれば、
予め厚さの既知のものについてブリッジ回路4を調整し
ておくことにより、厚さが未知の被覆管8が挿入された
場合の測定部9の指示から、被覆・a8のコーティング
の厚さが求められることになる。
Next, if the cladding tubes 7 and 8 differ only in the thickness of the coating and other properties are exactly the same, then the eddy current in the cladding tube 7°8,
The impedance of the coil 5.6 therefore varies depending on the thickness of this coating. In this case, for example, if #W7 is used with a known coating thickness, and the cladding tube 8 is used with an unknown coating thickness, then
By adjusting the bridge circuit 4 in advance for a tube of known thickness, the thickness of the coating a8 can be determined from the instructions from the measurement unit 9 when a cladding tube 8 of unknown thickness is inserted. It will be done.

本発明の核燃料被覆管内面コーティング膜厚測定装置は
、上記の渦il流に関係する諸要因のうち。
The nuclear fuel cladding tube inner surface coating film thickness measuring device of the present invention is capable of measuring the above-mentioned factors related to the vortex flow.

影響の最も大きい導電率の相違を用いてコーティング膜
厚を測定するものである。
The coating film thickness is measured using the difference in conductivity that has the greatest influence.

コーティング膜の例としては、被覆管本体をジルカロイ
材とした場合、銅(Cu)、ニッケル(N;+々どが代
表的なものである。これらコーティング膜材の導電率は
、ジルカロイ材の導電率を1.0とした場合、相対導電
率は銅で約40倍。
Typical examples of coating films include copper (Cu), nickel (N), etc. when the cladding tube body is made of Zircaloy material.The electrical conductivity of these coating film materials is the same as that of Zircaloy material. When the conductivity is 1.0, the relative conductivity is approximately 40 times that of copper.

ニッケルで約10倍となシ、材料によシ導電率に大きな
差がある。この導電率の差を用いれば、コーティング;
漠の厚さを感度よく測定することができる。
There are large differences in conductivity depending on the material, such as about 10 times that of nickel. Using this difference in conductivity, coating;
It is possible to measure the thickness of dense areas with high sensitivity.

これらのコーティング材料に通常の渦流探傷器を適用し
て測定すると、渦流探傷器のコイルに生ずる起電力およ
び位相は2材料の導電率によって異なり、tたコーティ
ング膜の厚さによって異なるものとなる。したがってコ
ーティング膜厚が既知である標準の被覆管試料を用い、
起電力および位相の変化とコーティング膜厚の関係を校
正しておけば、これらの値と試験用の被覆管を用いたと
きの起電力および位相から、試験用被覆管のコーティン
グ膜の厚さが求められる。
When a normal eddy current flaw detector is applied to measure these coating materials, the electromotive force and phase generated in the coil of the eddy current flaw detector differ depending on the electrical conductivity of the two materials and the thickness of the coating film. Therefore, using a standard cladding tube sample with a known coating thickness,
If the relationship between electromotive force and phase change and coating film thickness is calibrated, the coating film thickness of the test cladding tube can be determined from these values and the electromotive force and phase when using the test cladding tube. Desired.

しかし、このように起電力と位相を一々比較していたの
では、製品の連続測定を行なうことはできない。本発明
のIJI11定装置ではmlll相定覆管の移動装置を
設け、被覆管を軸方向に移動しつつ基準値と比較するこ
とにより、連続測定を可能としたものである。
However, if the electromotive force and phase are compared one by one in this way, it is not possible to continuously measure the product. The IJI11 constant device of the present invention is equipped with a moving device for the mlll phase constant cladding tube, and allows continuous measurement by moving the cladding tube in the axial direction and comparing it with a reference value.

〔実施例〕〔Example〕

以下1本発明の一実施例を図により説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第2図は本発明の核燃料被覆管内面コーティング膜厚測
定装置の一実施例の説明図である。・官1図と同一部分
には同じ符号がつけられている。
FIG. 2 is an explanatory diagram of an embodiment of the nuclear fuel cladding tube inner surface coating film thickness measuring device of the present invention.・The same parts as in the official 1st map are given the same symbols.

図において、10は回転ローラで、コイル6の両側にと
りつけられ、測定用被覆管8を保持するとともに、被覆
管8がコイル6の中心部を図示の矢印方向に移動するよ
うに回転する。11は支持具で、基準用の被覆管7の中
心がコイル5の中心と一致するように被覆管7を支持し
、固定するものである。12は測定部9の表示部である
In the figure, reference numeral 10 denotes rotating rollers, which are attached to both sides of the coil 6, hold the measurement cladding tube 8, and rotate so that the cladding tube 8 moves around the center of the coil 6 in the direction of the arrow shown in the figure. Reference numeral 11 denotes a support that supports and fixes the cladding tube 7 so that the center of the reference cladding tube 7 coincides with the center of the coil 5. 12 is a display section of the measurement section 9.

この実施例の核燃料被覆管内面コーティング膜厚測定装
置においては、コイル5には基準用の被覆管7が挿入さ
れ、コイル5の内面と被覆管7の外面との間隔が一定と
なるように支持具11で固定されている。コイル6には
測定用被覆管8を挿入し、これを回転ローラlOにより
図の矢印方向に移動して測定位置を変えるよう足してい
る。コイル5および6には高周波電源3からブリッジ回
路4を通して1kHz〜150kHzの高周波電圧が印
加される。
In the nuclear fuel cladding tube inner surface coating film thickness measuring device of this embodiment, a reference cladding tube 7 is inserted into the coil 5, and is supported so that the distance between the inner surface of the coil 5 and the outer surface of the cladding tube 7 is constant. It is fixed with a tool 11. A measurement cladding tube 8 is inserted into the coil 6, and is moved by a rotating roller 10 in the direction of the arrow in the figure to change the measurement position. A high frequency voltage of 1 kHz to 150 kHz is applied to the coils 5 and 6 from the high frequency power supply 3 through the bridge circuit 4.

高周波電圧が印加されるとコイル5および6には高周波
磁界が生じ、被覆管7および8とそれぞれの被覆管のコ
ーティング膜に渦電流が発生する。
When a high frequency voltage is applied, a high frequency magnetic field is generated in the coils 5 and 6, and eddy currents are generated in the cladding tubes 7 and 8 and the coating film of each cladding tube.

渦′1流が発生すると前記の測定原理で述べたように、
この渦電流とコイルα流の間に電磁誘導作用が生じ、コ
イル5.6と鎖父する磁束が変化し。
As stated in the measurement principle above, when a vortex '1 flow occurs,
Electromagnetic induction occurs between this eddy current and the coil α current, and the magnetic flux chained to the coil 5.6 changes.

コイル5,6のインピーダンスが変化するから。This is because the impedance of coils 5 and 6 changes.

このインピーダンス変化をブリッジ回路41Cより検出
し、測定部9を通して表示部12でアナログあるいはデ
ィジタルに表示することにより、コーティング膜の厚さ
を測定することができる。被覆管7および8の本体の性
質は全く同一であり、異なるのはコーティング膜の厚さ
のみであるから、表示部12には、コーティング膜の厚
さが表示されることになる。
The thickness of the coating film can be measured by detecting this impedance change by the bridge circuit 41C and displaying it in analog or digital form on the display section 12 through the measuring section 9. Since the properties of the bodies of the cladding tubes 7 and 8 are exactly the same, and only the thickness of the coating film differs, the thickness of the coating film is displayed on the display section 12.

測定の手順は、予めコイル5,6に同一形状の基準用被
覆管を挿入し、ブリッジ回路4の平衡をとり、基準とな
る出力を求めておく。次にコイル6に挿入されている基
準用被1管を抜きとり、代シに測定しようとする被覆管
を挿入し、この被覆管をその軸方向に移動し、このとき
生ずる不平衡電圧を−j定1表示する。この不平衡時の
表示を先に求めた平衡時の基準の値と比較することによ
り、測定しようとする被覆管のコーティングの膜厚を求
めることができる。
The measurement procedure is to insert reference cladding tubes of the same shape into the coils 5 and 6 in advance, balance the bridge circuit 4, and obtain a reference output. Next, remove the reference tube inserted into the coil 6, insert the cladding tube to be measured in its place, move this cladding tube in its axial direction, and measure the unbalanced voltage generated at this time. j constant 1 display. By comparing the display at the time of unbalance with the reference value at the time of equilibrium determined previously, the film thickness of the coating of the cladding tube to be measured can be determined.

このようKしてコーティング膜を損傷することなく、被
覆管の全長について精度よくコーティング膜厚を測定す
ることが可能となる。
In this manner, it is possible to accurately measure the coating film thickness over the entire length of the cladding tube without damaging the coating film.

以上のように本発明の測定方法を用いるときは、被(l
I−Wをコイルに挿入するだけで容易にコーティングの
膜厚を測定することができるので1例えば被覆管に燃料
ベレットが充填されている核燃料棒に対しても適用する
ことが可能となる。
As described above, when using the measurement method of the present invention,
Since the thickness of the coating can be easily measured by simply inserting the I-W into the coil, it can also be applied to, for example, nuclear fuel rods whose cladding tubes are filled with fuel pellets.

また本発明の測定装置を用いるときは・被覆管の支持具
に回転ローラを用いており、被覆管の移動を円滑に行な
うととも罠、被覆管と検出用コイルとの間隔を旧しく保
つことができるので、被覆管の製品試験を連続的に精度
よく行なうことができる。
In addition, when using the measuring device of the present invention, a rotating roller is used as a support for the cladding tube, so that the cladding tube can be moved smoothly and the distance between the trap, the cladding tube, and the detection coil must be maintained as before. As a result, product tests on cladding tubes can be performed continuously and accurately.

すなわち4″発明により、被覆管内面のコーティング膜
の厚さを被覆管とは無接触で測定でき、被覆管の内外面
を損傷することなく、その全長について測定することが
できるので、コーティング膜厚の均一性を正確に他種す
ることが容易となり。
In other words, according to the 4'' invention, the thickness of the coating film on the inner surface of the cladding tube can be measured without contacting the cladding tube, and the entire length of the cladding tube can be measured without damaging the inner and outer surfaces of the cladding tube. The uniformity of the material makes it easy to accurately differentiate other species.

燃料棒の破損防止に極めて有効であり、プラントの安全
性向上に大きく寄与することができる。
It is extremely effective in preventing damage to fuel rods and can greatly contribute to improving plant safety.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、被覆管内面のコーティングの膜厚を、
無接触で精度よく測定可能な核燃料被覆管内面コーティ
ング膜厚測定方法および測定装置を提供することができ
る。
According to the present invention, the thickness of the coating on the inner surface of the cladding tube is
It is possible to provide a method and apparatus for measuring the thickness of a nuclear fuel cladding inner surface coating that can be measured accurately without contact.

【図面の簡単な説明】 第1図は本発明の核燃料被覆管内面コーティング膜厚測
定方法の測定原理説明図、第2図は本発明の核燃料被覆
管内面コーティング膜厚測定装置の一実施例の説明図、
第3図は従来のコーティング膜厚測定方法を適用する実
施例の説明図でちる。 3・・・高周波電源、4・・・ブリッジ回路、5.6・
・・検出用コイル、7・・・基準用被覆、8・・・測定
用被覆管、9・・・測定部、10・・・回転ローラ、1
1・・・支持具、帛2図 10−m−口享乙0−ラ 12−  未木郁
[BRIEF DESCRIPTION OF THE DRAWINGS] Fig. 1 is an explanatory diagram of the measurement principle of the method for measuring the thickness of the inner coating of a nuclear fuel cladding tube according to the present invention, and Fig. 2 is an illustration of an embodiment of the apparatus for measuring the thickness of the inner coating of a nuclear fuel cladding tube of the present invention. Explanatory diagram,
FIG. 3 is an explanatory diagram of an embodiment to which a conventional coating film thickness measuring method is applied. 3...High frequency power supply, 4...Bridge circuit, 5.6.
...Detection coil, 7.Reference coating, 8.Measurement cladding tube, 9.Measurement section, 10.Rotating roller, 1
1...Support, cloth 2 Figure 10-m-kuchikyotsu0-ra12-Iku Miki

Claims (1)

【特許請求の範囲】 1、核燃料被覆管の内面に被覆され、該核燃料被覆管本
体とは異なる導電率を有するコーティング膜の厚さを測
定する方法において、前記核燃料被覆管の外側に貫通形
のコイルを設け、該コイルに交番電流を印加し、前記コ
ーティング膜と鎖交する交番磁界を発生させ、前記コー
ティング膜内に生ずる渦電流により生ずるインピーダン
スの変化を標準の核燃料被覆管を用いて得られるインピ
ーダンスと比較し、前記コーティング膜の厚さを測定す
ることを特徴とする核燃料被覆管内面コーティング膜厚
測定方法。 2、核燃料被覆管の内面に被覆され、該核燃料被覆管本
体とは異なる導電率を有するコーティング膜の厚さを測
定する装置において、標準核燃料被覆管を支持する支持
具と、試験用該燃料被覆管をその軸方向に移動する移動
体と、前記標準核燃料被覆管および前記試験用核燃料被
覆管がそれぞれ貫通する貫通形コイルと、該貫通形コイ
ルに高周波を印加する高周波電源と、それぞれの貫通形
コイルに生ずるインピーダンスの変化を検出比較する比
較手段と、該比較手段の出力を測定する測定手段とが設
けてあることを特徴とする核燃料被覆管内面コーティン
グ膜厚測定装置。
[Claims] 1. In a method for measuring the thickness of a coating film coated on the inner surface of a nuclear fuel cladding tube and having a conductivity different from that of the nuclear fuel cladding tube body, a penetrating film is provided on the outside of the nuclear fuel cladding tube. A coil is provided, an alternating current is applied to the coil to generate an alternating magnetic field interlinking with the coating film, and a change in impedance caused by an eddy current generated in the coating film can be obtained using a standard nuclear fuel cladding tube. A method for measuring the thickness of an inner surface coating of a nuclear fuel cladding tube, the method comprising measuring the thickness of the coating by comparing it with impedance. 2. In an apparatus for measuring the thickness of a coating film coated on the inner surface of a nuclear fuel cladding tube and having a conductivity different from that of the nuclear fuel cladding tube body, a support for supporting a standard nuclear fuel cladding tube, and the fuel cladding for testing. A moving body that moves a tube in its axial direction, a through-type coil through which the standard nuclear fuel cladding tube and the test nuclear fuel cladding tube pass through, a high-frequency power source that applies a high frequency to the through-type coil, and each through-type coil. 1. A nuclear fuel cladding tube inner surface coating film thickness measuring device, comprising a comparing means for detecting and comparing changes in impedance occurring in a coil, and a measuring means for measuring an output of the comparing means.
JP8800786A 1986-04-18 1986-04-18 Method and device for measuring thickness of internal surface coating film of cladding tube of nuclear fuel Pending JPS62245902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8800786A JPS62245902A (en) 1986-04-18 1986-04-18 Method and device for measuring thickness of internal surface coating film of cladding tube of nuclear fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8800786A JPS62245902A (en) 1986-04-18 1986-04-18 Method and device for measuring thickness of internal surface coating film of cladding tube of nuclear fuel

Publications (1)

Publication Number Publication Date
JPS62245902A true JPS62245902A (en) 1987-10-27

Family

ID=13930745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8800786A Pending JPS62245902A (en) 1986-04-18 1986-04-18 Method and device for measuring thickness of internal surface coating film of cladding tube of nuclear fuel

Country Status (1)

Country Link
JP (1) JPS62245902A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ306012B6 (en) * 2014-09-03 2016-06-22 Vysoké Učení Technické V Brně Non-destructive indicator of local subsurface non-homogeneities

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ306012B6 (en) * 2014-09-03 2016-06-22 Vysoké Učení Technické V Brně Non-destructive indicator of local subsurface non-homogeneities

Similar Documents

Publication Publication Date Title
US3693075A (en) Eddy current system for testing tubes for defects,eccentricity,and wall thickness
US3401332A (en) Magnetic leakage field and eddy current flaw detection system
JPS63109367A (en) Flaw detecting sensor for conductive body
JP2766929B2 (en) Non-destructive inspection equipment
US3555412A (en) Probe for detection of surface cracks in metals utilizing a hall probe
JPH0556474B2 (en)
US3588683A (en) Method and apparatus for nondestructive testing of ferromagnetic articles,to determine the location,orientation and depth of defects in such articles utilizing the barkhausen effect
JPH11326284A (en) Method and apparatus for pulse eddy current examination
JPS62273447A (en) Method and apparatus for measuring deterioration degree of material
RU2566416C1 (en) Device for eddy-current magnetic examination of ferromagnetic objects
Faraj et al. Construct coil probe using GMR sensor for eddy current testing
KR100626228B1 (en) Apparatus and Method for detecting defect with magnetic flux inducted by AC magnetic field
JPS62245902A (en) Method and device for measuring thickness of internal surface coating film of cladding tube of nuclear fuel
US2817060A (en) Non-destructive flaw detection apparatus
JPH01316655A (en) Eddy current test equipment
US3075145A (en) Magnetic detection of flaws using mutually coupled coils
JPS62225947A (en) Probe for measuring vortex
Mesquita et al. Development of an Electronic Instrument for Eddy Current Testing
JP2005274381A (en) Nondestructive inspection method and nondestructive inspection apparatus of back defect and material characteristics by electromagnetic method
JPS6011492Y2 (en) Automatic magnetic flaw detection equipment inspection equipment
CN113608154B (en) In-situ magnetic permeability detection probe, equipment and detection method
JPS62232558A (en) Method for inspecting welded part by eddy current flaw detection
Vigness et al. Eddy Current Type Flaw Detectors for Non‐Magnetic Metals
JPS6367507A (en) Method and instrument for measuring internal coating film thickness of nuclear fuel tube
JP2743109B2 (en) Non-destructive inspection method of heating tube