JP2005164438A - Nondestructive inspection apparatus using teleguidance type alternate potential - Google Patents

Nondestructive inspection apparatus using teleguidance type alternate potential Download PDF

Info

Publication number
JP2005164438A
JP2005164438A JP2003405050A JP2003405050A JP2005164438A JP 2005164438 A JP2005164438 A JP 2005164438A JP 2003405050 A JP2003405050 A JP 2003405050A JP 2003405050 A JP2003405050 A JP 2003405050A JP 2005164438 A JP2005164438 A JP 2005164438A
Authority
JP
Japan
Prior art keywords
sensor
potential difference
potential
inspection apparatus
induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003405050A
Other languages
Japanese (ja)
Inventor
Tetsuo Shoji
哲雄 庄子
Kazuhiro Ogawa
和洋 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Techno Arch Co Ltd
Original Assignee
Tohoku Techno Arch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Techno Arch Co Ltd filed Critical Tohoku Techno Arch Co Ltd
Priority to JP2003405050A priority Critical patent/JP2005164438A/en
Publication of JP2005164438A publication Critical patent/JP2005164438A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new nondestructive measuring apparatus utilizing an electromagnetic induction phenomenon for precise and high-sensitivity measurement of defects on the back surfaces of metals. <P>SOLUTION: The nondestructive apparatus comprises a potential difference measurement section 150, a drive section 160, a sensor shifter (X-Y-Z table) 170, and a personal computer 140 for controlling them. The shifter 170 of a sensor (probe) 130 controls three motors for X, Y, and Z axes via a drive section 160 by the personal computer 140 for control, and three-dimensionally moves the set sensor 130 to an arbitrary three-dimensional position. The minimum feed pitch of the sensor (probe) is 0.05mm. For an AC current for causing an induction current applied to the sensor 130 for detecting a potential difference, for example, by using a low frequency of 0.16kHz, defects on the back are detected. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、金属の欠陥に対する非破壊検査に関するものであり、特に遠隔誘導型交流電位を用いた非破壊検査に関する。   The present invention relates to a nondestructive inspection for a metal defect, and more particularly to a nondestructive inspection using a remote induction type AC potential.

非破壊評価は、材料、機器、構造物が充分に安全性・信頼性を維持して使用可能であることを保証するために行われる。非破壊の文字通り、試験対象物を傷つけたり破壊したりすることなしに、材料の内部及び表面に存在する欠陥の有無の評価、あるいは試験対象物の性質、状態、内部構造などを知るために行う評価全体を指す。この非破壊評価の試験法として、放射線透過試験、音響試験、超音波探傷試験、磁気探傷試験など各種の方法がある。非破壊検査の利用目的は大きく2つに分けられる。すなわち、
(1)施工中の品質管理のため設計上許容できる限界寸法欠陥の存在の有無の確認。
(2)稼動中の機器・構造物の安全性の評価または寿命予測のための欠陥を検出し、破壊力学に基づき評価を行う。
というものである。
Non-destructive evaluation is performed to ensure that materials, equipment, and structures can be used with sufficient safety and reliability. Non-destructive, literally, to assess the presence or absence of defects in the material and on the surface, or to know the nature, condition, internal structure, etc. of the test object without damaging or destroying the test object Refers to the overall evaluation. As a test method for this nondestructive evaluation, there are various methods such as a radiation transmission test, an acoustic test, an ultrasonic test, and a magnetic test. There are two main purposes of nondestructive inspection. That is,
(1) Check for the existence of critical dimension defects that are acceptable in design for quality control during construction.
(2) Defects for safety evaluation or lifetime prediction of equipment and structures in operation are detected and evaluated based on fracture mechanics.
That's it.

近年、試験片に近接した位置で電流を検査対象に誘導する電磁誘導現象を利用した集中誘導型交流電位差(Induced Current Focusing Potential Drop;ICFPD)法に対し、誘導線を試験片から離し、遠隔的に電流を検査対象に非接触で誘導する新しい電位差法、すなわち遠隔誘導型電位差(Remotely Induced Current Potential Drop;RICPD)法が開発された(非特許文献1参照)。この遠隔誘導型電位差法では、板厚の薄い平板試験片の溶接部裏面に存在する放電加工き裂及び疲労き裂に対して検出が可能であり、その有用性が示されている。しかし、鋼管、管厚の厚い試験片への計測適用例はない。
Y.Sato,T.Shoji,High Sensitivity Inspection of Defects in Welds by Remotely Induced Current Potential Drop Technique, Nondestrucive Characterization of Materials IX, American Institute of Physics, 1999,pp.107-112
In recent years, in contrast to the Inducted Current Focusing Potential Drop (ICFPD) method, which uses an electromagnetic induction phenomenon that induces current to the test object at a position close to the test piece, the induction wire is moved away from the test piece and remotely On the other hand, a new potential difference method for inducting a current in a test object in a non-contact manner, that is, a remotely induced current potential drop (RICPD) method has been developed (see Non-Patent Document 1). In this remote induction type potentiometric method, it is possible to detect electric discharge machining cracks and fatigue cracks existing on the back surface of a welded portion of a flat plate specimen having a thin plate thickness, and its usefulness is shown. However, there is no measurement application example for steel pipes and thick specimens.
Y. Sato, T. Shoji, High Sensitivity Inspection of Defects in Welds by Remotely Induced Current Potential Drop Technique, Nondestrucive Characterization of Materials IX, American Institute of Physics, 1999, pp. 107-112

本発明の目的は、上述の遠隔誘導型電位差法(RICPD法)を用いた、機器・構造物の施工中の品質管理及び供用期間中の安全性・健全性の評価ならびに余寿命評価を行う上で必要となる金属の裏面欠陥の高精度・高感度計測・評価のための電磁誘導現象を利用した新しい非破壊計測装置を提供することである。   The purpose of the present invention is to perform quality control during construction of equipment / structures, safety / soundness evaluation during service period, and remaining life evaluation using the above-mentioned remote induction potential difference method (RICPD method). It is to provide a new nondestructive measuring device using electromagnetic induction phenomenon for high-precision and high-sensitivity measurement / evaluation of metal back surface defects required in Japan.

上記目的を達成するために、本発明は、誘導電流を誘起するためのコイル状の誘導線と、誘起される誘導電流の電位差を検出する2つの端子とを有するセンサと、該センサを試料の表面に対して相対的に移動して、走査するための移動装置と、前記センサの誘導線に低周波交流電流を流すための交流電源と、前記センサの端子間の電位差を計測する計測部と、前記移動装置および計測部を演算・制御するための制御部とを備え、前記試料の裏面の欠陥を検出することを特徴する遠隔誘導型交流電位を用いた非破壊検査装置である。
前記制御部は、前記計測部からの、少なくとも2つの走査の電位差の差を求めてもよい。また、前記センサの前記コイル状の誘導線は、幅広に巻線をしてもよく、前記端子の両側に設けてもよい。
In order to achieve the above object, the present invention provides a sensor having a coiled induction wire for inducing an induced current and two terminals for detecting a potential difference of the induced current, and the sensor is connected to a sample. A moving device for moving and scanning relative to the surface; an AC power source for passing a low-frequency AC current through the induction wire of the sensor; and a measuring unit for measuring a potential difference between the terminals of the sensor; A non-destructive inspection apparatus using a remote induction type AC potential, comprising a control unit for calculating and controlling the moving device and the measurement unit, and detecting a defect on the back surface of the sample.
The control unit may obtain a difference in potential difference between at least two scans from the measurement unit. Further, the coiled induction wire of the sensor may be wound in a wide width or provided on both sides of the terminal.

上述のように、遠隔誘導型交流電位を用いた非破壊検査装置において、コイル状の誘導線に低い周波数の電流を流すことにより、金属試料の深い所に誘導電流が流れ、試料の裏面の欠陥による電位差を検出することができる。
2つの走査による電位差の差を求めることにより、試料の欠陥による電位差の検出を高感度で行うことができる。
また、センサにコイル状の誘導線を幅広に設けることや、端子の両側に設けることで、広い範囲に、また、より大きく誘導電流が流れ、電位差の検出を高感度で行うことができる。
As described above, in a non-destructive inspection apparatus using a remote induction type AC potential, when a low frequency current is passed through a coiled induction wire, an induced current flows deep in the metal sample, resulting in defects on the back surface of the sample. The potential difference due to can be detected.
By obtaining the difference in potential difference between the two scans, the potential difference due to the sample defect can be detected with high sensitivity.
Further, by providing the sensor with a wide coil-shaped induction wire or on both sides of the terminal, a larger induced current flows over a wide range, and the potential difference can be detected with high sensitivity.

本発明を実施するための実施形態等について、図を用いて説明する。
導線中を交流電流が流れると、導線の周りに変動磁場が生じる。この変動磁場により、周囲の導体中には誘導起電力が生じ交流電流が誘導される。誘導線に印加した電流により誘導電流が生じる様子を模式的に表現したものが図1である。
図1において、試料110上の誘導線120により、試料110の表面に流れる誘導電流を、センサ130により電位差を検出することにより、き裂等の欠陥を発見する。これが電磁誘導現象を利用した電位差法である。
さて、誘導電流は、一般の交流電流と同様の性質を有するため、表皮効果により試験片の表層に電流が集中して流れる。その表皮効果による磁束密度の板厚方向への分布は、表面の磁束密度をB0とすると、B=B0exp(−x/δ)で与えられる。ただし、xは表面からの深さで、表皮深さδは、試験片の導電率σ、透磁率μ、交流電流の周波数fに依存する定数で、次式として表現される。

Figure 2005164438
この誘導電流は管の裏面にも流れ、より深い位置での計測が可能となる。
交流磁場は誘導線に近づく程大きくなるため、誘導電流の電流密度は誘導線近傍で急激に大きくなる(図1(b)参照)。一定の間隔を有する電位差計測端子を用いて表面の電位差を計測すると、欠陥部(B)における誘導電流経路は欠陥の無い部分(A)におけるものよりも長くなり、端子が欠陥を跨ぐ位置で計測される電位差は大きくなる。このことを利用して欠陥の検出及び定量化を行うことができる。 Embodiments for carrying out the present invention will be described with reference to the drawings.
When an alternating current flows through the conductor, a fluctuating magnetic field is generated around the conductor. Due to this fluctuating magnetic field, an induced electromotive force is generated in the surrounding conductor and an alternating current is induced. FIG. 1 schematically shows how an induced current is generated by a current applied to the induction wire.
In FIG. 1, a defect such as a crack is found by detecting a potential difference of the induced current flowing on the surface of the sample 110 by the induced wire 120 on the sample 110 and the sensor 130. This is a potential difference method using an electromagnetic induction phenomenon.
Now, since the induced current has the same properties as a general alternating current, the current concentrates on the surface layer of the test piece due to the skin effect. The distribution of the magnetic flux density in the thickness direction due to the skin effect is given by B = B0exp (−x / δ) where the surface magnetic flux density is B0. However, x is the depth from the surface, and the skin depth δ is a constant depending on the conductivity σ, the permeability μ, and the frequency f of the alternating current of the test piece, and is expressed as the following equation.
Figure 2005164438
This induced current also flows on the back side of the tube, allowing measurement at a deeper position.
Since the AC magnetic field increases as it approaches the induction line, the current density of the induction current increases rapidly in the vicinity of the induction line (see FIG. 1B). When the potential difference on the surface is measured using a potential difference measuring terminal having a constant interval, the induced current path in the defect portion (B) becomes longer than that in the portion (A) where there is no defect, and the measurement is performed at a position where the terminal crosses the defect. The potential difference is increased. This can be used to detect and quantify defects.

本実施形態の非破壊検査装置の構成を図2に示す。非破壊装置は、電位差計測部150,駆動部160,センサ移動装置(X−Y−Zテーブル)170,これらを制御している制御用パーソナルコンピュータ140で構成されている。
センサ(探触子)130の移動装置170は、制御用パーソナルコンピュータ140により、駆動部160を介してX軸、Y軸、Z軸移動用の3つのモータを制御し、セットされたセンサ130を3次元的に任意の位置へ移動する。センサ(探触子)の最小送りピッチは0.05mmである。
また、計測部150は、例えばRS232Cポートを用いて制御用パーソナルコンピュータ140に接続され、データを転送・保存する。制御用パーソナルコンピュータ140等を用いて、自動計測を行うことにより端子押し付け圧力及び試験片表面と誘導線との距離が一定に保たれ各計測点において同一の条件で計測を行っている。
また、本システムには、電位差データの信頼性を向上させるため、制御用パーソナルコンピュータ140には、計測時にデータの記憶や、2つの計測の差を求めたり、ばらつきの評価及び平均化処理やグラフの生成も行ったりするソフトウェアが使用されている。
The structure of the nondestructive inspection apparatus of this embodiment is shown in FIG. The non-destructive device includes a potential difference measuring unit 150, a driving unit 160, a sensor moving device (XYZ table) 170, and a control personal computer 140 that controls them.
The moving device 170 of the sensor (probe) 130 controls the three motors for moving the X axis, the Y axis, and the Z axis through the driving unit 160 by the control personal computer 140, and the set sensor 130 is controlled. Move to an arbitrary position in three dimensions. The minimum feed pitch of the sensor (probe) is 0.05 mm.
The measuring unit 150 is connected to the control personal computer 140 using, for example, an RS232C port, and transfers and stores data. By performing automatic measurement using the control personal computer 140 or the like, the terminal pressing pressure and the distance between the test piece surface and the guide wire are kept constant, and measurement is performed under the same conditions at each measurement point.
In order to improve the reliability of the potential difference data in this system, the control personal computer 140 stores data during measurement, obtains the difference between the two measurements, evaluates the variation, averages, and graphs. Software that also generates is used.

<センサ1>
本実施形態において使用したセンサ(遠隔誘導型探触子)の構成を図3に示す。従来の一体誘導型探触子及び分離型誘導型探触子では、誘導線と計測面との距離は、薄い絶縁シートを試験体と誘導線の間に挟む必要があったため、およそ0.1mmであった。それに対し、図示した遠隔誘導型探触子では、計測面から30mm離れた位置に長さ30mmの誘導線(コイル)132が配置されている。このため試験片表面の微妙な凹凸が誘導線−試験片表面距離に与える影響は相対的に小さくなる。端子134は、一体誘導型及び分離誘導型探触子に使用されているものと同様で、端子押しつけばね圧は重圧型である。
誘導用交流電流の周波数は、表皮深さを支配し、誘導電流の電流密度及び電流経路に影響を及ぼすことから、検出感度を決定する主要因の一つである。
そこで、0.16、0.3、1、3kHzの4種類を選択し、検出感度への影響を調べた。ステンレス鋼材に対する4種の周波数における表皮深さを表1にまとめる。

Figure 2005164438
表1で分かるように、高い周波数では裏面深部まで誘導電流が流れず、欠陥検出が困難になることが分かった。このため、本実施形態では、き裂のある深部まで有効な誘導電流が流れるように、低い周波数を用いる方がよい。 <Sensor 1>
The configuration of the sensor (remote guidance probe) used in this embodiment is shown in FIG. In the conventional integrated induction probe and the separate induction probe, the distance between the guide wire and the measurement surface is about 0.1 mm because a thin insulating sheet needs to be sandwiched between the test body and the guide wire. Met. On the other hand, in the illustrated remote guide type probe, a guide wire (coil) 132 having a length of 30 mm is disposed at a position 30 mm away from the measurement surface. For this reason, the influence which the delicate unevenness | corrugation on the surface of a test piece has on a guide wire-test piece surface distance becomes relatively small. The terminal 134 is the same as that used in the integral induction type and separate induction type probes, and the terminal pressing spring pressure is a heavy pressure type.
The frequency of the alternating current for induction dominates the skin depth and affects the current density and current path of the induced current, and thus is one of the main factors that determine the detection sensitivity.
Therefore, four types of 0.16, 0.3, 1, and 3 kHz were selected, and the influence on the detection sensitivity was examined. Table 1 summarizes the skin depth at four frequencies for stainless steel.
Figure 2005164438
As can be seen from Table 1, it was found that the induction current does not flow to the deep part of the back surface at a high frequency, which makes it difficult to detect defects. For this reason, in this embodiment, it is better to use a low frequency so that an effective induced current flows to the deep part where the crack exists.

[実施例1]
図2に示した非破壊検査装置で、厚い金属片を溶接しその溶接部分にき裂を作成した試験片を用いて計測した。その結果を説明する。非破壊検査装置には、図3に示したセンサを用いている。
図4,図5に、実施例に供した2つの試験片を示す。図4,図5において、それぞれ(a)上面図(平面図),(b)正面図,(c)下面図,(d)側面図である。
試験片は、外径600mm、内径520mm、管厚40mmのSUS316Lステンレス鋼管から切り出した溶接部を含む試験片に、き裂を導入した2種類のものである。この試験片は、溶接部に放電加工(Electric−Discharge Machining)を施し、き裂を作成したEDM材(図4)と、EDM材に疲労き裂(Fatigue)を加えたEDMF材(図5)である。試験片の寸法はEDM材が95×375×40(mm)、EDMF材が90×375×40(mm)であり、管を切り出したものであるため、それぞれの試験片は約18°の円弧状となっている。裏面のき裂はそれぞれY=182mmの位置にX方向に40mmに渡り存在する。X方向での位置は、22≦X≦62mmの範囲である。
まず、ステンレス鋼管溶接部の裏面欠陥を計測する際に、周波数の変化に伴い計測される電位差の変化量を比較した。
試験片には、欠陥の深さが大きいEDM材(図4参照)を使用した。走査は裏面にき裂部のあるY=182mmから183mmの位置においてX方向に行った(点線s)。比較した周波数は0.3、1、3kHzである。その結果を図6(a),(b),(c)に示す。
これらのグラフからわかるように、周波数の増加に伴い誘導される電流値が大きくなるため電位差の変化量が3〜10倍に急増している。裏面欠陥の上部における電位差の変化量のみを用いて欠陥検出感度を評価すると、高い周波数を用いて電位差の感度を向上させたものが良いが、用いている試験片は厚さ40mmと厚く、表皮効果による影響から高い周波数では裏面深部まで誘導電流が流れず、欠陥検出が困難である。
以上より、裏面の欠陥を検出する感度の観点から、低周波数を用いるのが適している。
[Example 1]
With the nondestructive inspection apparatus shown in FIG. 2, measurement was performed using a test piece in which a thick metal piece was welded and a crack was created in the welded portion. The result will be described. The sensor shown in FIG. 3 is used for the nondestructive inspection apparatus.
4 and 5 show two test pieces used in the examples. 4 and 5, (a) a top view (plan view), (b) a front view, (c) a bottom view, and (d) a side view, respectively.
Two types of test pieces are obtained by introducing a crack into a test piece including a welded portion cut from a SUS316L stainless steel pipe having an outer diameter of 600 mm, an inner diameter of 520 mm, and a pipe thickness of 40 mm. This test piece is an EDM material (FIG. 4) in which electric discharge machining (Electric-Discharge Machining) is applied to the welded portion, and an EDMF material in which a fatigue crack (Fatigue) is added to the EDM material (FIG. 5). It is. The dimensions of the test piece are 95 × 375 × 40 (mm) for the EDDM material and 90 × 375 × 40 (mm) for the EDMF material. Each test piece is a circle of about 18 °. It is arcuate. The cracks on the back surface each exist at a position of Y = 182 mm over 40 mm in the X direction. The position in the X direction is in the range of 22 ≦ X ≦ 62 mm.
First, when measuring the back surface defect of a stainless steel pipe weld, the amount of change in potential difference measured with the change in frequency was compared.
As the test piece, an EDM material (see FIG. 4) having a large defect depth was used. Scanning was performed in the X direction at a position of Y = 182 mm to 183 mm with a crack on the back surface (dotted line s x ). The compared frequencies are 0.3, 1, 3 kHz. The results are shown in FIGS. 6 (a), (b) and (c).
As can be seen from these graphs, the amount of change in the potential difference is rapidly increased 3 to 10 times because the induced current value increases as the frequency increases. When the defect detection sensitivity is evaluated using only the change amount of the potential difference at the upper part of the back surface defect, it is preferable to improve the sensitivity of the potential difference using a high frequency, but the test piece used is as thick as 40 mm, and the skin Due to the effect of the effect, an induced current does not flow to the deep part of the back surface at a high frequency, and it is difficult to detect defects.
From the above, it is suitable to use a low frequency from the viewpoint of sensitivity for detecting defects on the back surface.

さて、実際に、図4,図5に示した試験片を計測した結果を、図7〜図9に示す。
計測条件は、交流印加電流2A、周波数0.16kHz、探触子と試験片の接触角度θ=90°である。
図4に示した試験片に対する計測の結果、得られた電位差分布を図7(a),(b)に示す。図7(a)は、き裂のある部分を走査したもの(き裂部走査:図4の点線s)とき裂のない部分を走査したもの(参照部走査:図4の点線r)とを示す。図7(b)は、図7(a)に示したき裂部走査と参照部走査との電位差の差分を取った結果を示す。き裂部走査では全体的に電位差が高く計測されているが、き裂の生じている部分で電位差がより大きく上昇している。そのため、き裂部走査と参照部走査の電位差の差分では、ちょうどき裂の存在する部位で急激に変化(0.04〜0.08μV)が現れていることが認められる。
比較のために、周波数0.3kHzを印加した結果得られた電位差分布及びき裂部走査と参照部走査における電位差差分を図8(a),(b)に示す。
図7に示した0.16kHzの場合と比べ、図8の0.3kHzの場合は、溶接した箇所の電位差が上昇しているものの、き裂の存在しない個所においても電位が上昇し、き裂のある深さまで有効な誘導電流が流れていないことが分かる。
Now, the results of actually measuring the test pieces shown in FIGS. 4 and 5 are shown in FIGS.
The measurement conditions are AC applied current 2A, frequency 0.16 kHz, contact angle θ between the probe and the test piece = 90 °.
FIG. 7A and FIG. 7B show potential difference distributions obtained as a result of measurement on the test piece shown in FIG. FIG. 7A shows a case where a cracked portion is scanned (crack portion scanning: dotted line s x in FIG. 4) and a portion where no crack is scanned (reference portion scanning: dotted line r x in FIG. 4). It shows. FIG. 7B shows the result of taking the difference in potential difference between the crack scanning and the reference scanning shown in FIG. In the crack scanning, the potential difference is measured to be high as a whole, but the potential difference rises more greatly at the cracked portion. Therefore, it is recognized that a change (0.04 to 0.08 μV) suddenly appears in the portion where the crack exists in the difference in potential difference between the crack scanning and the reference scanning.
For comparison, FIG. 8A and FIG. 8B show potential difference distributions obtained as a result of applying a frequency of 0.3 kHz, and potential difference differences between crack scanning and reference scanning.
Compared to the case of 0.16 kHz shown in FIG. 7, in the case of 0.3 kHz in FIG. 8, although the potential difference at the welded portion is increased, the potential is also increased at a portion where no crack exists, and the crack is increased. It can be seen that the effective induced current does not flow up to a certain depth.

また、図5に示したEDMF材を計測した結果得られた電位差分布(き裂部走査:図5の点線sと参照部走査:図5の点線r)及びき裂部走査と参照部走査の電位差の差分を図9(a),(b)に示す。
図9から、EDM材の場合と同様にき裂部走査で大きく電位差が上昇し、き裂部走査と参照部走査での差分を取ると、き裂部で電位の変化が現れていることが分かる。しかしながら、EDM材に比べEDMF材は放電加工で加えたき裂の深さが小さく、そこから加えた疲労き裂の深さも小さい。そのため、EDM材における欠陥検出ほどの感度は得られなかったと考えられる。
Moreover, resulting potential distribution of EDMF material was measured as shown in FIG. 5 (can cleft scanning: see section scanning a dotted line s x in Figure 5: the dotted line r x in FIG. 5) and-out cleft scanning the reference portion Differences in scanning potential difference are shown in FIGS.
From FIG. 9, as in the case of the EDM material, the potential difference greatly increases in the crack scanning, and when the difference between the crack scanning and the reference scanning is taken, a change in potential appears in the crack. I understand. However, the EDMF material has a smaller depth of cracks applied by electric discharge machining than the EDM material, and the depth of fatigue cracks applied therefrom is also small. Therefore, it is considered that the sensitivity as high as the defect detection in the EDM material was not obtained.

<他の実施形態:センサ2>
導線に一定周波数をもつ電流を流すと、表皮効果によって電流は導体表面に集まろうとする。そのため導体内部の電流は小さくなる。すなわち、内部の導体は電流の伝導にほとんど関与しなくなり、見かけ上誘導線の断面積が減少し抵抗が大きくなる。厚さ40mmの試験片内部に誘導電流を起こすことを可能とするために、誘導線の寸法(特に幅)及び巻数を大きくし、発生する磁場の広がりにより誘導される電流を増大させている。これによって裏面欠陥に対する検出時に計測される電位の増加、それによる計測感度の上昇が望める。
このために、新しく開発したセンサである多重遠隔誘導型探触子の構成を図10(a),誘導線(コイル)を図10(b)に示す。この多重遠隔誘導型探触子130では、図10(b)に示すように、誘導線(コイル)132の寸法は、試験片に平行な方向に80mm、垂直な方向に30mm、幅方向に20mmと幅広に、巻数は20巻、さらにその誘導線を2つセンサ130の両脇に配置した。この2つのコイルを用いているので「多重」としている。なお、コイルは2つとは限らない。
<Other embodiment: Sensor 2>
When a current having a constant frequency is passed through the conductor, the current tends to collect on the conductor surface due to the skin effect. Therefore, the current inside the conductor is reduced. That is, the inner conductor hardly participates in current conduction, and apparently the sectional area of the guide wire is reduced and the resistance is increased. In order to make it possible to generate an induced current inside a test piece having a thickness of 40 mm, the size (in particular, the width) and the number of turns of the induction wire are increased, and the current induced by the spread of the generated magnetic field is increased. As a result, it is possible to increase the potential measured at the time of detection of the back surface defect and thereby increase the measurement sensitivity.
For this purpose, FIG. 10 (a) shows the configuration of a multiple remote induction type probe, which is a newly developed sensor, and FIG. 10 (b) shows the induction wire (coil). In this multi-remote guiding probe 130, as shown in FIG. 10B, the dimensions of the guiding wire (coil) 132 are 80 mm in the direction parallel to the test piece, 30 mm in the vertical direction, and 20 mm in the width direction. The number of turns is 20 and the guide wires are arranged on both sides of the sensor 130. Since these two coils are used, “multiple” is set. Note that the number of coils is not limited to two.

[実施例2]
上述の多重遠隔誘導型探触子(図10のセンサ)を用いて、図2の装置構成を用いて、図4,図5に示した試料を計測した結果を、図11〜図13に示す。計測は、欠陥検出感度が高い周波数0.16kHzを用いている。また、センサの誘導線と試験片と間は30mmである。
放電加工き裂試験片EDMを計測した結果の電位差分布(き裂部走査:図4の点線sと参照部走査:図4の点線r)を図11(a)に示す。また、き裂部走査と参照部走査を比較しその電位差の差分をとった結果を図11(b)に示す。図11(b)に示すように、裏面き裂(欠陥)が存在する位置において、き裂部走査と参照部走査との差分をとった値が急激に上昇している。電位差の差分は約0.3μVと、図7(b)の0.06μVより約6倍大きい。
図11(b)において、無欠陥部と欠陥部の境界で急激に電位差差分が変化するが、試験片に加えられた放電加工によるき裂(深さ約10mm)の形状に依ったものであると考えられる。
このように、多重遠隔誘導型探触子(図10)を用いることで、遠隔誘導型探触子(図3)を使用した場合と比較して微小であった差分値を大幅に向上させることが可能となった。
[Example 2]
FIG. 11 to FIG. 13 show the results of measuring the sample shown in FIGS. 4 and 5 using the apparatus configuration shown in FIG. 2 using the above-described multiple remote guidance type probe (sensor shown in FIG. 10). . The measurement uses a frequency of 0.16 kHz with high defect detection sensitivity. The distance between the sensor guide wire and the test piece is 30 mm.
FIG. 11A shows a potential difference distribution (crack scanning: dotted line s x in FIG. 4 and reference scanning: dotted line r x in FIG. 4) as a result of measuring the EDM crack specimen EDM. Further, FIG. 11B shows the result of comparing the crack portion scanning and the reference portion scanning and taking the difference of the potential difference. As shown in FIG. 11B, at the position where the back surface crack (defect) exists, the value obtained by taking the difference between the crack scanning and the reference scanning rapidly increases. The difference in potential difference is about 0.3 μV, about 6 times larger than 0.06 μV in FIG.
In FIG. 11B, the potential difference changes suddenly at the boundary between the defect-free part and the defect part, but this depends on the shape of the crack (depth of about 10 mm) by electric discharge machining applied to the test piece. it is conceivable that.
As described above, by using the multiple remote guidance type probe (FIG. 10), the difference value which was minute compared to the case of using the remote guidance type probe (FIG. 3) can be greatly improved. Became possible.

図5の試験片EDMFを計測した結果得られた電位差分布(き裂部走査:図5の点線sと参照部走査:図5の点線r)を図12(a)に示す。また、その結果より得られた電位差からき裂部走査と参照部走査を比較してその電位差差分を取った結果を図12(b)に示す。
また、図13(a)に試験片EDMF材をY軸方向に走査し(図5のsとr)、得られた電位差分布を示す。図13(b)にはその結果得られた、それぞれの部位の電位差差分を取った結果を示す。
遠隔誘導型探触子(図3)では高い感度の計測が難しかった(図9(b)参照)が、多重遠隔誘導型探触子(図10)を用いた図13(b)では、無欠陥部と欠陥部での電位差差分値が、EDM材の場合(図12(b)参照)と同様に約0.3μVとなり、高い感度の計測が可能となった。
なお、図13(b)において、欠陥が存在する位置で電位差差分の上昇する変化の具合が山形になっている。これは、試験片EDMF材に加えられたき裂が、放電加工で約2mm、その後疲労き裂を加えたものであるため、そのき裂の形状にそった形を、欠陥信号として捉えているためであると考えられる。
FIG. 12A shows a potential difference distribution (crack scanning: dotted line s x in FIG. 5 and reference scanning: dotted line r x in FIG. 5) obtained as a result of measuring the test piece EDMF in FIG. Further, FIG. 12B shows the result of comparing the crack portion scanning with the reference portion scanning from the potential difference obtained from the result and taking the potential difference difference.
FIG. 13A shows the potential difference distribution obtained by scanning the test piece EDMF material in the Y-axis direction (s y and r y in FIG. 5). FIG. 13B shows a result obtained by taking the potential difference difference of each part obtained as a result.
It was difficult to measure with high sensitivity using the remote guidance type probe (FIG. 3) (see FIG. 9B), but in FIG. 13B using the multiple remote guidance type probe (FIG. 10), there was no measurement. The potential difference difference value between the defective portion and the defective portion is about 0.3 μV as in the case of the EDM material (see FIG. 12B), and high sensitivity measurement is possible.
In FIG. 13B, the degree of change in which the potential difference difference increases at the position where the defect exists is a mountain shape. This is because the crack applied to the test piece EDMF material is about 2 mm in electric discharge machining and then a fatigue crack is added, and the shape along the shape of the crack is captured as a defect signal. It is thought that.

誘導電流により欠陥が計測できることを説明する図である。It is a figure explaining that a defect can be measured with an induced current. 誘導電流による非破壊検査装置の構成を示す図である。It is a figure which shows the structure of the nondestructive inspection apparatus by an induced current. 非破壊検査装置に使用するセンサの構造を示す図である。It is a figure which shows the structure of the sensor used for a nondestructive inspection apparatus. ステンレス鋼の管にき裂を作成した試料例(EDM材)を示す図である。It is a figure which shows the example of a sample (EDM material) which created the crack in the pipe | tube of stainless steel. ステンレス鋼の管に疲労き裂を作成した試料例(EDMF材)を示す図である。It is a figure which shows the sample example (EDMF material) which created the fatigue crack in the stainless steel pipe | tube. 周波数の変化に伴い計測される電位差の変化量を比較する図である。It is a figure which compares the variation | change_quantity of the electrical potential difference measured with the change of a frequency. 図4の試験片に対する、0.16kHzによる計測の結果を示す図である。It is a figure which shows the result of the measurement by 0.16kHz with respect to the test piece of FIG. 図4の試験片に対する、0.3kHzによる計測の結果を示す図である。It is a figure which shows the result of the measurement by 0.3 kHz with respect to the test piece of FIG. 図5の試験片に対する、0.16kHzによる計測の結果を示す図である。It is a figure which shows the result of the measurement by 0.16kHz with respect to the test piece of FIG. 非破壊検査装置に使用するセンサの他の構造を示す図である。It is a figure which shows the other structure of the sensor used for a nondestructive inspection apparatus. 図4の試験片に対する、図10のセンサによる計測の結果を示す図である。It is a figure which shows the result of the measurement by the sensor of FIG. 10 with respect to the test piece of FIG. 図5の試験片に対する、図10のセンサによる計測の結果を示す図である。It is a figure which shows the result of the measurement by the sensor of FIG. 10 with respect to the test piece of FIG. 図5の試験片に対する、図10のセンサによる他の方向の計測の結果を示す図である。It is a figure which shows the result of the measurement of the other direction with the sensor of FIG. 10 with respect to the test piece of FIG.

Claims (4)

誘導電流を誘起するためのコイル状の誘導線と、誘起される誘導電流の電位差を検出する2つの端子とを有するセンサと、
該センサを試料の表面に対して相対的に移動して、走査するための移動装置と、
前記センサの誘導線に低周波交流電流を流すための交流電源と、
前記センサの端子間の電位差を計測する計測部と、
前記移動装置および計測部を演算・制御するための制御部と
を備え、前記試料の裏面の欠陥を検出することを特徴する遠隔誘導型交流電位を用いた非破壊検査装置。
A sensor having a coiled induction wire for inducing an induced current and two terminals for detecting a potential difference between the induced currents;
A moving device for moving and scanning the sensor relative to the surface of the sample;
An alternating current power source for passing a low frequency alternating current through the induction wire of the sensor;
A measuring unit for measuring a potential difference between terminals of the sensor;
A non-destructive inspection apparatus using a remote induction type AC potential, comprising: a control unit for calculating and controlling the moving device and the measurement unit; and detecting a defect on a back surface of the sample.
請求項1に記載の非破壊検査装置において、
前記制御部は、前記計測部からの、少なくとも2つの走査の電位差の差を求めることを特徴とする遠隔誘導型交流電位を用いた非破壊検査装置。
In the nondestructive inspection device according to claim 1,
The non-destructive inspection apparatus using a remote induction type AC potential, wherein the control unit obtains a difference in potential difference between at least two scans from the measurement unit.
請求項1又は2に記載の非破壊検査装置において、
前記センサの前記コイル状の誘導線は、幅広に巻線をしていることを特徴とする遠隔誘導型交流電位を用いた非破壊検査装置。
In the nondestructive inspection device according to claim 1 or 2,
The non-destructive inspection apparatus using a remote induction type AC potential, wherein the coiled induction wire of the sensor is wound in a wide width.
請求項1〜3のいずれかに記載の非破壊検査装置において、
前記センサの前記コイル状の誘導線は、前記端子の両側に設けることを特徴とする遠隔誘導型交流電位を用いた非破壊検査装置。
In the nondestructive inspection apparatus in any one of Claims 1-3,
The non-destructive inspection apparatus using a remote induction type AC potential, wherein the coiled induction wire of the sensor is provided on both sides of the terminal.
JP2003405050A 2003-12-03 2003-12-03 Nondestructive inspection apparatus using teleguidance type alternate potential Pending JP2005164438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003405050A JP2005164438A (en) 2003-12-03 2003-12-03 Nondestructive inspection apparatus using teleguidance type alternate potential

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003405050A JP2005164438A (en) 2003-12-03 2003-12-03 Nondestructive inspection apparatus using teleguidance type alternate potential

Publications (1)

Publication Number Publication Date
JP2005164438A true JP2005164438A (en) 2005-06-23

Family

ID=34727862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003405050A Pending JP2005164438A (en) 2003-12-03 2003-12-03 Nondestructive inspection apparatus using teleguidance type alternate potential

Country Status (1)

Country Link
JP (1) JP2005164438A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007078654A (en) * 2005-09-16 2007-03-29 Tohoku Univ Nondestructive inspection apparatus using teleguidance type alternate potential
JP2007303919A (en) * 2006-05-10 2007-11-22 Tohoku Univ Nondestructive inspection device using induction type alternating current potential
JP2008175638A (en) * 2007-01-17 2008-07-31 Toshiba Corp Device and method for detecting defect of structural material
CN101832970A (en) * 2010-05-07 2010-09-15 江苏大学 Device and method for reckoning fatigue crack propagation rate of flat alloy by AC potentiometry
JP2020197479A (en) * 2019-06-04 2020-12-10 国立研究開発法人物質・材料研究機構 Compact ultrasensitive magnetic impedance sensor and nondestructive inspection device using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007078654A (en) * 2005-09-16 2007-03-29 Tohoku Univ Nondestructive inspection apparatus using teleguidance type alternate potential
JP2007303919A (en) * 2006-05-10 2007-11-22 Tohoku Univ Nondestructive inspection device using induction type alternating current potential
JP2008175638A (en) * 2007-01-17 2008-07-31 Toshiba Corp Device and method for detecting defect of structural material
CN101832970A (en) * 2010-05-07 2010-09-15 江苏大学 Device and method for reckoning fatigue crack propagation rate of flat alloy by AC potentiometry
JP2020197479A (en) * 2019-06-04 2020-12-10 国立研究開発法人物質・材料研究機構 Compact ultrasensitive magnetic impedance sensor and nondestructive inspection device using the same

Similar Documents

Publication Publication Date Title
KR101636346B1 (en) Method for determining and evaluation eddy-current displays, in particular cracks, in a test object made from an electrically conductive material
US7519487B2 (en) System and method for depth determination of cracks in conducting structures
US9839979B2 (en) System for evaluating weld quality using eddy currents
JP2008008806A (en) Method and apparatus for evaluating surface flaw length by eddy current flaw detection method
Abidin et al. Advantages and applications of eddy current thermography testing for comprehensive and reliable defect assessment
Barakat et al. A one-dimensional approach towards edge crack detection and mapping using eddy current thermography
Hughes High-sensitivity eddy-current testing technology for defect detection in aerospace superalloys
JP2008175638A (en) Device and method for detecting defect of structural material
JP2005164438A (en) Nondestructive inspection apparatus using teleguidance type alternate potential
Silva et al. Corrosion inspection using pulsed eddy current
Pereira et al. Flexible pipe tensile armor monitoring using eddy current technique
Zainal Abidin Modelling and experimental investigation of eddy current distribution for angular defect characterisation
JP4756224B1 (en) Spot welding inspection equipment
CN108982651A (en) Exchange leakage field sensor based on ferromagnetic butt plates welding seam crack detection and the method using its progress crack detection
Sikora et al. Eddy current testing of thick aluminum plates with hidden cracks
Hatsukade et al. Eddy-current-based SQUID-NDE for detection of surface flaws on copper tubes
US7123004B2 (en) Method of non-destructive inspection of rear surface flaws and material characteristics using electromagnetic technique and apparatus therefor
JPH0552816A (en) Internally inserted probe for pulse-type eddy current examination
Cuffe et al. Eddy current measurement of case hardened depth of steel components
Nakamoto et al. Reliability evaluation of pipe thickness measurement by electromagnetic acoustic transducer
US20180164250A1 (en) Eddy current probe and a method of using the same
B Schneider et al. Nondestructive Evaluation of Additively Manufactured Metal Components with an Eddy Current Technique
Sato et al. Detection and sizing of cracks using potential drop techniques based on electromagnetic induction
JPH0833374B2 (en) Method and apparatus for detecting foreign layer in metal
JP2007078654A (en) Nondestructive inspection apparatus using teleguidance type alternate potential

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061120

A977 Report on retrieval

Effective date: 20080616

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080624

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081111