JPS58165263A - Matrix type fuel cell - Google Patents

Matrix type fuel cell

Info

Publication number
JPS58165263A
JPS58165263A JP57048379A JP4837982A JPS58165263A JP S58165263 A JPS58165263 A JP S58165263A JP 57048379 A JP57048379 A JP 57048379A JP 4837982 A JP4837982 A JP 4837982A JP S58165263 A JPS58165263 A JP S58165263A
Authority
JP
Japan
Prior art keywords
electrolyte
matrix
fuel cell
intermediate layer
bipolar plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57048379A
Other languages
Japanese (ja)
Other versions
JPH0129028B2 (en
Inventor
Noriyuki Nakajima
中島 憲之
Tomoyoshi Kamoshita
友義 鴨下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP57048379A priority Critical patent/JPS58165263A/en
Publication of JPS58165263A publication Critical patent/JPS58165263A/en
Publication of JPH0129028B2 publication Critical patent/JPH0129028B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • H01M8/04283Supply means of electrolyte to or in matrix-fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To impregnate the electrolyte uniformly to the entire region in a matrix layer, by splitting the matrix into two while conducting an electrolyte storage tank between an intermediate layer or an electrolyte feed path provided between said layers and a bipolar plate or a porous electrode substrate. CONSTITUTION:A matrix 5 is splitted into two matrix layers 5A, 5B bonded on the surface of electrodes 3, 4 while an electrolyte feed path or an intermediate layer 7 is formed between said layers 5A and 5B. An electrolyte storage tank 11 of a groove having open lower face and closed ends is defined in parallel with a fuel gas path groove 10 while facing with a row of electrolyte supply holes 8 of an unit cell 1 at the lower face side on the left and right regions of a bipolar plate 2. Consequently it is permeable sufficiently to the entire region even from the end of the matrix 5 thereby the gas diffusion area of electrode can be widened to contribute to the improvement of cell performance. It can be employed similarly on a fuel cell where the bipolar plate 2 is replaced with a porous electrode substrate.

Description

【発明の詳細な説明】 この発明は電解質にりん酸を用いたマトリックス型燃料
電池、特にその電解質の補給構造の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a matrix fuel cell using phosphoric acid as an electrolyte, and particularly to improvements in the electrolyte supply structure thereof.

この種の燃料電池は燃料電極と空気電極の2枚の電極の
間に電解質を含浸させたマトリックスを挾持して単電池
が構成される。一方、各電極の層内への燃料、空気の反
応ガスの取り込みはガス拡散方式によって行なわれ、ま
た単電池への反応ガス供給方式としては、上記の単電池
の上下両端にバイポーラプレートを重ね合゛わせで積層
し、このバイポーラプレートに仕切られているガス通路
溝を通じて各電極へ燃料ガス、あるいは空気を送り込む
方式、およびバイポーラプレートの代りに電を 極基板1反応ガス通路を仕切った多孔質電極基板となし
、この電極基板のガス通路を通じて反応ガスを電極へ送
り込む方式とがある。いずれの方式の場合にも、電極の
層内に安定した三相界面を形成し、電極反応を効率よく
行なわせるためには、ガス拡散電極に必要以上に液状電
解質が浸透することを避けねばならない。
This type of fuel cell is constructed by sandwiching a matrix impregnated with an electrolyte between two electrodes, a fuel electrode and an air electrode. On the other hand, the intake of reactant gases such as fuel and air into the layers of each electrode is carried out by a gas diffusion method, and the method of supplying reactant gases to single cells is to stack bipolar plates on both the upper and lower ends of the above-mentioned single cells. A method in which fuel gas or air is sent to each electrode through gas passage grooves separated by bipolar plates stacked in a stacked manner, and a porous electrode in which the electrode substrate 1 partitions the reaction gas passage instead of the bipolar plate. There is a method in which a substrate is used and a reaction gas is sent to the electrode through a gas passage in the electrode substrate. In either method, in order to form a stable three-phase interface within the electrode layer and ensure efficient electrode reactions, it is necessary to avoid excessive penetration of the liquid electrolyte into the gas diffusion electrode. .

一方、マトリックスへの電解質供給は、少なくとも重電
′池も構成した後に行なう必やかあり、更に運転途中で
の補光を考慮してセルスタックを組立4で行なえること
が望まれる。この場合に前述した理由から、マトリック
スへの電解質補給は、電極層を通じて行なうことは不適
であるため、直接マトリックスへ供給できるようにする
ことが必要となる。ところでマトリックス層は耐熱、崗
十食性を与えるために、一般にはシリコンカーバイドの
微粒子をポリテトラフルオロエチレンで結着した薄膜状
のものとして作られる。しかしここで結着剤として用い
られるポリテトラフルオロエチレンは撥水性を有してい
るので1液状亀解質はマトリックス層内に浸透しずらい
面がある。このような理由から、従来の単t′池では、
その構造および機能上の制約から重電−の本体に直接電
解餉補給機構を設けることは極□め・′:TC困難であ
るし、またマトリックスへその一端から電解質を大きな
液圧を加えることなしに供給しても、マトリックスの全
域へ一様に含浸させることが仲々むすがしい等この発明
は上記の点にかんがみなされたものであり1.、その目
的はマ) IJフックスの電解質の補給が外部から容易
に行なえ、しかもマトリックス層内でその全域へ均等に
電解質を含浸できるようにしたマトリックス型燃料電池
を提供することにある。
On the other hand, it is necessary to supply electrolyte to the matrix at least after constructing the heavy battery, and it is also desirable to be able to assemble the cell stack during assembly 4, taking into account light supplementation during operation. In this case, for the reasons mentioned above, it is not suitable to supply the electrolyte to the matrix through the electrode layer, so that it is necessary to be able to supply the electrolyte directly to the matrix. Incidentally, in order to provide heat resistance and corrosion resistance, the matrix layer is generally made in the form of a thin film made of fine particles of silicon carbide bonded with polytetrafluoroethylene. However, since the polytetrafluoroethylene used as the binder has water repellency, it is difficult for the one-liquid chamelite to penetrate into the matrix layer. For this reason, in the conventional single t' pond,
Due to its structural and functional limitations, it is extremely difficult to provide an electrolytic replenishment mechanism directly in the main body of the heavy electric device, and it is also difficult to apply large liquid pressure to the matrix from one end of the electrolyte. The present invention was made in consideration of the above points, such as the fact that even if the matrix is supplied evenly, it is difficult to uniformly impregnate the entire area of the matrix. The purpose is to provide a matrix fuel cell in which electrolyte can be easily replenished from the outside of the IJ hooks, and the electrolyte can be evenly impregnated throughout the matrix layer.

以下この発明を図示実施例に基づいて詳述する。The present invention will be described in detail below based on illustrated embodiments.

第1図ないし第4図ξこ示す実施例は単電池をバイポー
ラプレートを介して積層し、セルスタックを構成するタ
イプの燃料電池の例である。各図において、1は単電池
、2は単電池の−F下に重ね合わせて積層されたバイポ
ーラプレートである。このうち単電池1は上下2枚の燃
料電極3および空気電極4と、−極3と4の間に挾持さ
れたマ) IJll。
The embodiment shown in FIGS. 1 to 4 is an example of a fuel cell of a type in which unit cells are stacked via bipolar plates to form a cell stack. In each figure, 1 is a single cell, and 2 is a bipolar plate stacked under -F of the single cell. Among these, the unit cell 1 is sandwiched between two upper and lower fuel electrodes 3 and an air electrode 4, and negative electrodes 3 and 4.

ツクス5との一、層体としてなり、かっこの積層組立体
はその外周−が撥水性のあるシール材6によって被機さ
れている。ところでこの発明により、第2図に明示され
ているように、前記のマトリックス5はそれぞれ11極
3,4の面に結着形成された二つの分割マl−IJフッ
クスIj5Aと5Bに分割され、かつ分割マトリックス
層5人と5Bの間には電解質供給通路となる中間層7が
形成されている。
The outer periphery of the laminated bracket assembly is covered with a water-repellent sealing material 6. By the way, according to the present invention, as clearly shown in FIG. 2, the matrix 5 is divided into two divided multi-IJ hooks Ij 5A and 5B, which are bonded to the surfaces of the 11 poles 3 and 4, respectively. Moreover, an intermediate layer 7 serving as an electrolyte supply passage is formed between the five divided matrix layers and 5B.

この中間層7は例えば親水性に優れた特性を示す炭素系
#紺で作られたカーボンペーパーあるいはシリコンカー
バイドの絨維を抄いたものなどを分割マトリックス#i
5Aと5Bの間に介挿することにより形成される。この
中間層7では電解質がマトリックスw5の中を面方向に
浸透移動するよりもはるかに電解質が流れ謳くなる。ま
た単1jf、M1の上面側には、その左右両端域に電極
3および分割マ) IJツクス層5Aを貫通して中間層
7に達する電解質補給穴8が単電池のl111縁に沿っ
て多数あけである。
This intermediate layer 7 is made of, for example, carbon paper made of carbon-based #dark blue, which exhibits excellent hydrophilic properties, or a material made of silicon carbide fiber, etc.
It is formed by inserting it between 5A and 5B. In this intermediate layer 7, the electrolyte flows much more smoothly than when the electrolyte permeates and moves in the plane direction in the matrix w5. In addition, on the upper surface side of the single cell JF and M1, there are electrodes 3 and a number of electrolyte replenishment holes 8 that penetrate the IJTx layer 5A and reach the intermediate layer 7 along the edges of the single cell. It is.

一方、第3図、第4図に示すように、バイポーラプレー
ト2はその上面と下面に互いに直交する空気通路9およ
び燃料ガス通路溝10が形成されたガス不透過性の導電
材で作られたものである。
On the other hand, as shown in FIGS. 3 and 4, the bipolar plate 2 is made of a gas-impermeable conductive material and has air passages 9 and fuel gas passage grooves 10 orthogonal to each other formed on its upper and lower surfaces. It is something.

そしてこの発明により、バイポーラプレート2の左右両
端域の下面側には完配した単電池lの電解質補給穴8の
列に対向して下面を開放した両端〆閉塞の凹溝tしてな
る電解質貯蔵タンク11が燃料ガス通路溝10と平行し
て画成されている。更にこのタンク11に連ねてバイポ
ーラプレート2の外側面に開口する電解質補給口12が
設けである。
According to the present invention, the lower surface of both left and right end regions of the bipolar plate 2 has an electrolyte storage groove t which is closed at both ends and whose lower surface is open, facing the rows of electrolyte replenishment holes 8 of the fully arranged single cells L. A tank 11 is defined parallel to the fuel gas passage groove 10. Furthermore, an electrolyte replenishment port 12 is provided which is connected to the tank 11 and opens on the outer surface of the bipolar plate 2.

上記の構成において、電解質貯蔵タンク11は電極3お
よび分割マトリックス層5Aを貫通する穴8を介して単
電池内の中間層7に連通し合っている。したがって2箇
所にある電解質補給口12のいずれか一方を通じて外部
から電解質を注入すると、電解質は貯蔵タンク11.補
給穴8を通って中間層7に流れ込み、ここから分割マト
リックス層5Aおよび5Bの層内へ浸透して行く。なお
この電解質の流入に伴ってもう一方の補給口12からは
マトリックス層5.中間層7に残留しているガスが抜は
出る。かくしてセルスタックを組立てた後でも、補給口
12ヘパイブを接続して外部から電解質を注入し、マト
リックス5へ円滑に補給含浸させることが可能になる。
In the above configuration, the electrolyte storage tank 11 communicates with the intermediate layer 7 within the cell via the hole 8 passing through the electrode 3 and the segmented matrix layer 5A. Therefore, when electrolyte is injected from the outside through either of the two electrolyte replenishment ports 12, the electrolyte is transferred to the storage tank 11. It flows into the intermediate layer 7 through the supply hole 8 and from there penetrates into the divided matrix layers 5A and 5B. As this electrolyte flows in, the matrix layer 5. Gas remaining in the intermediate layer 7 is removed. In this way, even after the cell stack is assembled, the electrolyte can be injected from the outside by connecting the replenishing port 12 and the matrix 5 can be replenished and impregnated smoothly.

しかも分割マドIJツクス層5Aと5Bの間には流路抵
抗が小さく、かつ撥水性のない中間層7が形成されてい
るので、電解質は抵抗なく流れ込み、この中間層7から
上下の分割マトリックスI@5^5Bの全面域へ一様に
含浸されることになる。また前記の貯蔵タンク11は電
池の運転時にはリザーバとしての役目を果し、運転状態
の変化に伴ってマトリックス5に含浸保持されている電
解質の体積が増減しても、過不足のないようタンク11
で吸収することができる。加えて中間層7を設けたこと
により、マトリックスの端部からでも十分全面域へ浸透
させることができ、それだけ電極のガス拡散領域を広く
活用し得て電池の性能向上にも寄与できる。
Moreover, since an intermediate layer 7 with low flow path resistance and no water repellency is formed between the divided matrix layers 5A and 5B, the electrolyte flows without resistance from this intermediate layer 7 to the upper and lower divided matrices I. The entire area of @5^5B will be uniformly impregnated. The storage tank 11 also serves as a reservoir during operation of the battery, and even if the volume of the electrolyte impregnated and held in the matrix 5 increases or decreases as the operating conditions change, the tank 11
can be absorbed. In addition, by providing the intermediate layer 7, it is possible to penetrate the entire surface area even from the edges of the matrix, and the gas diffusion area of the electrode can be utilized more widely, which can also contribute to improving the performance of the battery.

なお図示実施例におけるバイポーラプレートの代りに、
多孔質電極基板を用いたタイプの燃料電池でもま9“く
同様に実施7き、虎・こ0層合には電解質貯蔵タンクが
電極基板の内部に画成される。
Note that instead of the bipolar plate in the illustrated embodiment,
Fuel cells of the type using porous electrode substrates have also been similarly implemented, with an electrolyte storage tank defined inside the electrode substrate.

以上述べたように、この発明は単電池のマトリックス層
を2層に分割してその間にvL解質通路として働く中間
層を形成するとともに、この単電池に組合わせて積層さ
れるバイポーラプレートあるいは多孔質電極基板の内部
に電解質貯蔵タンクを画成し、しかもこのタンクと前記
の中間層との間を電極を貫通して連通し合うように構成
したものであり、したがってマトリックスへの電解質補
給を外部からスムーズにしかもマトリックス全域に均勢
に行き渡るように行なうことができ、その実益は極めて
大である。
As described above, the present invention divides the matrix layer of a single cell into two layers, forms an intermediate layer between them that serves as a VL solute passage, and a bipolar plate or porous plate that is laminated in combination with this single cell. An electrolyte storage tank is defined inside the electrolyte electrode substrate, and the tank and the intermediate layer are communicated through the electrode, so that electrolyte replenishment to the matrix is carried out externally. This can be done smoothly and evenly throughout the matrix, and the benefits are extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例による単電池の構成を示す一
部切欠平面図、第2図は第1図における矢視1−1断面
図、第3図は単電池にバイポーラプレートを組合わせた
実施例の一部切欠平面図、第4図は第3図における矢視
IV−IV断面図である。 、1 1・・・単電池、2□貌バイポーラプレー)、3.4・
・・電極、5・・・マトリ、、11ツクス、5A、5B
・・・分割マトリックス層、7・・・中間層、8・・・
穴、・11・・・電解質貯蔵タンク、12・・・電解質
補給口。 ず  1  図 ′/ す  2  目 f  3  目 /2 ず  4  図
Fig. 1 is a partially cutaway plan view showing the structure of a unit cell according to an embodiment of the present invention, Fig. 2 is a sectional view taken along arrow 1-1 in Fig. 1, and Fig. 3 is a combination of a unit cell and a bipolar plate. FIG. 4 is a partially cutaway plan view of the embodiment shown in FIG. , 1 1... cell, 2 □ bipolar play), 3.4.
...Electrode, 5... Matrix, 11x, 5A, 5B
...Divided matrix layer, 7... Middle layer, 8...
Hole, 11... Electrolyte storage tank, 12... Electrolyte supply port. zu 1 figure'/su 2 eyef 3 eye/2 zu 4 figure

Claims (1)

【特許請求の範囲】 1)上下2枚の電極の間に電解質を含浸保持するマトリ
ックスを挾持して単電池を構成したマトリックス型燃料
電池において、1ViI配マl−IJラックス2層に分
割してこの分割I−の間に電解質供給通路となる中間層
を設けるとともに、前記上下の電極のうちの上位の電極
側に積層された反応カス供通路を有するパイホーラブレ
ートあるいは多孔質電極基板の内部に電解質貯蔵タンク
を画成し、かつ該タンクと前記中間層との間を電極を貫
通して上下に連通したことを%徴とするマトリックス型
燃料電池0 2、特許請求の範H第1項記載の燃料電池において、バ
イポーラプレートあるいは多孔質電極基板がその内部に
画成された電解質貯蔵タンクへ通じる電解質補給口を外
11[oに開口して備えていることを特徴とするマトリ
ックス型燃料電池。
[Claims] 1) In a matrix type fuel cell in which a single cell is constructed by sandwiching a matrix impregnated with and holding an electrolyte between two upper and lower electrodes, the fuel cell is divided into two layers of 1ViI distribution l-IJ lux. An intermediate layer serving as an electrolyte supply passage is provided between this division I-, and the interior of a piholar plate or porous electrode substrate has a reaction waste supply passage laminated on the upper electrode side of the upper and lower electrodes. A matrix fuel cell characterized in that an electrolyte storage tank is defined in the tank, and vertical communication is provided between the tank and the intermediate layer through electrodes, Claim H. In the fuel cell described above, the bipolar plate or the porous electrode substrate is provided with an electrolyte replenishment port opening to the outside and communicating with an electrolyte storage tank defined therein. .
JP57048379A 1982-03-26 1982-03-26 Matrix type fuel cell Granted JPS58165263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57048379A JPS58165263A (en) 1982-03-26 1982-03-26 Matrix type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57048379A JPS58165263A (en) 1982-03-26 1982-03-26 Matrix type fuel cell

Publications (2)

Publication Number Publication Date
JPS58165263A true JPS58165263A (en) 1983-09-30
JPH0129028B2 JPH0129028B2 (en) 1989-06-07

Family

ID=12801679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57048379A Granted JPS58165263A (en) 1982-03-26 1982-03-26 Matrix type fuel cell

Country Status (1)

Country Link
JP (1) JPS58165263A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6088463U (en) * 1983-11-24 1985-06-18 三菱電機株式会社 Fuel cell
JPS62119871A (en) * 1985-11-20 1987-06-01 Mitsubishi Electric Corp Electrolytic solution supplier for stacked fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6088463U (en) * 1983-11-24 1985-06-18 三菱電機株式会社 Fuel cell
JPS62119871A (en) * 1985-11-20 1987-06-01 Mitsubishi Electric Corp Electrolytic solution supplier for stacked fuel cell

Also Published As

Publication number Publication date
JPH0129028B2 (en) 1989-06-07

Similar Documents

Publication Publication Date Title
JPS6130385B2 (en)
JPS6047702B2 (en) Fuel cell assembly and its manufacturing method
US7615308B2 (en) Dual function, bipolar separator plates for fuel cells
JPH0560235B2 (en)
US4467019A (en) Fuel cell with electrolyte feed system
US4463067A (en) Fuel cell and system for supplying electrolyte thereto utilizing cascade feed
JPH0238377Y2 (en)
JPS61227370A (en) Fuel battery assembly
JPS63119166A (en) Fuel battery
JPS58165263A (en) Matrix type fuel cell
US4751062A (en) Fuel cell with electrolyte matrix assembly
JPH06101338B2 (en) Fuel cell
JPS6489150A (en) Molten carbonate fuel cell
CA1202070A (en) Fuel cell with multiple porosity electrolyte matrix assembly
JPH0145096Y2 (en)
EP0106605A1 (en) Fuel cell with multiple porosity electrolyte matrix assembly and electrolyte feed system
JPS58161266A (en) Matrix type fuel cell
JPH0145095Y2 (en)
JPS6358768A (en) Fuel cell
JPS6063876A (en) Llquid supplement equipment for matrix type fuel cell
CA1319171C (en) Dry fuel cell stack assembly
JPS58103784A (en) Fuel cell
JPS6237507B2 (en)
JPS58165262A (en) Matrix type fuel cell
JPS6362158A (en) Device for replenishing electric solution for fuel cell