JPS58161266A - Matrix type fuel cell - Google Patents

Matrix type fuel cell

Info

Publication number
JPS58161266A
JPS58161266A JP57043216A JP4321682A JPS58161266A JP S58161266 A JPS58161266 A JP S58161266A JP 57043216 A JP57043216 A JP 57043216A JP 4321682 A JP4321682 A JP 4321682A JP S58161266 A JPS58161266 A JP S58161266A
Authority
JP
Japan
Prior art keywords
cell
fuel
unit
fuel cell
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57043216A
Other languages
Japanese (ja)
Inventor
Atsuo Watanabe
敦夫 渡辺
Osamu Yamamoto
修 山本
Tomoyoshi Kamoshita
友義 鴨下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP57043216A priority Critical patent/JPS58161266A/en
Publication of JPS58161266A publication Critical patent/JPS58161266A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2418Grouping by arranging unit cells in a plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/242Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes comprising framed electrodes or intermediary frame-like gaskets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To form a fuel cell having large capacity without increasing an electrode area of a unit cell by forming a frame obtained by cutting off a plurality of cell windows, and constructing a cell unit by accommodating a unit cell in each cell window. CONSTITUTION:A matrix 19 is placed between a fuel electrode body 15 which formes a fuel electrode 14 in a substrate 12 having fuel grooves 11, and an air electrode body 18 which forms an air electrode 17 in a substrate 16 having air grooves 15, to form a unit cell 10. A frame body 20 comprising an upper frame body 21 and a lower frame body 22, opening four cell windows 23 in each of frame bodies is formed. Each of unit cells 10 is accommodated in each of cell windows. The frame body 20 are arranged so that its grooves 24 and 25 coincide with the fuel grooves 11 and the air groove 15. A groove 26 is formed along the window 23 to supply an electrolyte. Therefore, since a plurality of unit cells are arranged on the same surface to form a cell unit, a fuel cell having large capacity is easily constructed.

Description

【発明の詳細な説明】 この発明は容量の大きな燃料電池を構成するのに好適な
マ) IJノックス燃料電池の組立構造の改良に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in the assembly structure of an IJ Knox fuel cell suitable for constructing a large capacity fuel cell.

周知のようにマトリックス型燃料電池は、燃料電極と、
例えばりん酸である電解質を含浸させたマトリックスと
、空気電極とを重ね合わせて単電池が構成される。また
電極へ燃料および空気を供給する仕方により、いわゆる
バイポーラプレートを採用したタイプと、モノポーラプ
レートを採用したタイプとが知られている。このうち前
者のタイプは上下面に燃料通路溝および空気通路溝が形
成されている2枚のバイポーラプレートの間に先記の単
電池を挾持して単セルとなし、燃料、空気は電極に接す
る通路溝を通じて電極へ供給される。
As is well known, a matrix fuel cell consists of a fuel electrode,
A cell is constructed by superimposing a matrix impregnated with an electrolyte, for example phosphoric acid, and an air electrode. Furthermore, depending on the method of supplying fuel and air to the electrodes, there are known types that employ so-called bipolar plates and types that employ monopolar plates. In the former type, the above-mentioned unit cell is sandwiched between two bipolar plates with fuel passage grooves and air passage grooves formed on the upper and lower surfaces, and the fuel and air are in contact with the electrodes. It is supplied to the electrode through the channel groove.

またかかる単電池とバイポーラプレートを交互に積層す
ることによりセルスタックが構成される。
Further, a cell stack is constructed by alternately stacking such unit cells and bipolar plates.

これに対し後者のタイプは個々に燃料通路溝あるいは空
気通路溝の一方が形成さf″した燃料側および空気側の
各専用多孔質電極基板を用意し、この板面にそれぞれ燃
料電極、空気電極を塗布形成したものをマトリックスと
組合わせて単セルとなし、燃料および空気は多孔質電極
基板を通してその外面側の通路溝を通じて電極へ供給す
るように構成される。々おセルスタックは前記の単セル
をガス不透過性のセパレート板を介して積層することに
より構成きれる。
On the other hand, in the latter type, dedicated porous electrode substrates are prepared for the fuel side and the air side, respectively, in which either the fuel passage groove or the air passage groove is formed. A single cell is formed by applying and forming a single cell in combination with a matrix, and fuel and air are supplied to the electrode through a passage groove on the outer surface of the porous electrode substrate through a porous electrode substrate. It can be constructed by stacking cells with gas-impermeable separate plates in between.

ところでいずれのタイプにしろ、容量の大きな燃料電池
を構成するには、前述した単電池の電極面積を大きくす
る必要がある。しかしながら単電池の電極面積が大にな
る程、その構成部品の製作が困難となるほか、ガス、電
解質の補給上の問題等もあって、単体として製作し得る
単電池の′wL極面積は技術的に限界がある。このため
に一般にはm述したセルスタックの複数個を外部で互に
電気的に直列、並列に接続して大容量の燃料電池を得て
いるが、この場合には個々にセルスタックを独立的に組
立構成しなければならず、全体として構造が大型化する
し、組立の手間もかかる。
Regardless of the type, in order to construct a fuel cell with a large capacity, it is necessary to increase the electrode area of the above-mentioned single cell. However, as the electrode area of a unit cell becomes larger, it becomes more difficult to manufacture its component parts, and there are also problems with gas and electrolyte replenishment, so the 'wL electrode area of a unit cell that can be manufactured as a unit is limited by technology. There are limits. For this purpose, a large capacity fuel cell is generally obtained by electrically connecting multiple cell stacks as described above in series or parallel to each other externally, but in this case, each cell stack can be connected independently. Therefore, the overall structure becomes larger and the assembly takes more time.

この発明は上記の虞にかんがみ々されたものであり、そ
の目的は大容量の燃料電池を構成するのに有利なマ) 
IJツクス型型材料電池組立構成を提供することにある
This invention was made in consideration of the above-mentioned concerns, and its purpose is to provide an advantageous fuel cell for constructing a large-capacity fuel cell.
An object of the present invention is to provide an IJTx type material battery assembly configuration.

かかる目的はこの発明により、同じ面上に複数のセル窓
を切欠いた枠体を有し、この枠体の各セル窓内にそれぞ
れ単電池を収容保持してセルユニットを構成したことに
より達成される。
This object is achieved by the present invention, which has a frame with a plurality of cell windows cut out on the same surface, and each cell window of the frame accommodates and holds a single cell to form a cell unit. Ru.

以下この発明を図示実施例に基づき詳述する。The present invention will be described in detail below based on illustrated embodiments.

図示例は先述したモノポーラプレート採用のタイプの例
を示したものであり、捷ず第1図にその単電池の基本構
造を示す。図において単電池10は。
The illustrated example shows an example of the type employing the monopolar plate described above, and FIG. 1 shows the basic structure of the unit cell. In the figure, a single cell 10 is shown.

上面に燃料通路溝】1が形成された多孔質電極基板12
の下面に撥水層13.燃料電極14を塗布形成してなる
態別電極体15と、下面に空気通路溝J5が形成された
多孔質電極基板16の上面に撥水層】3.空気電極17
を塗布形成してなる空気電極体18との間にマトリック
ス】9を挾持して構成されている。一方、第2図に示す
ように、この発明により前記の単電池10と別個に、上
部枠21と下部枠22とからなる二分割構造の枠体20
が用意されている。この枠体20は上部枠21と下部枠
22を上下に重ねて適宜スタッドボルト等により組立ら
れるものであり、まず、枠体には上下に貫通した4つの
セル窓23が同じ面上に並べて開口されている。そして
各セル窓23の中にはそれぞれ単電池】0が収容保持は
れる。(第2図II′i4つのセル窓に対し、単電池1
0は1個だけ示されていて残りの3個は省略されている
。)その保持構造の詳細は第3図に示すごとくであり、
単電池10における各電極基板12.16の周縁に形成
されたフランジ部をそれぞれ上部枠21.下部枠22に
おけるセル窓の内周縁に形成された係合段部に係合して
挟持保持されている。なおこの場合にマトリックス19
は後述する電解質補給のために、単電池の周域で側方に
余分にはみ出しである。また第2図に戻り、上部枠21
の上面および 5− 下部枠22の下面には各単電池10における燃料通路溝
11.空気通路溝15と互に連なり合う通路溝24.2
5が形成されている。更に下部枠22の上面側にはセル
窓23の升目に沿って互に連通し合う電解質溜溝26が
形成されている。この溝26は各セル窓23ごとにここ
に収容された単電池10の周囲を取り巻いており、かつ
第3図に示すごとく、単電池】0より側方へ余分にはみ
出したマ) IJラックス9の周縁と接する位置に形成
されている。以上の構成で同一面上に並ぶ4個の単電池
】0からなるセルユニットが構成される。またここで枠
体20が絶縁物で作られていれば、各単電池10は電気
的に導通し合うことはないが、これに対し、枠体20を
導電性材で構成しておき、かつ上部枠21と下部枠22
との間の絶縁を保持しておけば1組立状態で4個の単電
池10は電気的に並列となる。そしてこのセルユニット
を多数積み重ねることによりセルスタックが構成される
Porous electrode substrate 12 with fuel passage grooves 1 formed on the top surface
Water repellent layer 13. A water-repellent layer on the top surface of the mode-specific electrode body 15 formed by coating the fuel electrode 14 and the porous electrode substrate 16 with air passage grooves J5 formed on the bottom surface]3. Air electrode 17
The matrix 9 is sandwiched between the air electrode body 18 and the air electrode body 18 formed by coating. On the other hand, as shown in FIG. 2, according to the present invention, a frame body 20 having a two-part structure consisting of an upper frame 21 and a lower frame 22 is provided separately from the unit cell 10.
is available. This frame 20 is assembled by stacking an upper frame 21 and a lower frame 22 vertically using appropriate stud bolts, etc. First, four cell windows 23 penetrating vertically are lined up on the same surface and are opened. has been done. In each cell window 23, a single cell 0 is housed and held. (Fig. 2 II'i For four cell windows, one single cell
Only one 0 is shown and the remaining three are omitted. ) The details of the holding structure are as shown in Figure 3.
The flange portions formed on the periphery of each electrode substrate 12.16 in the unit cell 10 are connected to the upper frame 21. The lower frame 22 is engaged with and held in an engagement step formed on the inner peripheral edge of the cell window. In this case, matrix 19
is an extra protrusion to the side around the unit cell for electrolyte replenishment, which will be described later. Returning to FIG. 2 again, the upper frame 21
The upper surface and the lower surface of the lower frame 22 are provided with fuel passage grooves 11 in each unit cell 10. Passage grooves 24.2 interconnected with air passage grooves 15
5 is formed. Further, on the upper surface side of the lower frame 22, electrolyte reservoir grooves 26 are formed which communicate with each other along the squares of the cell window 23. This groove 26 surrounds the cell 10 housed in each cell window 23, and as shown in FIG. It is formed at a position that touches the periphery of the With the above configuration, a cell unit consisting of four single cells [0] arranged on the same plane is constructed. Further, if the frame body 20 is made of an insulating material, the individual cells 10 will not be electrically conductive to each other, but on the other hand, if the frame body 20 is made of a conductive material and Upper frame 21 and lower frame 22
If insulation is maintained between them, the four cells 10 will be electrically connected in parallel in one assembled state. A cell stack is constructed by stacking a large number of these cell units.

なおセルスタックを構成する際にはセルユニットの相互
間に図示の導電性セパレート板30が介挿 6− サレ、このセパレート板30により燃料と空気のガス分
離を行う。また前記した電解質溜溝26は、この中に液
状電解質40を外部から注入することにより、この溝2
6を通じてマトリックス19へ電解質40を毛細管作用
により補給含浸させることができ、電解質の補給溝ある
いはリザーバとして役立つ。
When constructing a cell stack, a conductive separate plate 30 shown in the figure is inserted between the cell units.The separate plate 30 performs gas separation of fuel and air. Further, the electrolyte reservoir groove 26 described above can be formed by injecting the liquid electrolyte 40 into the groove from the outside.
Through capillary action, an electrolyte 40 can be replenished into the matrix 19 through the capillary 6, serving as a replenishment channel or reservoir for the electrolyte.

なお上記実施例はモノポーラプレートタイプの単電池で
組立てたセルユニットの例を示したが、バイポーラプレ
ートを組合わせてなる単電池を使ってセルユニットを構
成することもできることは勿論である。また枠体に開口
したセル窓の数は任意に選ぶことができる。
Although the above-mentioned embodiment shows an example of a cell unit assembled from monopolar plate type cells, it is of course possible to construct a cell unit using cells formed by combining bipolar plates. Further, the number of cell windows opened in the frame can be arbitrarily selected.

以上の説明から明らかなように、この発明の構成によn
ば、大容量の燃料電池を構成するに際して、枠体の採用
により複数個の単電池を同時に同一面上に並べてセルユ
ニットが構成きれる。したがって単体としての単電池の
電極面積を大形化することなしに大容量の電池を簡易に
組立構成することができ、その実用的効果は極めて犬で
ある。
As is clear from the above explanation, the structure of this invention
For example, when constructing a large-capacity fuel cell, a cell unit can be constructed by arranging a plurality of single cells on the same surface at the same time by using a frame. Therefore, a large-capacity battery can be easily assembled without increasing the electrode area of a unit cell, and its practical effects are extremely significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例に採用されるモノポーラプレ
ートタイプの単電池の基本構成図、第2図はこの発明の
実施例の分解斜視図、第3図は第2図の組立状態を示す
要部の拡大断面図である。 10・・・単電池、15・・・燃料電極体、18・・・
空気を離体、19・・・マトリックス、20・・・枠体
、21・・・上部枠、22・・・下部枠、23・・・セ
ル窓、26・・・電解質溜溝、30・・・セパレート板
、40・・・液状電解質。
Fig. 1 is a basic configuration diagram of a monopolar plate type unit cell adopted in an embodiment of this invention, Fig. 2 is an exploded perspective view of an embodiment of this invention, and Fig. 3 shows the assembled state of Fig. 2. FIG. 3 is an enlarged cross-sectional view of main parts. 10... Single cell, 15... Fuel electrode body, 18...
air separation, 19... matrix, 20... frame, 21... upper frame, 22... lower frame, 23... cell window, 26... electrolyte reservoir groove, 30... - Separate plate, 40...liquid electrolyte.

Claims (1)

【特許請求の範囲】 1)燃料電極、電解質を含浸させたマトリックス。 空気電極を重ね合わせて単電池を構成するマトリックス
型燃料電池において、同じ面上に複数のセル窓を切欠い
た枠体を有し、この枠体の各セル窓内にそれぞn前記の
単電池を収容保持してセルユニットを構成したことe%
徴とするマトリックス型燃料電池。 2、特許請求の範囲第1項に記載の燃料電池において、
枠体が上下二分割構造体として構成され、その上部枠と
下部枠との間に各単電池が挾持されていることを特徴と
する燃料電池。 3)特許請求の範囲第2項に記載の燃料電池において、
枠体を構成する下部枠の上面にマトリックスへの電解質
補給用としての電解質溜溝が形成されていること全特徴
とするマトリックス型燃料電池0 4)特許請求の範囲第3項に記載の燃料電池において、
電解質溜溝が各単電池のマトリックスの周縁と接する位
置に合わせて各単電池の周囲を取巻き、かつ互に連通し
合って形成されていることを特徴とするマトリックス型
燃料電池。
[Claims] 1) A fuel electrode, a matrix impregnated with an electrolyte. A matrix fuel cell in which air electrodes are stacked to form a single cell has a frame body with a plurality of cell windows cut out on the same surface, and each of the cell windows of the frame body has one of the above-mentioned single cells inside each cell window. The cell unit was constructed by accommodating and holding the
Matrix type fuel cell. 2. In the fuel cell according to claim 1,
1. A fuel cell characterized in that the frame is constructed as a structure divided into upper and lower halves, and each unit cell is sandwiched between the upper frame and the lower frame. 3) In the fuel cell according to claim 2,
A matrix type fuel cell 0 characterized in that an electrolyte reservoir groove for replenishing electrolyte to the matrix is formed on the upper surface of the lower frame constituting the frame body. 4) The fuel cell according to claim 3. In,
1. A matrix fuel cell characterized in that electrolyte reservoir grooves are formed so as to surround each unit cell at positions where they contact the periphery of the matrix of each unit cell, and to communicate with each other.
JP57043216A 1982-03-18 1982-03-18 Matrix type fuel cell Pending JPS58161266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57043216A JPS58161266A (en) 1982-03-18 1982-03-18 Matrix type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57043216A JPS58161266A (en) 1982-03-18 1982-03-18 Matrix type fuel cell

Publications (1)

Publication Number Publication Date
JPS58161266A true JPS58161266A (en) 1983-09-24

Family

ID=12657714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57043216A Pending JPS58161266A (en) 1982-03-18 1982-03-18 Matrix type fuel cell

Country Status (1)

Country Link
JP (1) JPS58161266A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60208056A (en) * 1984-04-02 1985-10-19 Hitachi Ltd Fuel cell
JPS61216248A (en) * 1985-03-22 1986-09-25 Hitachi Ltd Fuel cell
JPH07169499A (en) * 1985-04-19 1995-07-04 Ivac Corp Plate-shaped multiple-junction type electrochemical cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60208056A (en) * 1984-04-02 1985-10-19 Hitachi Ltd Fuel cell
JPH0425675B2 (en) * 1984-04-02 1992-05-01 Hitachi Ltd
JPS61216248A (en) * 1985-03-22 1986-09-25 Hitachi Ltd Fuel cell
JPH07169499A (en) * 1985-04-19 1995-07-04 Ivac Corp Plate-shaped multiple-junction type electrochemical cell

Similar Documents

Publication Publication Date Title
JPH0560235B2 (en)
JPS5912572A (en) Fuel cell
US4830936A (en) Activatable electrochemical battery implementing lithium/oxyhalide couples
JP3007814B2 (en) Fuel cell
US9806360B2 (en) Unit cell for solid-oxide fuel cell and solid-oxide fuel cell using same
US4331747A (en) Electric storage batteries
JPH0238377Y2 (en)
JPH0630253B2 (en) Fuel cell
JPH0443566A (en) Solid electrolyte type fuel cell
JPS58161266A (en) Matrix type fuel cell
JPS6240831B2 (en)
JP2002329523A (en) Cell frame for redox flow battery
JPH0227670A (en) Fuel cell
JPS6144371Y2 (en)
JPS58165263A (en) Matrix type fuel cell
JPH033958Y2 (en)
JPH04121967A (en) Solid electrolyte type fuel cell
JP3111166B2 (en) Fuel cell
JPS58144760U (en) Electrolyte replenishment device for matrix fuel cells
JP3259783B2 (en) Circular fuel cell
JPH02153U (en)
DE940414C (en) Multi-cell accumulator
JPH06101338B2 (en) Fuel cell
JPH0145096Y2 (en)
JP4501334B2 (en) Aggregate battery and method of manufacturing the same