JPS58161793A - Continuous electroplating method - Google Patents

Continuous electroplating method

Info

Publication number
JPS58161793A
JPS58161793A JP4286382A JP4286382A JPS58161793A JP S58161793 A JPS58161793 A JP S58161793A JP 4286382 A JP4286382 A JP 4286382A JP 4286382 A JP4286382 A JP 4286382A JP S58161793 A JPS58161793 A JP S58161793A
Authority
JP
Japan
Prior art keywords
plating
current
time
plated
electroplating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4286382A
Other languages
Japanese (ja)
Other versions
JPS6256240B2 (en
Inventor
Hitoshi Oka
岡 齊
Kenji Nakamura
健二 中村
Isao Nishimura
功 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4286382A priority Critical patent/JPS58161793A/en
Publication of JPS58161793A publication Critical patent/JPS58161793A/en
Publication of JPS6256240B2 publication Critical patent/JPS6256240B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/241Reinforcing the conductive pattern characterised by the electroplating method; means therefor, e.g. baths or apparatus

Abstract

PURPOSE:To apply plating on an object to be plated in high mass productivity and quality without fluctuation in the moving speed of said object in a continuous electroplating method by controlling the magnitude of current and respective times by constant current pulses in every stage of electroplating. CONSTITUTION:A flat plate-like object to be plated, for example, a printed substrate 1, is moved with belts 2, 2' through the inside of respective cells consisting of the 1st plating cell 6, the 1st rinsing cell 7, the 2nd plating cell 8 and the 2nd rinsing cell 9, whereby the substrate is electroplated continuously. The substrate in the cells L is plated by the constant current pulses that can control the magnitude, conduction time and interruption time of the currents indenpendently. More specifically, the time (t) per cycle of pulses, the conduction time t1 in the time (t), and the interruption time t-t1 are controlled by controlling clock pulses CP1, and the magnitude (-i) of the current I is controlled indenpendently by changing a variable resistor R1. If clock pulses CP2 and a variable resistor R2 are controlled, the quality of plating is improved further.

Description

【発明の詳細な説明】 本発明は連続電気めっき方法に関するものにして、さら
に詳細には、被めっき物が一定速度で移動しつつ、複数
の電気めっきを行う場合、各めっきの最適電流密度とめ
っき時間を任意に得ることのできる定電流パルス連続電
気めっき方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a continuous electroplating method, and more specifically, when a plurality of electroplatings are performed while the object to be plated is moving at a constant speed, it is possible to The present invention relates to a constant current pulse continuous electroplating method that allows the plating time to be set arbitrarily.

従来、電気めっきは以下の方法でなされてきた。Conventionally, electroplating has been performed by the following method.

一般に、電気めっきはバッチ式でなされてきた。Generally, electroplating has been carried out in a batch manner.

すなわち、被めっき物を治具に取り付け、前処理の後、
電気めっき槽に入れ、一定の電流でめっきし、一定の時
間後、所定のめっき厚さを得て、電気めっき槽から取り
出すものであった。このような従来の方法には以下の欠
点があった。バッチ式では、一度に多量の被めっき物の
めっきを行う必要性のため、大規模な電気めっき槽を必
要とした。
In other words, the object to be plated is mounted on a jig, and after pretreatment,
It was placed in an electroplating bath, plated with a constant electric current, and after a certain period of time, a predetermined plating thickness was obtained, and then taken out from the electroplating bath. Such conventional methods have the following drawbacks. The batch method requires a large-scale electroplating tank because it is necessary to plate a large amount of objects at once.

大規模な電気めっき槽中では、めっき液の流動状態、成
分濃度、温度などが均一でなく、その結果、各被めっき
物のめっき状態は同一でなく、被めっき物の製品として
の安定性に欠けるものであった。
In a large-scale electroplating tank, the flow state, component concentration, temperature, etc. of the plating solution are not uniform, and as a result, the plating condition of each plated object is not the same, and the stability of the plated object as a product is affected. It was something lacking.

この欠点を補う一手法として、以下の方法があった。す
なわち、めっき金属の析出と溶解を繰り返すパルスめっ
きである(もしくは、PRめっき)。
The following method has been proposed as a method to compensate for this drawback. That is, it is pulse plating in which the plating metal is repeatedly deposited and dissolved (or PR plating).

パルスめっきにおいて、めっきの析出と溶解を繰り返す
ことによって、比較的均質のめっきを施すことができた
が、本質的には、上記の欠点を解決できるものではなか
った。さらに、多量のめっき液を使用するので、公害の
点がらも問題のあるものであった。
In pulse plating, relatively homogeneous plating could be achieved by repeating the deposition and dissolution of the plating, but this did not essentially solve the above-mentioned drawbacks. Furthermore, since a large amount of plating solution is used, there is also a problem in terms of pollution.

最近、上記の欠点を解決する方法として、連続的に電気
めっきする方法が提案され、行われるようになった。こ
の方法は、プリント基板のごとく、被めっき物が平板状
の場合、第1.2図に示す連続式めっきを可能とするも
のである。第1図のめっき槽の断面図を参照して、被め
っき物のプリント基板1は、互に反対方向に同一速度で
回転する同一直径のローラに案内されるベルト2.2′
により挾持されながら、一定速度でめっき槽6内を縦断
する。プリント基板1は、上部をステンレスブラシ3.
3′のブラシ部と接触しており、電源4に導通されて陰
極となっている。一方、めっき槽中チタン−白金製など
の陽極5.5′が、めっき液沖に浸漬しているプリント
基板と、等距離、平行に第1図と同じめっき槽の複数個
(この場合2個)よりなる装置により、プリント基板1
がベルト22′に挾持されつつ、つぎつぎに連続的に第
1めっき槽6、第1水洗槽7、第2めっき槽8、第2水
洗槽9へ入り、第1めっき、第1水洗、第2めっき、第
2水洗される様子を示すための、それらの配置を上部よ
り見た概略図である。この方法には以下のような欠点が
あった。一般的に、電気めっきでは、めっきの質は電流
密度に深く関係する。
Recently, a continuous electroplating method has been proposed and put into practice as a method to solve the above-mentioned drawbacks. This method enables continuous plating as shown in FIG. 1.2 when the object to be plated is flat, such as a printed circuit board. Referring to the cross-sectional view of the plating bath in FIG. 1, a printed circuit board 1 to be plated is placed on a belt 2.2' guided by rollers of the same diameter rotating in opposite directions at the same speed.
It traverses the interior of the plating tank 6 at a constant speed while being held by the plating tank 6. The upper part of the printed circuit board 1 is covered with a stainless steel brush 3.
It is in contact with the brush portion 3', is electrically connected to the power source 4, and serves as a cathode. On the other hand, in the plating tank, the anodes 5.5' made of titanium-platinum, etc. are placed equidistantly and parallel to the printed circuit board immersed in the plating solution. ), the printed circuit board 1
is held by the belt 22' and successively enters the first plating tank 6, the first washing tank 7, the second plating tank 8, and the second washing tank 9, and the first plating, the first washing, and the second washing tank 9. FIG. 3 is a schematic view of the arrangement thereof viewed from above to show how plating and second water washing are performed. This method had the following drawbacks. Generally, in electroplating, the quality of the plating is closely related to the current density.

電流密度を一定とするには、被めっき物の表面積によっ
て電流の大きさを調節する必要がある。めっきの厚さは
、めっき時間と電流密度の積によって決まる。従って、
電気めっきでは、電流密度とめっき時間は、それぞれ、
独立に調節できるものでなければならない。それに対し
て、上記の連続式電気めっき方法では、従来法と同様に
一定電流でめっきすると、めっき時間は、(めっき槽の
長さ)/(ベルトの送り速度)で決まってしまう。第1
めっきのめっき厚さに合わせてベルトの送り速度を変え
れば、第2めっきのめっき厚さが適切でなくなる。その
逆も同様である。残る手段は、第1めっき、もしくは第
2めっきの電流密度を変えることである。しかし、この
場合、第1めっき、もしくは第2めっきの質のどちらが
の低下を招く。
In order to keep the current density constant, it is necessary to adjust the magnitude of the current depending on the surface area of the object to be plated. The plating thickness is determined by the product of plating time and current density. Therefore,
In electroplating, the current density and plating time are, respectively,
Must be independently adjustable. On the other hand, in the continuous electroplating method described above, when plating is performed with a constant current as in the conventional method, the plating time is determined by (length of plating tank)/(belt feeding speed). 1st
If the belt feeding speed is changed according to the plating thickness of the second plating, the plating thickness of the second plating will not be appropriate. The reverse is also true. The remaining means is to change the current density of the first plating or the second plating. However, in this case, the quality of either the first plating or the second plating deteriorates.

上記の連続式電気めっきの方法では、上記の問題が無い
場合には、製品の質の安定性、量産性が高いなどの長所
のあるめっき方法となるが、被めっき物のめっき条件を
変更する場合、第1めっき液もしくは第2めっき液のい
ずれが一方のみの劣化が激しい場合なとには、第1めっ
き、あるいは第2めっきの電流密度、めっき時間を独立
に調節できないために、めっきの質を犠牲にして生産し
なければならなかった。すなわち、実質的に使用不能で
あった。なお、第2図において、第1めっき槽、第2め
っき槽の各々にベルトを独立に設置し、−1ユ記欠点を
無くす考えもあるが、装置が高価になるとともに、生産
性が低下し、連続式電気めっき方法とする価値が無くな
るので意味がない。
If the above-mentioned continuous electroplating method does not have the above problems, it is a plating method with advantages such as stable product quality and high mass productivity, but it is necessary to change the plating conditions of the object to be plated. In this case, if only one of the first plating solution or the second plating solution is severely degraded, the current density and plating time of the first plating or the second plating cannot be adjusted independently. They had to produce at the cost of quality. In other words, it was virtually unusable. In addition, in Fig. 2, there is an idea to install a belt independently in each of the first plating tank and the second plating tank to eliminate the drawback mentioned in -1, but this would increase the cost of the equipment and reduce productivity. , it is meaningless as it loses its value as a continuous electroplating method.

本発明の目的は、上記したような従来技術のめっき方法
における欠点をな(し、問題点を解決し、複数のめっき
工程からなるものにおいて、それぞれの工程において電
流密度およびめっき時間を独立的に調節できて、量産性
よく高品質のものが常に得られる連続電気めっき方法を
提供することにある。
The purpose of the present invention is to overcome the drawbacks and problems of the prior art plating methods as described above, and to independently control the current density and plating time in each step in a plating process consisting of a plurality of steps. The object of the present invention is to provide a continuous electroplating method that can be adjusted, is mass-producible, and can consistently provide high quality products.

本発明者等は、上記の目的を達成するために種々の試験
、検討を行った結果、電流の大きさ、電流の通電時間、
電流の遮断時間を任意に調節できる定電流パルスによる
本発明方法を見出すに至った。
As a result of various tests and studies to achieve the above object, the inventors have determined that the magnitude of the current, the duration of the current,
The present inventors have discovered a method of the present invention using constant current pulses, which allows the interruption time of current to be adjusted arbitrarily.

本発明の連続電気めっき方法の特徴とするところは、複
数の電気めっき工程からなり、被めっき物が各めっき槽
中を一定速度で移動しながらめっきされる連続電気めっ
き方法において、電流の大きさ、電流の通電時間、電流
の遮断時間を任意に調節できる定電流パルスにより、電
流の大きさ、各時間を各電気めっきの工程ごとに調節す
ることによって、該移動速度を変動すること・なく各電
気めっきの最適の電流密度、所定のめっき厚さを各電気
めっき上程独立に得られるようにしてなることにある。
The continuous electroplating method of the present invention is characterized by a continuous electroplating method consisting of a plurality of electroplating steps, in which the object to be plated is plated while moving at a constant speed in each plating tank, By adjusting the current magnitude and time for each electroplating process using constant current pulses that can arbitrarily adjust the current application time and current cutoff time, each movement speed can be adjusted without fluctuation. The purpose is to be able to independently obtain the optimum current density and predetermined plating thickness for each electroplating process.

以下、本発明を実施例および比較例につき、図面を参照
して、さらに具体的に説明する。
Hereinafter, the present invention will be described in more detail using Examples and Comparative Examples with reference to the drawings.

第3図は、電流の大きさ、電流の通電時間、電流の遮断
時間を独立に調節できる回路図である。
FIG. 3 is a circuit diagram in which the magnitude of the current, the current energization time, and the current cutoff time can be adjusted independently.

第4図は、第3図における抵抗R1、R2、クロックパ
ルスCP1、CF2を変化した場合のめっき槽り内めっ
き物に対する、電圧、電流■の波形を示す図である。第
3図中、クロッ多パルスCP1 を調節することによっ
て、第4図中の1.1.を調節できる。tはパルスの1
サイクル当りの時間で、時間を中の通電時間がLl、遮
断時間が1−1.となる。時間Ll中に流れる電流■の
大きさく−1)は、第3図中の可変抵抗R,を変えるこ
とによって独1立に調節できる。第2図に示した連続式
めっき槽において、プリント基板がめつき槽を通過する
時間をTとすると、TXtl/l  がめつき時間とな
る。
FIG. 4 is a diagram showing the waveforms of voltage and current (2) for the plated object in the plating bath when the resistances R1, R2 and clock pulses CP1, CF2 in FIG. 3 are changed. In FIG. 3, by adjusting the black pulse CP1, 1.1 in FIG. can be adjusted. t is 1 of pulse
In the time per cycle, the energization time in the time is Ll, and the cutoff time is 1-1. becomes. The magnitude of the current (1) flowing during the time L1 can be adjusted independently by changing the variable resistor R, shown in FIG. In the continuous plating tank shown in FIG. 2, if the time taken for the printed circuit board to pass through the plating tank is T, then TXtl/l is the plating time.

tl=tのとき、一定電流でめっきする従来方法となり
、tl−0のとき、めっきしないことを示す。
When tl=t, the conventional method of plating with a constant current is used, and when tl-0, no plating is performed.

すなわち、第3図、第4図に示す定電流パルスを用いれ
ば、前記連続式電気めっき方法においても、プリント基
板がめつき槽を通過する時間Tに関係なく、めっき時間
と電流密度を独立に得ることができる。なお、第4図中
、パルスの1サイクルL中に、t2後、t3時間の逆の
電流、その大きさく+1)のものを加えることもできる
。このようなパルスによれば、めっき時間と電流密度を
独立に調節できるばかりでなく、めっきの析出と少量の
溶解の繰り返しめっき(PRめっき)も可能となり、前
記連続式電気めっき方法でさえも、よりめっきの質の向
上が図れる。この逆の電流の大きさく+1)、保持時間
は第3図中の可変抵抗R2とクロックパルスCP2によ
って独立に調節できる。
That is, by using the constant current pulses shown in FIGS. 3 and 4, the plating time and current density can be obtained independently even in the continuous electroplating method, regardless of the time T during which the printed circuit board passes through the plating bath. be able to. In addition, in FIG. 4, during one cycle L of the pulse, after t2, a reverse current at time t3, whose magnitude is +1) can also be added. According to such a pulse, not only can the plating time and current density be adjusted independently, but also plating with repeated deposition and dissolution of a small amount of plating (PR plating) is possible, and even in the continuous electroplating method described above, The quality of plating can be further improved. The magnitude of this inverse current (+1) and the holding time can be adjusted independently by variable resistor R2 and clock pulse CP2 in FIG.

実施例 使用した連続式電気めっき装置は、第2図に示したもの
と同、じものである。各めっき工程における装置、条件
は下記の通りである。ベルトの送り速度は60 cm/
m1n一定とした。
The continuous electroplating apparatus used in the examples is the same as that shown in FIG. The equipment and conditions for each plating process are as follows. The belt feed speed is 60 cm/
It was assumed that m1n was constant.

fal  第1めっき めっき槽の長さ° 100 Cm めっき液組成 めっき条件 温度、60℃ 最適電流密度  25A/dm2 (1))第1水洗  シャワー水洗 f()  第2めっき めっき槽の長さ:  100cm めっき液組成 めっき条件 温度:50℃ 最適電流密度:  15A/dm2 (di  第2水洗゛ シャワー水洗 使用した電気めっき装置では、めっき液を強制的に、高
速度で撹拌しているので、通常のめっき条件より、大き
な電流密度の採用が可能である。
fal Length of 1st plating tank ° 100 Cm Plating solution composition Plating conditions Temperature, 60°C Optimal current density 25 A/dm2 (1) 1st water washing Shower washing f () Length of 2nd plating plating tank: 100 cm Plating Liquid composition Plating conditions Temperature: 50℃ Optimum current density: 15A/dm2 (di) Second water washing In electroplating equipment that uses shower water washing, the plating solution is forcibly stirred at high speed, so the normal plating conditions Therefore, it is possible to use a higher current density.

なお、使用した電源は第3図に示したものを、第1めっ
き、第2めっきの個々に用いた。実施しためっき厚さの
目標条件は以下の通りである。
The power source shown in FIG. 3 was used for the first plating and the second plating. The target conditions for the plating thickness were as follows.

(1)5μmのニッケルめっきの上に、5μmの金めつ
き (11)3μmのニッケルめっきの上に、1μmの金め
つき 上記(1)のために用いためっきのパルス条件は、下記
(イ)、(ロ)の通りである。
(1) 5 μm gold plating on 5 μm nickel plating (11) 1 μm gold plating on 3 μm nickel plating The plating pulse conditions used for (1) above are as follows (I) ) and (b).

・:イ)第1めっきにニッケルめっき)t:1m5ec t+  :    0.65m5ec −i :  25A/dm2 t2・0m5eC t3:   0m5ec +i  :   OA/dm2 (ロ) 第2めっき(金めつき) t  :    1mBeC t+  :    0.79m5ec j :  15A/dm2 t20mSeC j3:    0m5ec 十i :   QA/dm2 」1記(11)のために用いためっきのパルス条件は、
下記(ハ)、(ニ)の通りである。
・:B) Nickel plating on the first plating) t: 1m5ec t+: 0.65m5ec -i: 25A/dm2 t2・0m5eC t3: 0m5ec +i: OA/dm2 (B) 2nd plating (gold plating) t: 1mBeC t+: 0.79m5ec j: 15A/dm2 t20mSeC j3: 0m5ec 1: QA/dm2 The plating pulse conditions used for 1. (11) are as follows:
The following are (c) and (d).

(ハ)第1めっきにッケルめっき) L:1m5ec t+  :   0.39m5ec −i  :   25A/dm” L2:    0m5ec t3  :    0m5ec +i  :   OA/dm2 (ニ)第2めっき(金めつき) t  :  1m5ec tl  二    0.16m5eC 1:  15A/dm2 t2 :  0m5ec t3 :  Qmsec +i :  QA/dm2 上記の結果、いずれの場合も、ニッケルめっき90%、
金めつき40%の電流効率で、目標のめっき厚さにめっ
きすることができた。めっき後、セロテープでめっき皮
膜の剥離テストを行ったが、なんら異常なく良好な密着
性を持っていた。金めつきの表面は、いずれも光沢があ
った。
(c) First plating (nickel plating) L: 1m5ec t+: 0.39m5ec -i: 25A/dm" L2: 0m5ec t3: 0m5ec +i: OA/dm2 (d) Second plating (gold plating) t: 1m5ec tl 2 0.16m5eC 1: 15A/dm2 t2: 0m5ec t3: Qmsec +i: QA/dm2 As a result of the above, in both cases, 90% nickel plating,
It was possible to plate to the target plating thickness with a current efficiency of 40%. After plating, a peel test of the plating film was performed using Sellotape, and no abnormalities were found, indicating good adhesion. The gold-plated surfaces were all shiny.

なお、上記(1)の場合において、PRめっきを行い、
そのパルス条件を次のようにした。
In addition, in the case of (1) above, PR plating is performed,
The pulse conditions were as follows.

(ホ)第1めっきにッケルめっき) j  :  2m5ec t4 :  1.5m5ec =i :  25A/dm2 t2 :  1.7m5ec j3  :   0.2m6ec +i  :   25A/dm2 (へ)第2めっき(金めつき) 」1記(ロ)の場合と同一にした。(E) First plating is nickel plating) j: 2m5ec t4: 1.5m5ec =i: 25A/dm2 t2: 1.7m5ec j3: 0.2m6ec +i: 25A/dm2 (f) Second plating (gold plating) ” The same as in the case of Section 1 (b).

この場合も、上記と同様の目標のめっき厚さを得た。め
っき表面もなんら異常がながった。
In this case, the same target plating thickness as above was obtained. There was also no abnormality on the plating surface.

焦り 実施例の場合と同様、第2図に示す連続電気めっき装置
を用いた。なお、電源にはニッケルめっき、金めつき個
々に従来の定電流電源を用いた。
As in the case of the impatience example, a continuous electroplating apparatus shown in FIG. 2 was used. Note that conventional constant current power supplies were used for the nickel plating and gold plating, respectively.

(曲 実施例における(I)と同一目標、すなわち、5
μmのニッケルめっきの上に、5μmの金めつき目標に
対して、適用した電流密度は下記の通りとした。
(Song The same goal as (I) in the example, i.e. 5
For a target of 5 μm gold plating on μm nickel plating, the applied current density was as follows.

(ト)  第1めっきにッケルめっき)電流密度  1
6A/dm2 第2めっき(金めつき) 電流密度:  ]2A/dm2 その結果は、やや粒子の粗大なめっき表面となったか、
テープテストの結果、めっき皮膜か剥離・することは無
かった。
(G) First plating: Nickel plating) Current density 1
6A/dm2 Second plating (gold plating) Current density: ]2A/dm2 The result was a plating surface with slightly coarse particles.
As a result of the tape test, there was no peeling or peeling of the plating film.

(1v)実施例における(11)と同一目標、すなわち
、3μmのニッケルめっきの上に、1μmの金めつき目
標に対して、適用した電流密度は下記の通りとした。
(1v) The current density applied was as follows for the same target as (11) in Example, that is, the target of 1 μm gold plating on 3 μm nickel plating.

(チ)第1めっきにッケルめっき) 電流密度:  IOA/dm2 第2めっき(金めつき) 電流密度:2.5A/dm2 その結果は、金めつきが所定の厚さ1μmに達□しなか
ったばかりか、めっき皮膜が剥離した。
(H) First plating (nickel plating) Current density: IOA/dm2 Second plating (gold plating) Current density: 2.5A/dm2 As a result, the gold plating did not reach the specified thickness of 1 μm. Not only that, but the plating film peeled off.

上記に述べたように、本発明によれば、被めっき物が一
定速度で移動しつつ、複数の電気めっき工程を連続的に
行う場合、各めっきの最適電流密度とめっき時間を独立
に得ることのできる定電流1パルスめっきを行うことに
よって、被めっき物のめっき条件の変更があっても、台
易、迅速にめっきの質とめっきの厚さを安定に得ること
ができるものである。
As described above, according to the present invention, when a plurality of electroplating processes are performed continuously while the object to be plated moves at a constant speed, the optimum current density and plating time for each plating can be obtained independently. By performing constant current one-pulse plating, it is possible to easily and quickly obtain stable plating quality and plating thickness even if the plating conditions of the object to be plated are changed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は連続式電気めっき装置のめっき槽の断面図にし
て、第2図はめっき工程が2王程であるものの装置の配
置を示す」二部より見た概略図である。 第3図は本発明における定電流パルスを得るための回路
図にして、第4図はその定電流パルスの波形を示す図で
ある。 1・・・プリント基板   2.2′・・・ベルト3.
3’・・・ステンレスブラシ 4・・・電源       5.5′・・・陽極6・・
めっき槽(または第1めっき槽)7・・・第1水洗槽 
   8・・・第2めっき槽9・・・第2水洗槽 才 1 図 才2(2] 13 図 才 4 図
FIG. 1 is a cross-sectional view of a plating tank of a continuous electroplating apparatus, and FIG. 2 is a schematic view showing the arrangement of the apparatus, which performs a plating process in two parts. FIG. 3 is a circuit diagram for obtaining a constant current pulse in the present invention, and FIG. 4 is a diagram showing the waveform of the constant current pulse. 1...Printed circuit board 2.2'...Belt 3.
3'... Stainless steel brush 4... Power supply 5.5'... Anode 6...
Plating tank (or first plating tank) 7...first washing tank
8...Second plating tank 9...Second washing tank 1 Figure 2 (2) 13 Figure 4 Figure

Claims (1)

【特許請求の範囲】 :1)複数の電気めっき工程からなり、被めっき物が各
めっき槽中を一定速度で移動しながらめっきされる連続
電気めっき方法において、電流の大きさ、電流の通電時
間、電流の遮断時間を任意に調節できる定電流パルスに
より、電流の大きさ、各時間を各電気めっきの工程ごと
に調節することによって、該移動速度を変動することな
く各電気めっきの最適の電流密度、所定のめっき厚さを
各電気めっき工程独立に得られるようにしてなることを
特徴とする連続電気めっき方法。 (2)前記の複数のめっき工程はニッケルめっき工程お
よび金めっ赤工程からなるものである特許請求の範囲第
1項記載の連続電気めっき方法。
[Claims]: 1) In a continuous electroplating method that consists of a plurality of electroplating steps and in which the object to be plated is plated while moving at a constant speed in each plating tank, the magnitude of the current and the current application time By adjusting the current magnitude and time for each electroplating process using constant current pulses that can arbitrarily adjust the current interruption time, the optimum current for each electroplating process can be achieved without changing the moving speed. A continuous electroplating method characterized in that density and predetermined plating thickness can be obtained independently in each electroplating step. (2) The continuous electroplating method according to claim 1, wherein the plurality of plating steps include a nickel plating step and a gold plating step.
JP4286382A 1982-03-19 1982-03-19 Continuous electroplating method Granted JPS58161793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4286382A JPS58161793A (en) 1982-03-19 1982-03-19 Continuous electroplating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4286382A JPS58161793A (en) 1982-03-19 1982-03-19 Continuous electroplating method

Publications (2)

Publication Number Publication Date
JPS58161793A true JPS58161793A (en) 1983-09-26
JPS6256240B2 JPS6256240B2 (en) 1987-11-25

Family

ID=12647864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4286382A Granted JPS58161793A (en) 1982-03-19 1982-03-19 Continuous electroplating method

Country Status (1)

Country Link
JP (1) JPS58161793A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60218494A (en) * 1984-04-13 1985-11-01 Mitsui Eng & Shipbuild Co Ltd Pulse plating method
JPS6468489A (en) * 1987-09-09 1989-03-14 Shinko Electric Ind Co Electrolytic gold plating method
JPH05287580A (en) * 1992-04-06 1993-11-02 Sakae Denshi Kogyo Kk Method for electrodeposition
JP2002235189A (en) * 2001-02-05 2002-08-23 Sansha Electric Mfg Co Ltd Power unit for feeding plating current

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19545231A1 (en) * 1995-11-21 1997-05-22 Atotech Deutschland Gmbh Process for the electrolytic deposition of metal layers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60218494A (en) * 1984-04-13 1985-11-01 Mitsui Eng & Shipbuild Co Ltd Pulse plating method
JPS6468489A (en) * 1987-09-09 1989-03-14 Shinko Electric Ind Co Electrolytic gold plating method
JPH05287580A (en) * 1992-04-06 1993-11-02 Sakae Denshi Kogyo Kk Method for electrodeposition
JP2002235189A (en) * 2001-02-05 2002-08-23 Sansha Electric Mfg Co Ltd Power unit for feeding plating current

Also Published As

Publication number Publication date
JPS6256240B2 (en) 1987-11-25

Similar Documents

Publication Publication Date Title
US8062496B2 (en) Electroplating method and apparatus
KR100572433B1 (en) Programmed Pulse Electroplating Method
US5744019A (en) Method for electroplating metal films including use a cathode ring insulator ring and thief ring
US2451341A (en) Electroplating
US5425862A (en) Apparatus for the electroplating of thin plastic films
US5958207A (en) Process for applying a surface coating
JP2006249450A (en) Plating method and plating device
JPH0158277B2 (en)
JPS58161793A (en) Continuous electroplating method
JP2022547336A (en) Manufacturing equipment and manufacturing method for lead frame surface roughness
GB1406081A (en) Method for electrolytic deposition
US4082622A (en) Electrodeposition of ruthenium
US3445351A (en) Process for plating metals
SE409336B (en) PROCEDURE FOR ANODIZATION AND CONNECTIONAL ELECTROLYTICAL COLORING OF THE FORMED OXIDE LAYER OF AN ALUMINUM PATH BY MEDIUM AC IN A CONTINUOUS PERFORMANCE PROCESS
JPS63297590A (en) Method for plating by high-speed current reversal electrolysis
US3856653A (en) Platinum clad tantalum anode assembly
CN216712267U (en) Structure is electroplated to even ceramic substrate of cladding material thickness
CN110616446B (en) Method for electrodepositing iron-nickel-cobalt alloy on surface of metal substrate material
JPS6417890A (en) Method for controlling electroplating amount
US20020096434A1 (en) Continuous anodizing and coloring process
JPS58126996A (en) Plating method
JP2578441B2 (en) Method for producing Zn-Ni alloy plated steel with excellent adhesion
US3396092A (en) Method of electroplating
US6620303B2 (en) Process for making nickel electroforms
JPS5938304B2 (en) Electroless plating equipment