JPS58159307A - Manufacture of metallic magnetic powder - Google Patents

Manufacture of metallic magnetic powder

Info

Publication number
JPS58159307A
JPS58159307A JP57042374A JP4237482A JPS58159307A JP S58159307 A JPS58159307 A JP S58159307A JP 57042374 A JP57042374 A JP 57042374A JP 4237482 A JP4237482 A JP 4237482A JP S58159307 A JPS58159307 A JP S58159307A
Authority
JP
Japan
Prior art keywords
iron
magnetic powder
metallic
alkaline earth
earth metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57042374A
Other languages
Japanese (ja)
Inventor
Toshinobu Sueyoshi
俊信 末吉
Shigeo Hirai
茂雄 平井
Katsunori Tashimo
田下 勝則
Akinari Hayashi
林 章禮
Masahiro Amamiya
雨宮 政博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP57042374A priority Critical patent/JPS58159307A/en
Publication of JPS58159307A publication Critical patent/JPS58159307A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/061Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder with a protective layer

Abstract

PURPOSE:To obtain powder, the principal ingredient thereof is iron having excellent oxidation stability, by dispersing metallic magnetic powder, the principal ingredient thereof is iron to which an oxide film is formed previously, into polyhydric alcohol containing the metallic salt of alkaline earth metals and making a metal of alkaline earth metals to be contained to the surfaces of the particles of magnetic powder through heating. CONSTITUTION:Metallic magnetic powder, the principal ingredient thereof is iron forming the oxide films onto the surfaces of powdered particles, is dispersed into polyhydric alcohol into which the metallic salt of alkaline earth metals is dissolved. These substances are heated, and the oxide films containing alkaline earth metals are formed onto the surfaces of the particles of metallic magnetic powder, the principal ingredient thereof is iron. Glycerin of the boiling point of 150 deg.C or more or the like is used preferably as polyhydric alcohol, and the organic metallic salt of alkaline earth metals such as barium or the like besides inorganic salt, such as a halide of these alkaline earth metals, a hydroxide, a carbonate, a sulfate or the like is used as metallic salt dissolving into polyhydric alcohol. Metallic magnetic powder making Co or the like contain into iron besides metallic iron powder is used generally as metallic magnetic powder, the principal ingredient thereof is iron before forming the oxide films onto the surfaces of particles, and all of metallic magnetic powder, the principal ingredient thereof is iron manufaccture through all methods regardless of a submerged reduction method, a vapor reduction method and an electrolytic method, are used.

Description

【発明の詳細な説明】 この発明は鉄を主体とする金属磁性粉末の製造方法虻関
し、その目的とするところは酸化安定性に優れる前記の
金属磁性粉末の製造方法を提供することkある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing metal magnetic powder containing iron as a main component, and an object thereof is to provide a method for producing the above-mentioned metal magnetic powder that has excellent oxidation stability.

鉄を主体とする金属磁性粉末社従来の酸化物系磁性粉末
に比較して優れた磁気特性を有しているが、反面空気中
で非常に酸化を費は易く、飽和磁化量が経時的に低下し
、貯蔵安定性に欠けるという問題がある。
Metal magnetic powders made mainly of iron have superior magnetic properties compared to conventional oxide-based magnetic powders, but on the other hand, they oxidize very easily in air, and the amount of saturation magnetization decreases over time. There is a problem that the storage stability is poor.

このため、この種の金属磁性粉末を有機溶剤中あるいは
窒素雰囲気中で微量の溶存酸素あるいは低濃度の酸素含
有ガスなどkよ抄厳化して粒子表面に酸化物被膜を形成
し友抄、ある−祉この被膜上にさらに酸化ナイ素等から
なる酸化物被膜を形成するなどの方法で拳化安定性の改
善が図られているが、このようkして形成され九酸化物
被膜は未だ充分に安定した−のでなくまたそれほど緻密
なものでもないため未だ充分に満足できる結果は得られ
ていない。
For this reason, this type of metal magnetic powder is heated in an organic solvent or nitrogen atmosphere with a trace amount of dissolved oxygen or a low concentration of oxygen-containing gas to form an oxide film on the particle surface. Although attempts have been made to improve the formation stability by forming an oxide film made of nitric oxide etc. on this film, the nona-oxide film formed in this way is still insufficient. Since it is neither stable nor very dense, fully satisfactory results have not yet been obtained.

この発明者ら社かかる現状に鑑み種々検討を行なった結
果、既に酸化物被膜を形成しえ鉄を主体とする金属磁性
粉末を、アルカリ土類金属から選ばれる少なくとも一種
を含む金属塩を含む多価アルコール中に分散し、次いで
これを加熱すると既に前記磁性粉末の粒子表面に形成さ
れた酸化物被膜中にアルカリ土類金属から選ばれる歩な
くと屯−穆の金属が固l#tた祉含有されて酸化物被膜
が安定化すると同時に緻密化され、その結果酸化安定性
が充分に向上されることを見いだし、この発明をなすに
至った。
As a result of various studies in view of the current situation, the present inventors and others have found that metal magnetic powder, which has already formed an oxide film and is mainly composed of iron, has been used as a magnetic powder containing a metal salt containing at least one selected from alkaline earth metals. When dispersed in a hydric alcohol and then heated, a metal selected from alkaline earth metals becomes solid in the oxide film already formed on the surface of the particles of the magnetic powder. The inventors have discovered that the oxide film is stabilized and densified by the inclusion of the oxide film, and as a result, the oxidation stability is sufficiently improved, and this invention has been completed.

この発明において使用する多価アルコールとしては、沸
点が150℃以上の、たとえばエチレングリコール、ポ
リエチレングリコール、プロピレングリコール、グリセ
リンなどが好適なものとして使用され、これら高沸点の
多価アルコール中にアルカリ土類金属の少なくと龜一種
を含む金lI塙を溶解してできたアルコラード溶液中に
1aに酸化物被膜を形成した鉄を主体とする金属磁性粉
末を分散した後150℃以上の温度で加熱すると、既に
前記金属磁性粉末の粒子表面に形成された酸化物被膜が
α−Fe20.”lkどの酸化鉄被膜のみである場合に
は多価アルコールの作用でこの酸化鉄被膜が還元される
と同時に被膜中にアルカリ土類金属が導入拡散され、ア
ルカリ土類金属を固溶した安定で緻密な!ダネタイト被
膜が形成されて酸化安定性が向上する。また酸化鉄被膜
上にさらに酸化ケイ素等の酸化物被膜が形成されている
場合にこの酸化ケイ素等の酸化物被膜中に良好に導入さ
れてアルカリ土類金属を含有した安定で緻密な酸化物被
膜が形成され、酸化安定性が向上する。このような酸化
物被膜の還元と、被膜中への金属の導入拡散は、150
℃以下0fII熱処理で社おこ抄に〈<、高温になるほ
ど促進されて一化安定性が向上するが、300℃の温度
になると酸化物被膜が充分に還元されると同時虻金属の
被膜中への導入拡散屯充分に打電われるため300°C
以上の温度で加熱する必要はない。
As the polyhydric alcohol used in this invention, those having a boiling point of 150°C or higher, such as ethylene glycol, polyethylene glycol, propylene glycol, and glycerin, are preferably used. When a metal magnetic powder mainly composed of iron with an oxide film formed on 1a is dispersed in an Alcolade solution prepared by dissolving a gold lion containing at least one kind of metal, and then heated at a temperature of 150°C or higher, The oxide film already formed on the particle surface of the metal magnetic powder is α-Fe20. If there is only an iron oxide coating, the iron oxide coating is reduced by the action of the polyhydric alcohol, and at the same time alkaline earth metals are introduced and diffused into the coating, creating a stable solid solution containing alkaline earth metals. A dense Dannetite film is formed, improving oxidation stability.Also, when an oxide film such as silicon oxide is further formed on the iron oxide film, it is well incorporated into the oxide film such as silicon oxide. As a result, a stable and dense oxide film containing alkaline earth metals is formed, improving oxidation stability.The reduction of the oxide film and the introduction and diffusion of metal into the film are 150
By heat treatment at 0fII below ℃, the stability of monomerization is accelerated and improved as the temperature increases, but at a temperature of 300℃, when the oxide film is sufficiently reduced, it is simultaneously converted into the metal coating. The introduction of the diffusion temperature is 300°C because it is sufficiently electrified.
There is no need to heat it to a higher temperature.

多価アルコール中km解する金属塩としては、マグネシ
ウム、カルシウム、ストロンチウム、バリウムがどのア
ルカリ土類金属のハpゲン化物、水酸化物、炭酸塩、硫
酸塩などの無機塩の他、′これらのアルカリ土類金属の
有機金属塩等が好適なものとして使用され、これらのア
ルカリ土類金属環が多価アルコール中に溶解されると多
価アルコールと反応して金属アルコラードが生成される
Examples of metal salts that dissolve in polyhydric alcohols include magnesium, calcium, strontium, and barium, as well as inorganic salts of alkaline earth metals such as halides, hydroxides, carbonates, and sulfates. Organometallic salts of alkaline earth metals and the like are preferably used, and when these alkaline earth metal rings are dissolved in a polyhydric alcohol, they react with the polyhydric alcohol to form a metal alcoholade.

粒子表面に酸化物被膜を形成する前の#を主体とする金
属磁性粉末としては、金属鉄粉末の他、鉄KCo−,,
Nis Al 、Cr%Mn1Si% Zn などを含
有させた金属磁性粉末が広く包含され、港中還元法、気
相還元法、電解法のいかんを問わずあらゆる方法で製造
され友従来の鉄を主体とする金属磁性粉末がいずれも用
いられる。
Before forming an oxide film on the particle surface, metallic magnetic powder mainly composed of # includes metallic iron powder, iron KCo-,...
It includes a wide range of metal magnetic powders containing NisAl, Cr%Mn1Si%Zn, etc., and is produced by all methods, including port reduction, gas phase reduction, and electrolytic methods. Any metal magnetic powder can be used.

次に1この発明の実施例について説明する〇実施例1 粒径03μ、軸比(長軸/短軸)10/1、飽和磁化量
gs 159 emu/ 9、保磁力1450エルステ
ツドの5102の被膜をもつ金属鉄粉$111をトルエ
ン1O1中に分散させ、流速517分の空気を分散液中
にバブリングさせながら5時間攪拌処理して酸化鉄から
なる酸化物被膜で覆われた粒径0.3s、軸比(長軸/
短軸)10/1、飽和磁化量gs126emu/9、保
磁力i+aozルステツドの金属鉄粉末を得た。次いで
この酸化物被膜で―われた金属鉄粉末100重量部を、
ポリエチレングリコール(平均分子量600)200重
量部に塩化マグネシウム(MgCl2.6 H,O)8
重量部を溶かしてでき友アルコラージ溶液中に分散させ
、常圧下250″Cで4時間反応させた。
Next, 1 Example of the present invention will be described.〇Example 1 A 5102 coating with a grain size of 03μ, an axial ratio (major axis/minor axis) of 10/1, a saturation magnetization gs of 159 emu/9, and a coercive force of 1450 oersted was used. Metallic iron powder of $111 is dispersed in 1O1 of toluene and stirred for 5 hours while bubbling air at a flow rate of 517 minutes into the dispersion to obtain particles with a diameter of 0.3s covered with an oxide film made of iron oxide. Axial ratio (long axis/
A metal iron powder with a short axis) of 10/1, a saturation magnetization of gs of 126 emu/9, and a coercive force of i+aoz Rusted was obtained. Next, 100 parts by weight of the metallic iron powder coated with this oxide film,
8 parts by weight of magnesium chloride (MgCl2.6 H,O) in 200 parts by weight of polyethylene glycol (average molecular weight 600)
Parts by weight were dissolved and dispersed in the resulting alcoholage solution, and reacted at 250''C under normal pressure for 4 hours.

これを水洗、乾燥し1マグネシウムを1ljllしたマ
グネタイトおよび5tO7からなる酸化物被膜を粒子表
面に形成した金属鉄粉末を得た。得られた金属鉄粉末は
粒径が03μ、軸比(長軸/*軸)が10/l飽和磁化
量りが126emu/9で、保磁力は1450エルステ
ツドであった。
This was washed with water and dried to obtain metal iron powder in which an oxide film consisting of 1 ljll of 1 magnesium magnetite and 5tO7 was formed on the particle surface. The obtained metallic iron powder had a particle size of 03 μm, an axial ratio (major axis/*axis) of 10/l, a saturation magnetization weight of 126 emu/9, and a coercive force of 1450 oersteds.

実施例2 実施例1と同様にして酸化鉄からなる酸化物被膜で覆わ
れた金属鉄粉末を得た。得られた金属鉄粉末は粒径が0
.3μ、軸比(長軸/短軸)が10/1、飽和磁化量り
が130emu/9で、保磁力F11460エルステツ
ドであつえ。次いでこの酸化物被膜で覆われた金属鉄粉
末100重量部をポリエチレングリコール(平均分子量
600)200重量部に塩化カルシウム(Cs+CI2
.6H20)8重量部を溶かしてできたアルコラード溶
液中に分散させ、常圧下250℃で4時間反応させた。
Example 2 Metallic iron powder covered with an oxide film made of iron oxide was obtained in the same manner as in Example 1. The obtained metallic iron powder has a particle size of 0.
.. 3μ, axial ratio (major axis/minor axis) is 10/1, saturation magnetization is 130 emu/9, and coercive force F11460 Oersted. Next, 100 parts by weight of the metallic iron powder covered with this oxide film was mixed with 200 parts by weight of polyethylene glycol (average molecular weight 600) and calcium chloride (Cs+CI2).
.. 6H20) was dispersed in an Alcolade solution prepared by dissolving 8 parts by weight, and reacted at 250° C. for 4 hours under normal pressure.

これを水洗、乾燥し、酸化鉄および5102からなる酸
化物被膜にカルシウムを固溶させた酸化物被膜で覆われ
た金属鉄粉末を得た。得られた金属磁性粉末は粒径が0
.3μ、軸比(長軸/短軸)が1071、飽和磁化量#
Sが129emu/9で、保磁力Fi1440エルステ
ッドであった。
This was washed with water and dried to obtain a metal iron powder covered with an oxide film consisting of iron oxide and 5102 in which calcium was dissolved as a solid solution. The obtained metal magnetic powder has a particle size of 0.
.. 3μ, axial ratio (major axis/minor axis) is 1071, saturation magnetization #
S was 129 emu/9, and coercive force Fi was 1440 oersted.

実施例3 実施例1において塩化マグネシウムに代えて塩化ストロ
ンチウム(SrC12・6 H2O)を同量使用した以
外は実施例1と同様にしてストロンチウムを固溶したマ
グネタイトおよび5in2からなる酸化物被膜を粒子表
面に形成した粒径0.3声、軸比(長軸/短軸)10/
1、飽和磁化量#s130emu/9、保磁力1420
エルステツドの金属鉄粉末を得た。
Example 3 In the same manner as in Example 1 except that the same amount of strontium chloride (SrC12.6 H2O) was used in place of magnesium chloride in Example 1, an oxide film consisting of magnetite and 5in2 containing strontium as a solid solution was applied to the particle surface. Particle size 0.3 mm, axial ratio (major axis/minor axis) 10/
1. Saturation magnetization #s130emu/9, coercive force 1420
Oersted metallic iron powder was obtained.

実施例4 実施例2において塩化カルシウムに代えて塩化バリウム
(BaC12−2H20)を同量使用した以外は実施例
2と同様にしてバリウムを固溶した噌化鉄と5in2か
らなる酸化物被膜で覆われた粒径0.3μ、軸比(長軸
/短軸)10/1、飽和磁化量gs128emo/g、
保磁力1450エルステツドの金属鉄粉末を得た◎ 各実施例で得られた金属鉄粉末および各実施例中の金属
鉄粉末の各金属(Mg s Cm %Sr SBa )
の添加前の酸化物被膜を形成した金属鉄粉末(比較例1
,2,3.4)をそれぞれso”c、9o哄RHの条件
下で24時間空気中に放置し、放置後の飽和磁化量を測
定して放置前の飽和磁化量からの低下率を調べた。
Example 4 The same procedure as in Example 2 was used except that the same amount of barium chloride (BaC12-2H20) was used instead of calcium chloride in Example 2, and the product was covered with an oxide film consisting of iron chloride containing barium as a solid solution and 5in2. grain size 0.3 μ, axial ratio (major axis/minor axis) 10/1, saturation magnetization gs 128 emo/g,
A metallic iron powder with a coercive force of 1450 oersted was obtained. ◎ Each metal (Mg s Cm %Sr SBa ) of the metallic iron powder obtained in each example and the metallic iron powder in each example
Metallic iron powder forming an oxide film before addition of (Comparative Example 1)
, 2, 3.4) were left in the air for 24 hours under the conditions of so"c and 9o RH, respectively, and the saturation magnetization after being left was measured to determine the rate of decrease from the saturation magnetization before being left. Ta.

下表はその結果である。The table below shows the results.

褒 上表から明らかなように1この発明で得られた金属鉄粉
末(実施例1〜4)轄いずれも従来の酸化物被膜を有す
る金属鉄粉末(比較例1〜4)に比し、飽和磁化量−8
の低下率が小さく、このことからこの発明の製造方法に
よれは酸化安定性に優れた鉄を主体とする金属磁性粉末
が得られることがわかる。
As is clear from the award table, all of the metallic iron powders obtained according to the present invention (Examples 1 to 4) have a higher saturation level than the conventional metallic iron powders having oxide coatings (Comparative Examples 1 to 4). Magnetization amount -8
The rate of decrease in is small, which indicates that the production method of the present invention can yield a metal magnetic powder mainly composed of iron with excellent oxidation stability.

Claims (1)

【特許請求の範囲】[Claims] 1、粉末粒子の表面に酸化物被膜を形成した鉄を主体と
する金属磁性粉末を、アルカリ土類金属の少なくとも一
種を含む金属塩を溶解した多価アルコール中和分散し、
これを加熱して鉄を主体とする金属磁性粉末の粒子表面
に少なくとも一種のアルカリ土類金属を含有した酸化物
被膜を形成することを特徴とする金属磁性粉末の製造方
1. A metal magnetic powder mainly composed of iron with an oxide film formed on the surface of the powder particles is neutralized and dispersed in polyhydric alcohol in which a metal salt containing at least one kind of alkaline earth metal is dissolved.
A method for producing metal magnetic powder, which comprises heating the powder to form an oxide film containing at least one alkaline earth metal on the surface of the particles of metal magnetic powder mainly composed of iron.
JP57042374A 1982-03-17 1982-03-17 Manufacture of metallic magnetic powder Pending JPS58159307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57042374A JPS58159307A (en) 1982-03-17 1982-03-17 Manufacture of metallic magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57042374A JPS58159307A (en) 1982-03-17 1982-03-17 Manufacture of metallic magnetic powder

Publications (1)

Publication Number Publication Date
JPS58159307A true JPS58159307A (en) 1983-09-21

Family

ID=12634267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57042374A Pending JPS58159307A (en) 1982-03-17 1982-03-17 Manufacture of metallic magnetic powder

Country Status (1)

Country Link
JP (1) JPS58159307A (en)

Similar Documents

Publication Publication Date Title
GB1585419A (en) Process of producing cobalt-containing feromagnetic iron oxide powder
JP3268830B2 (en) Metal magnetic powder and method for producing the same
JPS58159307A (en) Manufacture of metallic magnetic powder
JPS58159308A (en) Manfaucture of metallic magnetic powder
JPS58159306A (en) Manufacture of metallic magnetic powder
JPH0114175B2 (en)
JPH0270003A (en) Method for treating ferromagnetic iron powder
JPH01281705A (en) Surface treatment of magnetic metal powder
EP0076462B1 (en) Method of Production of Magnetic Particles
JPS6011446B2 (en) Manufacturing method of ferromagnetic metal powder
JPS58161927A (en) Manufacture of magnetic powder
JPS59155106A (en) Manufacture of magnetic metal powder
JPH0765084B2 (en) Metal magnetic powder and method for producing the same
JPS6132259B2 (en)
JPH08236326A (en) Metal powder for magnetic recording and production thereof
JP2965606B2 (en) Method for producing metal magnetic powder
JPS5853681B2 (en) Metal magnetic powder and its processing method
JPS58176130A (en) Preparation of ferromagnetic iron oxide
JPS58161709A (en) Production of magnetic metallic iron powder
JP3141907B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder
JPS63120404A (en) Manufacture of magnetic iron powder
JPS58176131A (en) Preparation of ferromagnetic iron oxide
JPS63143205A (en) Production of magnetic iron powder
JPS63143802A (en) Manufacture of magnetic iron powder
JPS6046525B2 (en) Method for producing granular magnetite particle powder containing high coercive force and magnetic stability