JPS5815069A - Ceramic composition for heating body - Google Patents

Ceramic composition for heating body

Info

Publication number
JPS5815069A
JPS5815069A JP56112495A JP11249581A JPS5815069A JP S5815069 A JPS5815069 A JP S5815069A JP 56112495 A JP56112495 A JP 56112495A JP 11249581 A JP11249581 A JP 11249581A JP S5815069 A JPS5815069 A JP S5815069A
Authority
JP
Japan
Prior art keywords
resistance
heating element
ceramic composition
room temperature
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56112495A
Other languages
Japanese (ja)
Inventor
純一 加藤
嘉浩 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56112495A priority Critical patent/JPS5815069A/en
Publication of JPS5815069A publication Critical patent/JPS5815069A/en
Pending legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は電気抵抗の温度係数が小さい発熱体用のセラミ
ック組成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a ceramic composition for a heating element having a small temperature coefficient of electrical resistance.

従来より発熱体として用いられている代表的なものに、
ニッケルークロムや鉄−クロムなどの合金系発熱体、S
iCやL a Cr Oa r B a T t O3
などのセラミック系発熱体がある。合金系発熱体は室温
から1ooO°Cに昇温してもその電気抵抗は10〜2
0チ程度しか変化せず、また優れた耐久性もあり、広く
一般に用いられている。しかし、これらの合金はその固
有抵抗が100mと低いため1、実際の使用に際しては
合金線をコイル状に巻き、耐火物の溝や石英ガラス管内
に挿入したり、絶縁碍子で保持したシする必要があるの
で、発熱体形状が制限される。一方、セラミックス系の
発熱体であるSiC,LaCr0  やB a T 1
03などからなる3、7 ものは、薗有抵抗が合金系のものに比して高いので、要
求される抵抗値を得るために、合金系のように細い線に
してコイルに巻く必要がない。また、その形状も棒状、
螺旋状、ハニカム状と任意の形状にすることができると
いう利点を有している。
Typical heating elements traditionally used include:
Alloy heating elements such as nickel-chromium and iron-chromium, S
iC and L a Cr Oa r B a T t O3
There are ceramic heating elements such as. The electrical resistance of the alloy heating element is 10 to 2 even when the temperature is raised from room temperature to 100°C.
It is widely used because it changes by only about 0 degrees and has excellent durability. However, these alloys have a low resistivity of 100 m, so in actual use, it is necessary to wind the alloy wire into a coil and insert it into a refractory groove or quartz glass tube, or to hold it with an insulator. Therefore, the shape of the heating element is limited. On the other hand, ceramic heating elements such as SiC, LaCr0 and B a T 1
3 and 7, which are made of materials such as 03, have a higher resistance than alloy-based wires, so there is no need to wind them into a thin wire like alloy-based wires in order to obtain the required resistance value. . Also, its shape is rod-like,
It has the advantage that it can be formed into any desired shape, such as a spiral or honeycomb shape.

ところが、セラミックス系の発熱体では次に述べるよう
な問題点があるので、合金系発熱体はど広く一般に用い
られることがなかった。すなわち、セラミックス系の発
熱体のうち、SiCとL aCr O3からなる発熱体
はそれぞれ1500″C,1800°Cまで使用可能で
あシ、工業用電気炉等に使用されているが、これらは電
気抵抗の温度変化が大きく、1000°Cでは室温の抵
抗値の%−九倍となる。このため、SiCやL a C
r O3を発熱体に用いる場合には発熱体の温度により
電流が大きく変化する。
However, since ceramic heating elements have the following problems, alloy heating elements have not been widely used. In other words, among ceramic heating elements, heating elements made of SiC and LaCrO3 can be used up to 1500"C and 1800°C, respectively, and are used in industrial electric furnaces, etc., but these The temperature change in resistance is large, and at 1000°C it is %-9 times the resistance value at room temperature.For this reason, SiC and LaC
When rO3 is used as a heating element, the current changes greatly depending on the temperature of the heating element.

またB a T s Os系セラミックスでは、360
°C以下の温度で抵抗値が急激に立ち上がる現象を利用
して、定温発熱体が実用化されているが、350 ’C
以上では高抵抗であるため、1000°Cまで使用し得
る発熱体にはならない。
In addition, in B a T s Os ceramics, 360
Constant-temperature heating elements have been put into practical use by exploiting the phenomenon in which the resistance value rises rapidly at temperatures below °C;
Since the resistance is higher than that, the heating element cannot be used up to 1000°C.

室温の抵抗値RRTと1000°Cの抵抗値R1oo0
の比R1000/RRTをαとしたとき、SiC発熱体
ではaが0.2であり、抵抗変化が大きい。前述の抵抗
比αはo、3≦a≦2の範囲にあることが望ましい。
Resistance value RRT at room temperature and resistance value R1oo0 at 1000°C
When the ratio R1000/RRT is set to α, in the SiC heating element, a is 0.2, and the resistance change is large. The aforementioned resistance ratio α is desirably in the range o, 3≦a≦2.

本発明は、セラミック質の特徴である任意の形状に成型
できる利点とあわせて電気抵抗の温度変化が小さい、す
なわち上記の抵抗値比aが0.3≦a≦2であり、かつ
1000°Cまで使用可能な発熱体用のセラミック組成
を提供するものである。
The present invention has the advantage of being able to be molded into any shape, which is a characteristic of ceramic materials, and has a small temperature change in electrical resistance, that is, the above resistance value ratio a is 0.3≦a≦2, and at 1000°C The present invention provides a ceramic composition for a heating element that can be used up to

発明者らは種々の組成のセラミックスを合成し、その電
気抵抗の温度変化を室温から1000″Cで測定すると
ともに、高温度下における電気抵抗の経時変化やセラミ
ックスの耐熱衝撃性をも検討し、La1−!SrxMn
03系のセラミックスで、0.16≦X≦0.8の範囲
の組成物が、発熱体として優れた特性をもつことを思い
出した。従来、La1−!SrxMn03(x≦o、6
)系酸化物は室温近傍の電気抵抗が1o 〜1o Ω・
mの低い値を示す半導体として知られていたが、100
0°Cまでの抵抗変化については検討されていす、発熱
体としての応用も試みられたことがなかったものである
The inventors synthesized ceramics with various compositions, measured the temperature change in their electrical resistance from room temperature to 1000''C, and also examined the change in electrical resistance over time at high temperatures and the thermal shock resistance of the ceramics. La1-!SrxMn
I remembered that the composition of 03 series ceramics in the range of 0.16≦X≦0.8 has excellent properties as a heating element. Conventionally, La1-! SrxMn03(x≦o, 6
) system oxide has an electrical resistance of 1o to 1o Ω・near room temperature.
It was known as a semiconductor exhibiting a low value of m, but 100
Changes in resistance down to 0°C have not been studied, and application as a heating element has never been attempted.

次に、本発明の実施例について詳しく説明する。Next, embodiments of the present invention will be described in detail.

市販のLa203(純度99.99%)および試薬特級
のSrCO39MnCo3を準備し、下表に示す組成と
なるよう各々秤量した後、湿式ボールミルで20時間混
合し、乾燥させて、rooooCで2時間仮焼した。こ
の仮焼生成物を再び湿式ボールミルで20時間粉砕した
後、乾燥し、さらに有機バインダーを加えて混合し、造
粒した後、加圧成型した。この成型物を空気中において
1400’Cで2時間焼成し、焼結体試料を得た。ここ
で、まず電気抵抗illll試用試料て、第1図に示す
ように白金線1を埋込んだ成型体を焼結させて得た。こ
の試料2を電気炉中で室温から1ooO°Cまで加熱し
ながら、それぞれについて室温および1000″Cの抵
抗比、すなわち前述のaを測定した。その結果を表に示
す。
Prepare commercially available La203 (purity 99.99%) and special reagent grade SrCO39MnCo3, weigh each to have the composition shown in the table below, mix in a wet ball mill for 20 hours, dry, and calcined in roooooC for 2 hours. did. This calcined product was pulverized again in a wet ball mill for 20 hours, then dried, an organic binder was added thereto, mixed, granulated, and then pressure molded. This molded product was fired in air at 1400'C for 2 hours to obtain a sintered body sample. First, an electric resistance trial sample was obtained by sintering a molded body in which a platinum wire 1 was embedded as shown in FIG. While heating this sample 2 from room temperature to 100°C in an electric furnace, the resistance ratio at room temperature and 1000''C, that is, the above-mentioned a, was measured for each sample.The results are shown in the table.

また、室温から1000″Cでの電気抵抗の変化のいく
つかの例を従来例であるSiC,!:LaCrO3とと
もに第2図に示す。第2図では縦軸に室温の抵抗値で正
規化した抵抗値の対数をとり、横軸に温度をとって抵抗
の温度変化を示している。なお、符号は表の試料番号で
ある。
In addition, some examples of changes in electrical resistance from room temperature to 1000"C are shown in Fig. 2 along with conventional examples of SiC,!:LaCrO3. In Fig. 2, the vertical axis shows the resistance value normalized by the resistance value at room temperature. The logarithm of the resistance value is taken, and the temperature is plotted on the horizontal axis to show the temperature change in resistance.The code is the sample number in the table.

(以   下   余   白  ) *は参照例 表および第2図からも明らかなように、L a 1.S
 r !M n O3p組成において、Iが0.16未
満の組成およびXがo、8を越える組成では室温と10
0o″Cの抵抗値の比aが0.3以下となり、発熱体と
しては好ましくない。0.16≦X≦0.8の範囲であ
れば、前述のaが0.3より大きく2より小さい発熱体
として好ましい特性を示す。また、第3図に示す形状の
発熱体31を作製し、白金電極32゜32′間に通電す
ることにより室温と1000”Cの冷熱サイクルを行い
、1oOo時間後の抵抗変化率と割れの発生を調べた。
(Margin below) *As is clear from the reference example table and Figure 2, L a 1. S
r! In the M n O3p composition, for compositions where I is less than 0.16 and compositions where X is more than o, 8, there is a difference between room temperature and 10
The ratio a of the resistance value of 0o''C is 0.3 or less, which is not preferable as a heating element.If the range is 0.16≦X≦0.8, the above-mentioned a is greater than 0.3 and less than 2. It exhibits desirable characteristics as a heating element.A heating element 31 having the shape shown in FIG. The rate of change in resistance and the occurrence of cracks were investigated.

この結果、!が0.9以上の試料では600時間で割れ
が発生したが、他の組成では割れは発生せず、耐熱衝撃
性も十分あることがわかった。また、106CyR間後
の抵抗変化率も20%以内である。
As a result,! Although cracks occurred after 600 hours in the samples with 0.9 or more, cracks did not occur in other compositions, indicating that they had sufficient thermal shock resistance. Further, the rate of change in resistance after 106 CyR is also within 20%.

以上のように、La1−!SrxMnO3(0,15≦
X≦0.8)は発熱体用セラミックス組成として優れた
性質を有していることがわかる。
As mentioned above, La1-! SrxMnO3(0,15≦
It can be seen that X≦0.8) has excellent properties as a ceramic composition for a heating element.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明にかかる発熱体用セラミック組成物につい
て説明するだめのもので、第1図は抵抗測定用試別の形
状を示す斜視図、第2図は本発明による発熱体の代表例
と従来例の温度による抵抗変化を対比させて示す曲線図
、第3図は耐久試験用試料の形状を示す平面図である。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名”I
M屋(゛り 墨3111
The drawings are only for explaining the ceramic composition for a heating element according to the present invention. Fig. 1 is a perspective view showing the shape of a sample for resistance measurement, and Fig. 2 shows a typical example of a heating element according to the invention and a conventional one. FIG. 3 is a curve diagram showing a comparison of the resistance change due to temperature in the example, and FIG. 3 is a plan view showing the shape of the durability test sample. Name of agent: Patent attorney Toshio Nakao and one other person”I
M-ya (゛ri-sumi 3111

Claims (1)

【特許請求の範囲】[Claims] ペロプスカイト型化合物L al−!S r xMnO
3(0,15≦X≦0.8)の組成からなることを特徴
とする発熱体用セラミック組成物。
Perovskite-type compound L al-! S r xMnO
3 (0.15≦X≦0.8).
JP56112495A 1981-07-17 1981-07-17 Ceramic composition for heating body Pending JPS5815069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56112495A JPS5815069A (en) 1981-07-17 1981-07-17 Ceramic composition for heating body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56112495A JPS5815069A (en) 1981-07-17 1981-07-17 Ceramic composition for heating body

Publications (1)

Publication Number Publication Date
JPS5815069A true JPS5815069A (en) 1983-01-28

Family

ID=14588072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56112495A Pending JPS5815069A (en) 1981-07-17 1981-07-17 Ceramic composition for heating body

Country Status (1)

Country Link
JP (1) JPS5815069A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0265086A (en) * 1988-08-30 1990-03-05 Toshiba Lighting & Technol Corp Heating element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4976097A (en) * 1972-11-27 1974-07-23

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4976097A (en) * 1972-11-27 1974-07-23

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0265086A (en) * 1988-08-30 1990-03-05 Toshiba Lighting & Technol Corp Heating element

Similar Documents

Publication Publication Date Title
JPS6116125B2 (en)
EP0207994B1 (en) Oxide semiconductor for thermistor and a method of producing the same
JPS58217464A (en) Zirconium oxide ceramic
WO1985000690A1 (en) Oxide semiconductor for thermistor
JPS5815069A (en) Ceramic composition for heating body
JPS61113211A (en) Oxide semiconductor for thermistor
JPS5945964A (en) Ceramic resistor material
JPS62108503A (en) Oxide semiconductor for thermistor
JPS62108505A (en) Oxide semiconductor for thermistor
JP2904002B2 (en) Temperature sensor
JPS60106107A (en) Method of producing oxide semiconductor porcelain for thermistor
JPS62108502A (en) Oxide semiconductor for thermistor
JPS6097601A (en) Oxide semiconductor porcelain for thermistor
JP2948933B2 (en) Composition for thermistor
KR100225499B1 (en) Material of metallic oxide system thermistor using for high temperature
JPS5918159A (en) Dielectric ceramic composition
JPS58115072A (en) Ceramic composition for heating body
KR100225501B1 (en) Material of ilimenite system thermistor using for middle temperature
JPS59208804A (en) Oxide semiconductor for thermistor
JPS62263606A (en) Manufacture of oxide semiconductor porcelain for thermistor
JPH034505B2 (en)
JPS62108504A (en) Oxide semiconductor for thermistor
JPS59138308A (en) Thermistor element
JPS63308302A (en) Oxide semiconductor for thermistor
JPS6030082B2 (en) Manufacturing method of moisture sensing element