JPS58147538A - Sputtered amorphous magnetic material and its manufacture - Google Patents

Sputtered amorphous magnetic material and its manufacture

Info

Publication number
JPS58147538A
JPS58147538A JP57028064A JP2806482A JPS58147538A JP S58147538 A JPS58147538 A JP S58147538A JP 57028064 A JP57028064 A JP 57028064A JP 2806482 A JP2806482 A JP 2806482A JP S58147538 A JPS58147538 A JP S58147538A
Authority
JP
Japan
Prior art keywords
magnetic material
amorphous magnetic
niobium
amorphous
sputtered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57028064A
Other languages
Japanese (ja)
Inventor
Hiroyasu Fujimori
増本健
Masaaki Naga
藤森啓安
Noriaki Kazama
奈賀正明
Takeshi Masumoto
風間典明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP57028064A priority Critical patent/JPS58147538A/en
Priority to FR8303001A priority patent/FR2522188B1/en
Priority to NL8300695A priority patent/NL8300695A/en
Publication of JPS58147538A publication Critical patent/JPS58147538A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/04Amorphous alloys with nickel or cobalt as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15358Making agglomerates therefrom, e.g. by pressing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Thin Magnetic Films (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a sputtered amorphous magnetic material with high saturation magnetic flux density, small coercive force, small magnetostriction and superior soft magnetic characteristics, by adding a specified amount of Nb to Co as a principal component. CONSTITUTION:A Co-base material contg. <=40 atomic% Nb is put in a vacuum vessel 1 as a target electrode 6. The electrode 6 is cooled with water, negative voltage is applied to the electrode 6 from a power source 7, and an electric current is impressed between a cathode 2 and an anode 3 to generate plasma in the vessel 1. By sputtering the electrode 6, constituent electrons are emitted, and they are deposited on a water-cooled substrate 8 to obtain an amorphous magnetic material. Negative charge may be impressd to the substrate 8 from a power source 9. The magnetic material is heat treaed at a temp. below the crystallization temp. Additional elements such as Ti and Zr may be added to said Co-base material contg. Nb.

Description

【発明の詳細な説明】 本発明はスパッタ非晶質磁性材料及び七OIl造方法に
関するものであ如、411に飽和磁束一度か大きく、保
臓力及び磁歪が小さい軟磁気特性が優れ九スパッタ非蟲
質磁性材料及びそOIm造方法に関する4のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sputtered amorphous magnetic material and a method for producing 7OIl. Part 4 relates to magnetic magnetic materials and their OI manufacturing method.

スパッタリング法を用いて得喪スパッタ非晶質磁性材料
が知られている。このようにして得られ九非晶質磁性材
料は、結晶磁性材料の如き規則的原子配^をとることな
く長周期的構造を持たず。
It is known that sputtered amorphous magnetic materials can be obtained using a sputtering method. The amorphous magnetic material obtained in this way does not have a regular atomic arrangement and does not have a long-period structure like crystalline magnetic materials.

原子配列が無秩序1に材料であること力・ら、結晶磁気
異方性かなく良好な軟磁気特性を示す材料である。
Since the material has a disordered atomic arrangement, it has no crystal magnetic anisotropy and exhibits good soft magnetic properties.

またこのスパッタ非晶質磁性材料はガス状態の金属を凝
集させること、すなわち気体から直接固体を形成1せる
ような一種の凍結作用によって得られ九非晶質材料であ
るから、溶融状部にある磁性材料を射出し、これを高速
回転するドラムに接触させて急冷して、非晶質磁性材料
リボンを形成する超急冷法によって得られた4のに比べ
て極めて薄い膜を得ることがで勤る亀ど04+1黴点を
有している。更に上記O超急冷法において!Ii溶融状
態にある磁性材料に更にホウ素、シリコンなどの非磁性
元素を含有していない@)非晶質磁性材料か形成されな
いOK対し、スパッタリング法においてはかかる元素を
加えなくても非晶質磁性材%&影形成ることができるこ
とから、両プロ竜スによって得られ良材料は本質的に興
なる材料であると言える。
In addition, this sputtered amorphous magnetic material is obtained by agglomerating metal in a gaseous state, that is, by a kind of freezing effect that directly forms a solid from a gas. It is possible to obtain an extremely thin film compared to the ultra-quenching method obtained by the ultra-quenching method in which a magnetic material is injected and brought into contact with a high-speed rotating drum to form an amorphous magnetic material ribbon. It has a mildew point of 04+1. Furthermore, in the above O super-quenching method! Ii The magnetic material in the molten state does not contain any non-magnetic elements such as boron or silicon @) Amorphous magnetic material is not formed.In contrast, in the sputtering method, amorphous magnetic material is not formed even without adding such elements. Since it can form materials and shadows, it can be said that the good materials obtained by both professional dragons are essentially good materials.

本発明は新規なスパッタ非晶質磁性材料及びそOII造
方法【提供せんとすることta的とする。
The present invention aims to provide a novel sputtered amorphous magnetic material and its OII manufacturing method.

本発明は、コバルトを主体とし、ニオブ[4G原子パー
セント以下會むことを特徴とするスパッタ非晶質磁性材
料であ)、更にコバルトを主体とし、ニオブを1oll
子パーセント以下含む非晶質磁性材料を結晶化温度以下
O温度で熱処理することを特徴とするスパッタ非晶質磁
性材料op造方法である。
The present invention is a sputtered amorphous magnetic material mainly composed of cobalt and niobium [which is characterized by a content of less than 4G atomic percent], and further mainly composed of cobalt and 1ol of niobium.
This is a sputtering method for producing an amorphous magnetic material by sputtering, which is characterized by heat-treating an amorphous magnetic material containing less than 1% of the total amount of amorphous material at a temperature below the crystallization temperature.

更に本実−01’)t)@@はコバルトを主体とし、ニ
オブを40原子バー七ント以下含み、更にチタン、ジル
コニウム、ハフニウム、パナジクム、タンタル、銅、モ
リブデン、タングステンから成る詳から選ばれえ少なく
ともl1lO追加的元素を含むヒとを特徴とするスパッ
タ非晶質磁性材料であ如、又本発明OII110IIw
Ikはコパル)1主体とし、ニオブを4a鳳子パーセン
ト以下含み、]!にタロム、マンガン、ニッケル、鉄か
ら成る詳から選ばれた少なくとも1種O追加的元素を含
むことを特徴とするスパッタ非晶質磁性材料であ〕、本
発明O他Oml轡はコバルトを主体とし、ニオブf42
原子パーセント以下含み、更にほう素、炭素、けい素、
リン、ゲルマニウム、すす、インジウム、ひ素、アンチ
毫ンから威る詳から選ばれえ少なくとも1種O追加的元
素を會むヒとを特徴とするスパッタ非晶質磁性材料であ
夛、更に本発明O他Om*riコバルトを主体とし、ニ
オブを4al[子I(−七ント以下含与%]!に鉄及び
マンガンから成る群から選ばれえ少くとも1種O追加的
兄素を含むととtr*徴とするスパッタ非晶質磁性材料
である。
Furthermore, Honjitsu-01')t)@@ is mainly composed of cobalt, contains 40 atoms or less of niobium, and is further selected from the group consisting of titanium, zirconium, hafnium, panazicum, tantalum, copper, molybdenum, and tungsten. A sputtered amorphous magnetic material characterized in that it contains at least an additional element of l11O, and the present invention OII110IIw
Ik is copal) 1, contains niobium at less than 4a Foshi percent, ]! This is a sputtered amorphous magnetic material characterized by containing at least one additional element selected from the group consisting of talom, manganese, nickel, and iron. , niobium f42
Contains less than atomic percent of boron, carbon, silicon,
The present invention further comprises a sputtered amorphous magnetic material characterized by having at least one additional element selected from the group consisting of phosphorus, germanium, soot, indium, arsenic, and antipropylene. Om*ri mainly composed of cobalt, containing 4al of niobium [child I (-7% or less content]!) and at least one additional brother element selected from the group consisting of iron and manganese. This is a sputtered amorphous magnetic material with tr* characteristics.

次に本発明Oスパッタ非晶質磁性材料を製造する方法の
一例について第1図会参照して説明する。
Next, an example of a method for manufacturing the O sputtered amorphous magnetic material of the present invention will be described with reference to FIG.

@Illは本発明のスパッタ非晶質磁性材料を製造する
えめO装置v−flt示す概略断面図である。
@Ill is a schematic cross-sectional view showing a v-flt apparatus for producing the sputtered amorphous magnetic material of the present invention.

第111において、容I!11内には約10−” to
rrcstttt−ムrガスが耐大されている。111
1へ0ArtJスは例えば1o−・テorr fC予備
真空され九*K 10−”テorr tで真空にされる
。2及びs#it”れぞれタングステンフィラメント及
びステンレス板によって構成されているカノード及び7
ノードであ夛、これらO関には電源4によって約107
.40A@度の電圧、電#lか印加され容器1中にプラ
ズマを発生させる。ここでアノ−レジSは水冷され更に
電源SKよって1007以下l110**正電圧が印加
されてもよい。4はターゲット電極÷あ)、少なくとも
コパルF及びニオブ【會む材料か111!質されておL
水冷されている。しめターゲット電極6には電源7によ
りてO〜1z口0Y11度の負電圧が印加されている。
In the 111th, Yong I! Approximately 10-” to 11
rrcstttt-mr gas is resistant. 111
1 to 0ArtJ, for example, is pre-evacuated to 1o-teorr fC and evacuated at 9*K10-"teorrt. 2 and s#it" are each constructed of a tungsten filament and a stainless steel plate. and 7
With a large number of nodes, these O ports have approximately 107
.. A voltage of 40 A@degrees is applied to generate plasma in the container 1. Here, the anorage S may be water-cooled and further a positive voltage of 1007 or less l110** may be applied by the power source SK. 4 is target electrode ÷ a), at least copal F and niobium [meeting material 111! L
It is water cooled. A negative voltage of 0 to 11 degrees is applied to the tightening target electrode 6 by a power source 7.

魯は本発明O非晶質磁性材料tデポジットするえめO基
板であって水冷され、11!に電源!によって最大5o
ov@度O負電圧が印加されてもよい。
The present invention is a substrate on which an amorphous magnetic material is deposited, which is water-cooled, and 11! Power to! up to 5o by
An ov@degree O negative voltage may be applied.

本実Tl14t)非晶質磁性材lI!は上記カンード2
及び7/−FlとOQK約1@マ、40AO電圧電流を
印加しプラズマを発生させ、プラダ1中に斃生し良イオ
ンit−’IKマ(最大約SOD鵬ム)0強い電界で加
速し、ターゲット’WLIhhkxz<ツメして構成原
子【放出させ、これを基板魯↓に付着、堆積させるとと
によって得られる。この−にしてS日間O連続スパッタ
によって厚さ約!00声鵬の非晶質磁性材料を得ること
ができえ。
Honji Tl14t) Amorphous magnetic material lI! is the above cand 2
And 7/-Fl and OQK about 1 @ ma, 40 AO voltage and current are applied to generate plasma, and good ions are generated in Prada 1 and are accelerated by a strong electric field (maximum of about SOD). , the target'WLIhhkxz< is obtained by ejecting the constituent atoms and attaching and depositing them onto the substrate. The thickness is approx. by continuous O sputtering for -S days! It is possible to obtain an amorphous magnetic material of 0.00.

次にこO−にして作った本発明の非晶質磁性材料につい
て、実験した結果について第り表及び第2@lに基いて
説−する。第1表及び第2表は上述0’ml製法によ)
基板上に非晶質磁性材料を付着させて、厚さalms、
直径40−0円盤状試料及び外4% S Oam、内@
20ml0りンダ状試料をそれぞれ作威し、これらの磁
気分析、磁化―纏O欄定、示差熱分析、硬さ試験及び分
極−纏OVa定をそれぞれ行1に%A、その試料O軟磁
気特性、熱的安定性。
Next, the results of experiments conducted on the amorphous magnetic material of the present invention prepared using O- will be explained based on Table 1 and Section 2@l. Tables 1 and 2 are based on the 0'ml manufacturing method mentioned above)
Depositing an amorphous magnetic material on the substrate to a thickness of alms,
Diameter 40-0 disc-shaped sample and outer 4% S Oam, inner @
A 20 ml cylinder-like sample was prepared, and the magnetic analysis, magnetization-column O column, differential thermal analysis, hardness test, and polarization-column OVa column were measured in %A in row 1, and the soft magnetic properties of the sample were measured. , thermal stability.

機械的性質及び耐食性について調べ良結果を示す4ので
ある。
No. 4 has been tested for mechanical properties and corrosion resistance and has shown good results.

なお、このようにして作成し良磁性材料が非晶質構造【
示すこと04111定はターゲットとしてν・。
Note that the good magnetic material created in this way has an amorphous structure [
Show that 04111 is constant ν· as the target.

Km纏を用い、!曽闘折線を測定することによって行な
った。そO結果$1表及び第211K示す試*OXmM
折線d2〜SO散慢ta折Vy104を示し、結晶のよ
うな鋭いI折線を示さず、これらが非晶質構造となって
いることが明らかとなつ九。
Using Km-mat! This was done by measuring the so-to-fold line. Test showing result $1 table and 211K *OXmM
It shows the fold line d2 to SO scattering ta fold Vy104, and does not show a sharp I fold line like a crystal, making it clear that these have an amorphous structure.

第111はコバルト及びニオブO組成を種々変化させて
作うえ本発明Oスパッタ非晶質磁性材料O室−における
飽和磁化、飽和磁束一度、磁歪、保磁力、硬さ、結晶化
温度及びキエーリ一点をそれぞれ示す。第1表において
飽和磁化及び飽和磁束豐度はニオブO含有率が低いII
(二元系にお−ではコバルトの含有率が^いII)高い
値を示す。又、磁性材料として高い飽和磁束IIfと共
に優れえ軟磁性を示すえめには磁気ひず拳(磁歪)が小
さい事が必要であるが、本発明のスパッタ非晶質、磁性
材料は磁歪がいずれも負O比較的小さな値を示す。
No. 111 is made by varying cobalt and niobium O compositions, and saturation magnetization, saturation magnetic flux, magnetostriction, coercive force, hardness, crystallization temperature, and Chieri point in the sputtered amorphous magnetic material according to the present invention. Each is shown below. In Table 1, the saturation magnetization and saturation magnetic flux intensity are II with low niobium O content.
(In a binary system, the content of cobalt is high II). In addition, as a magnetic material, it is necessary to have a small magnetostriction (magnetostriction) in order to exhibit excellent soft magnetism as well as a high saturation magnetic flux IIf. Negative O indicates a relatively small value.

本発明Oスパッタ非晶質磁性材料O大It特徴点01つ
は磁歪が比較的小さな値を示し、更にそO値が負である
点にある。即ち、近年半金属元素を含まない00−系非
晶質磁性材料(Oo−テ1eZr*Hf、テ&  W)
が優れえ軟磁性特性を示すことで注目され発表がなされ
ている。これらのうち0O−Ti系、Co−Kr系及び
0o−1f 系非晶質磁性材料は磁歪が正O値を示す材
料であるから、ζO磁歪を実質的に零にする良めには例
えばlIi、Mo及びOr を加えなければならないが
%このような元素は磁性材料O鉋和磁束書[を減少させ
てしまう。
One characteristic point of the O sputtered amorphous magnetic material of the present invention is that the magnetostriction exhibits a relatively small value, and furthermore, the O value is negative. That is, in recent years, 00-based amorphous magnetic materials (Oo-Te1eZr*Hf, Te&W) that do not contain metalloid elements have been developed.
It has attracted attention and has been published as it exhibits excellent soft magnetic properties. Among these, 0O-Ti system, Co-Kr system, and 0o-1f system amorphous magnetic materials are materials whose magnetostriction exhibits a positive O value, so for example, lIi , Mo and Or must be added, but these elements reduce the magnetic flux of the magnetic material.

一方Go−?a系及び0o−W系非晶質磁性材料は磁歪
が負である仁とから例えばν・、 Mu  を加えて磁
歪を実質的に零にすることができ、更にこれらの元素は
磁性材料の飽和磁束*tを増加させるか少なくともtl
とんと低下させないOで喪好な非晶質磁性材料であると
言えるが、かかるCo−Ti系及び00−W系非晶質磁
性材料においても本発明0Co−11b系非晶質磁性材
料に比して低い飽和磁束書&040か得られるに過ぎな
い。即ち本発明の非蟲質mk!!材料は例えば伊達する
第2表O試料胤1 @ (”815 F・4L51”1
0)K示す如く磁歪が実質的に零で、12乃至1sキU
ガウス以上の極めて大きな飽和磁束密at有する材料を
作成することができる。
On the other hand, Go-? The magnetostriction of a-based and 0o-W-based amorphous magnetic materials can be reduced to substantially zero by adding, for example, ν·, Mu to the negative magnetostriction, and furthermore, these elements can reduce the saturation of the magnetic material. increase the magnetic flux *t or at least tl
Although it can be said that it is a good amorphous magnetic material because of O that does not drop significantly, such Co-Ti-based and 00-W-based amorphous magnetic materials also have a higher resistance compared to the 0Co-11b-based amorphous magnetic material of the present invention. Therefore, only a low saturation magnetic flux of &040 can be obtained. That is, the non-insect mk of the present invention! ! The material is, for example, Date Table 2 O Sample Seed 1 @ ("815 F・4L51" 1
0) As shown in K, magnetostriction is virtually zero, and 12 to 1 s
It is possible to create a material having an extremely large saturation magnetic flux density at of Gauss or higher.

従って本発明で最も好ましい非晶質磁性材料はコバルト
を主体とし、ニオブ140j[子パー七ント含み、更に
鉄、マンガンの少なくともいずれか一方O追加的元素を
含むものであ)、こO追加的元素の量としては例えば(
Ool−xMISx)6531b150組成の非晶質磁
性材料においてはXがa04からCL040値にあるこ
とがよく、又、008五5−に?・811b145  
()組成の非晶質磁性材料にあってfixがaolから
aaioHcあることがよ−。
Therefore, the most preferable amorphous magnetic material in the present invention is one containing cobalt as a main component, niobium 140j [containing niobium 140j] and at least one of iron and manganese as an additional element. For example, the amount of an element is (
Ool-x MIS・811b145
In the amorphous magnetic material having the composition (), the fix ranges from aol to aaioHc.

又、ホウ素などの半金属元素を添加し九ときO飽和磁束
11度O低下及び磁jO変化を考慮すれば、本実1jI
O非晶質磁性材料にはこれら半金属元素【含まないこと
が好ましい。
Moreover, if we add a metalloid element such as boron and take into consideration the decrease in O saturation magnetic flux by 11 degrees and the change in magnetic jO, the actual 1jI
The amorphous magnetic material preferably does not contain these metalloid elements.

本発明Oスパ゛/夕非晶質磁性材料に要求される軟磁性
の目安として保磁力は重畳な性質であ〉、こむ保磁力が
できる隈)小さいことが要求されるが、本実114のス
バクタ非晶質磁性材料#1JIIIIIIに示す如く、
比較的KjL好な値を示す。又ζO保畝力は第S’lK
示す如く適!!1に条件での加熱処理によ如更に小さく
することができる。即ち、tas’tsに示t1m <
、試料−3(00!l!LSIIb1L5)の組成にお
ける熱処理しない場合O保磁力は18011060値を
示すが、第3表に示す各@鮫で50分熱処理することに
よって更に小さな保磁力となることが判る。例えば36
0℃Om1度で熱処理しえときは35110@、40o
cc+ii*で熱処理したときには30m0・ O極め
て低い値を示す。
As a measure of the soft magnetism required for the amorphous magnetic material of the present invention, the coercive force is a superimposed property, and it is required that the coercive force be small. As shown in Subakta amorphous magnetic material #1 JIIIIII,
It shows a relatively good value of KjL. Also, ζO ridge force is No. S'lK
Suitable as shown! ! The size can be further reduced by heat treatment under conditions 1. That is, t1m <
, the O coercive force in the composition of Sample-3 (00!l!LSIIb1L5) without heat treatment shows a value of 18011060, but by heat treating each @Shark shown in Table 3 for 50 minutes, the coercive force becomes even smaller. I understand. For example 36
35110@, 40o when heat treatment can be done at 0℃Om1 degree
When heat treated at cc+ii*, it shows an extremely low value of 30m0·O.

本発明における熱処go条件は少なくとも非晶質磁性材
料を結晶化温度以下011度で熱処理することが必要で
あるか、ニオブO組成比が高い場合には比較的低温の熱
処理で効果を生じるがニオブの組成比が低い場合には比
較的高温0熱処理を必要とする。即ちこの繰処理温tt
i−オプの組成比が高い場合150℃乃至結晶化温度で
数時間乃至1分I1度、ニオブO#I成比が低い場合に
は250℃乃至結晶化温度で数時間乃至1分sfでよい
The heat treatment conditions in the present invention require that at least the amorphous magnetic material be heat treated at 0.11 degrees below the crystallization temperature, or if the niobium O composition ratio is high, heat treatment at a relatively low temperature will produce an effect. When the composition ratio of niobium is low, relatively high temperature zero heat treatment is required. That is, this reprocessing temperature tt
If the composition ratio of i-op is high, it may be sf for several hours to 1 minute at 150°C to the crystallization temperature, and if the niobium O#I composition ratio is low, it may be sf for several hours to 1 minute at 250°C to the crystallization temperature. .

又、加熱した恢デ冷等によって2乃至5時間和度O除冷
を行なうむとが好ましい。この際、飽和磁化に必要な数
0・乃至数1000・の磁界を与えることが轡に望まし
い。
Further, it is preferable to perform slow cooling using heating and cooling for 2 to 5 hours. At this time, it is desirable to apply a magnetic field of several 0 to several 1000, which is necessary for saturation magnetization.

本発明のスパッタ非晶質磁性材料は上述した如く優れた
軟磁性を持つか、この他に材料学的特性として横槍的性
質が良好であ〉且つ耐食性が高いという特長【有してい
る。即ちtlI4s表において一例として00−Ml)
 2元系の非晶質磁性材料O硬さt示すが、本発明O非
晶質磁性材@0硬さはビッカース硬さ試験法で520乃
至1023 b/−0極めて高い横槍的強度を有し、M
Ts iiO増加とともに増加する性質を有する。
The sputtered amorphous magnetic material of the present invention not only has excellent soft magnetism as described above, but also has other material properties such as good transverse magnetic properties and high corrosion resistance. That is, in the tlI4s table, as an example, 00-Ml)
The binary amorphous magnetic material has a hardness of t, and the amorphous magnetic material of the present invention has an extremely high horizontal strength of 520 to 1023 b/-0 according to the Vickers hardness test method. ,M
It has the property of increasing as Ts iiO increases.

次に本発明O非晶質磁性材料O耐食性について第2図に
基いて説明する。第2図は前述O方法によりゼ形成した
a3乃至α4−00O−111)非晶質磁性材料【基板
から剥離し良材料【一方O電極とし。
Next, the corrosion resistance of the amorphous magnetic material of the present invention will be explained based on FIG. 2. Figure 2 shows a3 to α4-00O-111) amorphous magnetic material [material that can be easily peeled off from the substrate] formed by the O method described above [on the other hand, used as an O electrode].

Hg20j@を他方O電極として1規定O塩酸中に浸漬
させ1両電極間に電圧を印加し、両電極間に不均一電流
が流れる電位を測定した結果【示す。
Hg20j@ was immersed in 1N O hydrochloric acid using the other O electrode, a voltage was applied between the two electrodes, and the potential at which a non-uniform current flows between the two electrodes was measured. The results are shown below.

以上O結果によ〉本発明O非晶質磁性材料は塩素イオン
O存在によって通常見られる局部腐食0典麺である孔食
が着しく抑制され、耐食性か極めて良好であることか判
る。
From the above results, it can be seen that the presence of chlorine ions in the amorphous magnetic material of the present invention significantly suppresses pitting corrosion, which is usually seen as localized corrosion, and has extremely good corrosion resistance.

更に、一般に非晶質材料は一種の凍結された準安定状I
IIKあるため、特定の温度で結晶化してしまうことが
知られてお〕、この温度が高い1安定性が高く、又キエ
ーリ一点も高い和安定な磁気特性を得ることがで龜るが
、第1表に示す如く本発明O非晶質磁性材料はこれらの
温度が極めて高く安定して良好な磁気特性を得ることが
可能である。
Furthermore, amorphous materials are generally a kind of frozen metastable state I
IIK, it is known that it crystallizes at a certain temperature], and the higher this temperature is, the higher the stability is, and the higher the Chieri point is, the more stable the magnetic properties can be obtained. As shown in Table 1, the amorphous magnetic material of the present invention has extremely high temperatures and is capable of stably obtaining good magnetic properties.

以上の説明においては主fc Go−Mb を元系O非
晶質磁性材料にりいて述べ良が、本発明の非晶質磁性材
料KF1種々の第5元素を添加してもよい、こt)第5
元素の例としては例えば主に磁歪を変化させる元素とし
て〒i、  Zre  Hlm  Va  テa#Ou
、Mo  及びVaどかあシ、又主に飽和磁化を変化さ
せる元素としてCτ、Mn、]Ii及び1・などがあ)
、更に主に非晶質構造【形成させること動春易とするえ
めO元素として、B、0,81゜F * Go * a
n * Xn eム一及び8’F  などがあシ。
In the above explanation, fc Go-Mb is mainly described as an element O amorphous magnetic material, but various fifth elements may be added to the amorphous magnetic material KF1 of the present invention. Fifth
Examples of elements that mainly change magnetostriction include 〒i, Zre Hlm Va Tea#Ou
, Mo and Va, and elements that mainly change the saturation magnetization include Cτ, Mn, ]Ii and 1)
, and mainly as an amorphous structure [O element that facilitates the formation of B, 0.81°F * Go * a
n*Xn em and 8'F etc. are available.

これらは単独にあるいは組合せて用いられる。本発明の
非晶質磁性材料が負の比較的小さな磁歪【示すことから
好ましくは磁歪【正の方向に変化させ且つ飽和磁束密a
t低下させないν・、MnO少なくともいずれか一方の
元素を含むもOであることが量も好ましい。又、本発明
00o−Mb系材料はB40半金属元素を含有しなくと
4非晶質構造をと)得ることから、これらO元素を含有
しない材料とすることが好ましい。
These may be used alone or in combination. Since the amorphous magnetic material of the present invention exhibits relatively small negative magnetostriction, it is preferable that the magnetostriction be changed in the positive direction and the saturation magnetic flux density a
It is preferable that the amount is O, which contains at least one of the elements ν· and MnO, which does not lower the t. Furthermore, since the 00o-Mb-based material of the present invention has an amorphous structure unless it contains the B40 metalloid element, it is preferable to use a material that does not contain these O elements.

本発明O非晶質磁性材料に上記の第1元素を添加した結
果について第2IIK示す。ζO結果から第3元素【添
加した本発明03元系非晶質蟲性材料O飽和磁化及び飽
和磁束*度は上記した2元系非晶質磁性材料に比べて磁
気特性が羨化し、飽和磁束*度が改善されている仁とが
判る。
The results of adding the above-mentioned first element to the amorphous magnetic material of the present invention are shown in 2nd IIK. From the ζO results, the third element [added to the ternary amorphous material of the present invention] saturation magnetization and saturation magnetic flux *You can see that the level has improved.

以上第111及び第を表に示した結果に基づいて本発明
00o−111系非晶質磁性材料はコノ(ルトを主体と
し、ニオブを最大40jl子−含む40であれば喪好な
軟磁性を示すことが判った。又、現在集用されているヘ
ッド材料として最高O飽和磁束密度を持つセンダス)0
飽和磁束密度がα!キロガウスであることから見て上記
O如くコノ(ルト【主体とし、ニオブを40原子−以下
、特に好ましくは507[子−以下含む二元系非晶質磁
性材料は十分に実用化しうる材料でToシ、更に第2表
に示す如くこれに第1元素を加えることによ)飽和磁束
書皺を大巾に改曹しうるOで、上記のコバルトを主体と
し、ニオブ(40原子−以下、41に好壕しくはSO@
子慢以下含む非晶質磁性材料は容易に極めて高い磁束密
度のものを得る仁とが可能となる。
Based on the results shown in Tables 111 and 111 above, the 00o-111 series amorphous magnetic material of the present invention is mainly composed of Kono(rut) and contains up to 40 g of niobium, exhibiting poor soft magnetism. It was found that Sendas)0 has the highest O saturation magnetic flux density among currently used head materials.
Saturation magnetic flux density is α! Considering that it is a kilogauss, the binary amorphous magnetic material containing 40 atoms or less of niobium, particularly preferably 507 atoms or less, as mentioned above, is a material that can be fully put to practical use. (by adding the first element to it as shown in Table 2), the saturation magnetic flux wrinkles can be greatly improved. O is mainly composed of the above cobalt, and niobium (40 atoms or less, 41 The best place to go is SO@
Amorphous magnetic materials containing less than 100% of the magnetic flux can easily have extremely high magnetic flux densities.

以上詳細に説明し九通シ、本発明は軟磁気特性か嵐く、
機械的、化学的性質が喪いOで、例えば磁気ヘッド材料
、低周波及び高周波トランス、磁気増幅器及び磁気フィ
ルターとしてO実用性が大きく、l!にその組成によ)
キエーリ一点が変化することから熱セン賃としても用い
ることが可能である。
Having explained in detail above, the present invention has soft magnetic properties,
It has good mechanical and chemical properties, and has great practicality as, for example, magnetic head materials, low-frequency and high-frequency transformers, magnetic amplifiers, and magnetic filters. (depending on its composition)
Since Chieri's single point changes, it can also be used as a heat sensor.

鯖2表 ip2 tables of mackerel ip

【図面の簡単な説明】[Brief explanation of the drawing]

第11!!lは本実I14のスパッタ非晶質磁性材料【
作成する装置O概略断面図、第zgは本発明のスパッタ
非晶質材料O耐食性を示すグラフである。 第1911中、1は容器、!はカンード、Sは7ノ(ほ
か5名) 1B1図 さ 第  2  図 Nb (原3I−%) 手続補II:、書 1M4Fil 59 jN  5 月+>6日l 中性
の表小 +11(411574#特許願第28064  月2 
ヅこ明の名称 スノ々ツタ非晶質磁性材料及びその製造方法3、補正を
する者 小(1,との関係:特許出願人 代名藤a啓安 霞が関ヒル内郵便局 私書箱第49号 7 補正の対象 明    細    書 1、発明の名称 ス/4ツタ非晶質磁性材料及びその製造方法!411許
請求の範囲 1)′3ノζルトを主体とし、ニオブを40原子・セー
セント以下含むことを特徴とするス・々ツタ非晶質磁性
材料。 2) コノでルトな主体とし、二オシを40原子パーセ
ント以下含み、更にチタン、ジルコニウム、ハフニウム
、バナジウム、メンタル、鋼、モリブデン、タングステ
ンから成る群から選ばれた少なくともL種の追加的元素
を含むことV*黴とする特許請求の範囲第1項記載?ス
パッタ非晶質磁性材。 科。 3);パルトを主体とし、ニオブを40原子ノ々−セン
ト以下含み、更にクロム、マンガン、ニッケル、鉄から
成る群から選ばれた少なくとも1種の追加的元素を含む
ことを特徴とする特許請求の範囲第1項記載のスJツタ
非晶質磁性材料。 4) コノセルトを主体とし、二オシを40原子、R−
セント以下含み、更にほう素、炭素、けい素、リン、ゲ
ルマニウム、すす、インジウム、ひ素、アンチ千ンから
成る群から選ばれた少くとも111の追加的元素を含む
ことを特徴とする特許請求の範囲W、1項記献のスパッ
タ非晶質磁性材料。 5)コノZルトな主体とし、ニオブを401[子)(−
セント以下含み更に鉄及びマンガンからなる群から選ば
れた少くとも1種の追加的元素を含むことを特徴とする
特許請求の範囲第3項記載のスパッタ非晶質磁性材料。 6)コノ硬ルトを主体とし、ニオブを40原子ノで一セ
ント以下含むスパッタ非晶質磁性材料を結晶化温度以下
の温度で熱処理することを特徴とするスパッタ非晶質磁
性材料の製造方法。 3、発明の詳細な説明 本発明はスパッタ非晶質磁性材料及びその製造方法に関
するものであり、特に飽和磁束密度が大きく、保磁力及
び磁歪が小さい軟磁気特性が優れたス・碇ツタ非晶質磁
性材料及びその製造方法に関するものである。 ス/々ツメリング法を用いて得たスパッタ非晶質磁性材
料が知られている。このようにして得られた非晶質磁性
材料は、結晶磁性材料の如き規則的原子配列なとること
なく長周期的構造を持たず。 原子配列が無秩序な材料であることから、結晶磁気異方
性がなく良好な軟磁気特性を示す材料である。 またこのスパッタ非晶質磁性材料はガス状態の金属を凝
集させること、すなわち気体から直接固体を形成させる
ような一種の凍結作用によって得られた非晶質材料であ
るから、i!融状Ilにある磁性材料を射出し、これを
高速回転するドラムKm触させて急冷して、非晶質磁性
材料リボンを形成する超急冷法によつ【得られたものに
比べて極めて薄い腰を得ることができるなどのIIfI
像点を有し【いる、更に上記の超急冷法においては#I
−状態にあや磁性材料に更にホウ素、シリコンなどの非
磁性元素を含有していない限り非晶質磁性材料が形成さ
れないのに対し、スノツタリング法においてはかかる元
素を加えなくても非晶質磁性材料な形成することができ
ることから1両プロセスによって得られた材料は本質的
KMなる材料であると言える。 本発明は新規なスパッタ非晶質磁性材料及びその製造方
法を提供せんとすることを目的とする。 本発明は、コノ2ルトを主体とし、ニオブを40原子・
セーセント以下含むことを特徴とするスパッタ非晶質磁
性材料であり、更にコノ層ルトな主体とし、ニオブを4
01−7−7々−セント以下含む非晶質磁性材料を結晶
化温度以下の温度で熱処理することを特徴とするスパッ
タ非晶質磁性材料の製造方法である。 更に本発明の1つの態様はコバルトを主体とし。 ニオブv40原子ノーセント以下含み、更にチタン、ジ
ルコニウム、ハフニウム、パナジクム、タンタル、鋼、
モリブデン、タングステンから成る群から選ばれた少な
(ともlllの追加的元素を含むことを特徴とするスパ
ッタ非晶質磁性材料であり、又本発明の他の態様はコ、
1ルトを主体とし、二オシを4ON[子パーセント以下
含み、更にクロム、マンガン、ニッケル、鉄から威る群
から選ばれた少なくともlsの追加的元素を含むことな
特徴とするス・(ツタ非晶質磁性材料であり、本発明の
他のaIIIlはコバルトを主体とし、ニオブv40原
子〕(−セント以下含み、更Kfij素、炭素、けイ素
、リン、ゲルマニウム、すず、ベンジ9ム。 ひ素、アンチモンから成る群から選ばれた少なくとも1
種の追加的元素を含むことを特徴とするスパッタ非晶質
磁性材料であり、更に本実町の他のi**はコバルトを
主体とし、ニオブを40原子・セーセント以下含み、更
に鉄及びマンガンから成る群から選ばれた少くとも1種
の追加的元素を含むことを**とするスパッタ非晶質磁
性材料である。 次に本発明のスパッタ非晶質磁性材料を製造する方法の
一例につい【第1図を参照して説明する。 第1図は本発明のスパッタ非晶質磁性材料を製造するた
めの装置の一例を示す概略断面図である。 第1図において、容器1内は約10   Torrの9
9.99%Arガス雰囲気に保たれている。容61への
Ar ガスの導入は例えば10−”Torr  K予備
排気された後に行なわれ10−”Torrの真空に保た
れる。2及び3はそれぞれタングステンフィラメント及
びステンレス板によって構成されているカソード及びア
ノード9であり、これらの間には電源4によって約10
V、40A程度の電圧、電流が印加され容器1中にプラ
ズマを発生させる。ここでアノード3は水冷され更に電
源5により”t” 100V以下程度の直流正電圧が印
加されてもよい、6はターゲット電極であり、少なくと
もコノ2ルト及びニオブを含む材料が設置されており、
水冷されている。このターゲット電極6には電源7によ
って0〜1500V程度の負電圧が印加されている。 8は本発明の非晶質磁性材料をデゼジットするための基
板であって水冷され、更に電源9によって最大500V
程度の負電圧が印加されてもよい。 本発明の非晶質磁性材料は上記カソード92及び・7ノ
ード3との間に約IQV、40Aの電圧電流を印加しプ
ラズマを発生させ、プラズマ中に発生したイオンを1〜
2KVC最大約300mム) の強い電界で加速し、タ
ーゲット電極6をスパッタして構成原子を放出させ、こ
れ1基板8上に付着。 堆積させることKよって得られる。この様にして3日間
の連続スノ々ツタによって厚さ約200μ肥の非晶質磁
性材料を得ることができた。 次にこのIIKして作った本発明の非晶質磁性材料につ
いて、実験した結果について第1表及び第2表に基いて
説明する。第1表及び第2表は上述の如き製法により基
板上に非晶質磁性材料を付着させて、厚さ0.2m、直
径40謔の円盤状試料及び外径30m、内径20■のリ
ング状試料をそれぞれ作成し、これらの磁気分析、磁化
曲線の測定、示差熱分析、硬さ試験及び分極曲線の測定
をそれぞれ行ない、その試料の軟磁気特性、熱的安定性
。 機械的性質及び耐食性について調べた結果を示すもので
ある。 なお、このようにして作成した磁性材料が非晶質構造を
示すことの判定はターゲットとし″CFe。 Ka線を用い、x!1回折線を測定することによって行
なった。その結果第1表及び第2表に示す試料のX6回
折線は2〜3の散慢な回折リングのみシ示し、結晶のよ
うな鋭い回折線な示さず、これらが非晶質構造となって
いることが明らかとなった。 第1表はコjルト及び二オシの組成を種々変化させて作
った本発明のスパッタ非晶質磁性材料の室温における飽
和磁化、fIs和磁束密度、磁歪、保磁力、硬さ、結晶
化温度及びキューリ一点をそれぞれ示す、第1表におい
て飽和磁化及び飽和磁束密度はニオブの含有率が低い程
(二元系におい【はコバルトの含有率が高い程)高い値
を示す、又。 磁性材料として高い飽和磁束密度と共に優れた軟磁性を
示すためには磁気ひずみ(磁歪)が小さい事が必要であ
るが1本発明のスパッタ非晶質磁性材料は磁歪がいずれ
も負の比較的小さな値を示す。 本発明のスパッタ非晶質磁性材料の大きな特徴点の1つ
は磁歪が比較的小さな値を示し、更にその値が負である
点にある。即ち、近年半金属元素を含まない0〇−系非
晶質磁性材料(Co−Ti、 Zr。 Hf、  Ta、 W)が優れた軟磁性特性を示すこと
で注目され発表がなされている。これらのうちOO−丁
1系、Go−Zr系及びCo−Hf系非晶質磁性材料は
磁歪が正の値を示す材料であるから、この磁歪な実質的
に零にするためには例えばN1.Mo及びOrを加えな
ければならないが、このような元素は磁性材料の飽和磁
束密度を減少させてしまう。 一方Co−Ta系及びCo−W系非晶質磁性材料は磁歪
が負であることから例えばFe、Mn k加えて磁歪を
実質的に零にすることができ、更にこれらの元素は磁性
材料の飽和磁束密度を増加させるか少なくともはとんと
低下させないので良好な非晶質磁性材料であると言える
が、かかるCo−Ta系及びGo−W系非晶質磁性材料
においても本発明のCo−Nb系非晶質磁性材料に比し
て低い飽和磁束密度のものが得られるに過ぎない、即ち
本発明の非晶質磁性材料は例えば後述する第2表の試@
ム18 (OOu、5Ff34.5Nbto ) K示
す如<a歪が実質的に零で、12乃至13キロガウス以
上の極めて大きな飽和磁束密度を有する材料を作成する
ことができる。 従って本発明で最も好ましい非晶質磁性材料ゆコバルト
を主体とし、ニオブな40原子/セーセント月下含み、
更に鉄、マンガンの少なくともいずれか一方の追加的元
素な磁歪が実質的に零となる量含むものであり、この追
加的元素の量は1例えば(Ool−エμnz)8jNb
15の組成の非晶質磁性材料においてはXが0.02か
ら0.06の値にあることがよく、又、(Go、−xF
ew)asNbxiあるいはCCJ、13−JeX N
b1g、16ノ組fill)非&’lim性材料Kmい
てはXが0.01から0.03の値にあることがよ(1
゜ 又、ホウ素などの非晶質構造を形成することを容易とす
るための元素を添加したときの飽和磁束密度の低下及び
磁歪の変化を考慮すれば1本発明の非晶質磁性材INK
はこれらの元素を含まないことが好ましい。 本発明のスーぞツタ非晶質磁性材料KIL[求される軟
磁性の目安として保磁力は重要な性質であり。 この保磁力ができる限り小さいことが要求されるが、本
発明のスパッタ非晶質磁性材料は第1表に示す如く、比
較的に良好な値を示す、又この保磁力は第3表に示す如
く適当な条件での加熱処lJKより更に小さくすること
ができる。即ち、第3表に示す如く、試料43 (CO
ss、5Nbtt、−の組成における熱処理しない場合
の保磁力は180 m(leの値を示すが、#!3表に
示す各温度で30分熱処理することによって更に小さな
保磁力となることが判る0例えば360℃の温度で熱処
理したとf!135 m06.400℃の温度で熱処理
したときKは30 !DO・の極めて低い値な示す。 本発明における熱処理の条件は少なくとも非晶質磁性材
料を結晶化温度以下の温度で熱処理することが必要であ
るが、ニオブの組成比が高い場合には比較的低温の熱処
理で効果を生じるがニオブの組成比が低い場合には比較
的高温の熱処理を必要とする。即ちこの熱処理温度はニ
オブの組成比が高い場合150℃乃至結晶化温度で数時
間乃至1分根!、 ニオブの組成比が低い場合には25
0℃乃至結晶化温度で数時間乃至1分根度でよい。 又、加熱した後炉冷等によって2乃至3時間程度の除冷
を行なうことが好ましい、このa、飽和磁化に必要な数
Oe乃至#j1000gの磁界を与えることが%に箇ま
しい。 本発明のスパッタ非晶質磁性材料は上述した如く督れた
軟磁性を持つが、この他に材料学的特性として機械的性
質が良好であり且つ耐食性が高いという特長を有してい
る。即ち第3表において一例としてGo−N、b 2元
系の非晶質磁性材料の硬さを示すが、本発明の非晶質磁
性材料の硬さはビッカース硬さ試験法で520乃至10
23%Cl / m ”の極めて高い機械的強度を有し
、Nb量の増加とともに増加する性質を有する。 次に本発明の非晶質磁性材料の耐食性について第2図に
基いて説明する。第2図は前述の方法によって形成した
0、3乃至0,4RのCo−Nb非晶質磁性材料な基板
から剥離した材料を一方の電極とし、HgxC4x t
’他方の電極としてl規定の塩酸中に浸漬させ1両電極
間に電圧を印加し、両電極間に不均一電流が流れる電位
を測定した結果を示す。 以上の結果により本発明の非晶質磁性材料は塩素イオン
の存在によって通常見られる局部腐食の典型である孔食
が著しく抑制され、耐食性が極め【良好であることが判
る。 更に、一般に非晶質材料は一種の凍結された準安定状態
にあるため、*定の温度を結晶化してしまうことが知ら
れており、この温度が高い程安定性が高く、又キューリ
一点も高い程安定な磁気特性を得ることができるが、第
1表に示す如く本発明の非晶質磁性材料はこれらの温度
が極めて高く安定して良好な磁気特性を得ることが可能
である。 以上の説明においては主にGo−Nb 2元系の非晶質
磁性材料について述べたが、本発明の非晶質磁性材料に
は種々の第3元素を添加してもよい。 この第3元素の例としては例えば主に磁歪な変化させる
元素としてTi、Zr、HらV、TatGu、M。 及びWなどがあり、又主に飽和磁化を変化させる元素と
しCCr、b 更に主に非晶質構造を形成させることを容易とすルタ1
61’>元素として、Boo、St、P、Go、So。 In、AI及びSbなどがあり、これらは単独にあるい
は組合せて用いられる0本発明の非晶質磁性材料が自の
比較的小さな磁歪な示すことから好ましくは磁歪を正の
方向に変化させ且つ飽和磁束密度を低下させないi’e
、Mnの少なくともいずれか一方の元素を含むものであ
ることが最も好ましい。 同IIK少量の添加で磁歪な正の方向に変化させること
ができるZr、Ifの少なくともいずれか一方の元素を
含むものも好ましい、又、本発明のC。 −Nb系材料はB等の非晶質構造を形成することを容易
とする元素を含有しなくとも非晶質構造をとり得ること
から、これらの元素を含有しない材料とすることが好ま
しい。 本発明の非晶質磁性材料に上記の第3元素を添左した結
果について第2表に示す、この結果から第3元素を添加
した本発明の3元系非晶質磁性材料の飽和磁化及び飽和
磁束密度は上記した2元系非晶質磁性材料に比べて磁気
特性が変化し、飽和磁束密度が改善されていることが判
る。 更Ktl!、4f?にオイテ、CC;o1−IMx)、
、Wbl、r>M成の非晶質磁性材料の−としてFe、
Mnを用い、9!KXv値を種々変化させた場合の飽和
磁化及び磁歪なそれぞれ示す。更にこの第4表にはUと
してN1.Ti を用いた場合についても示している。 第4表の結果から明らかな如く、上記の組成の非晶質磁
性材料においてUとしてFe、Mnを適当量加えるとと
Kよって飽和磁化及び磁歪な著しく改善することができ
る0例えば、それぞれ磁歪が極めて小さな値を示す試料
、426.32.37及び38を比較すれば明らかな如
く、試料A626.32が大きな飽和磁化の値を示すこ
とがわかる。 このような3元系の非晶質磁性材料においても、上述し
た2元系の非晶質磁性材料と同様に加熱処理により保磁
力を更に小さくすることができる。 即ち、前述と同様和して各種の組成の非晶質磁性材料を
外径25wa+φ、内径15■φ、厚さ0.3簡のリン
グ状に形成した試料の飽和磁束密度及びこれを回転数3
50回/分、1000・の磁場の回転磁場中で400℃
、30分熱処理した後、除冷した時の熱処理前及び熱処
理後の保持力を第5表に示す、この表から明らかな如(
、これら各種り)非晶質磁性材料は熱処理によって保持
力が著しく改良されることが判る。 更にこの加熱処理においては、第3図に示す如(、加熱
処理温度が高くなるに従って保磁力が改良され、更にこ
の加熱を磁場の存在下で行なうことKより、磁場の存在
しない条件下で加熱を行なう場合に比して更に著しく保
磁力が改良されることが判る。 次に前記と同様な手段によってサファイア単結晶基板(
8面)Kl[厚5.700AのCo□、−・2.。 Nb1@、5の組成の非晶質磁性材料を形成したもの(
試料層45)及び膜厚1150 GA t> Go、、
、、Fe、5Nb、。 の組成の非晶質磁性材料を形成したもの(試料ム46)
な準備し、これv#I定磁界(Hm )を100 e 
550H2の条件下でその磁気特性を測定した結果を第
6表に示す、この表から明らかな如(、その組成比によ
って大きくその磁気特性も変化し、この例では試料層4
5の組成の非晶質磁性材料が試料A46の非晶質磁性材
料よりも更に好ましい磁気特性を示している。 史に本発明の非晶質磁性材料はその結晶化温度以下の温
度で熱処理するととにより、前述の如く保磁力を改良で
きると共に異方性磁界(Hk)をも改良することができ
る。これを試料層45の非晶質磁性材料を各種の温度で
熱処理した例を第7表に示す、この表から明らかなよう
に熱処理な行なうことによって異方性磁界を更に改良で
きることが明らかである。 以上第1表乃至第7表、及び第2図、第3図に示した結
果に基づいて本発明のGo−Ni 系非晶質磁性材料は
コバルトを主体とし、ニオブを最大40原子%を含むも
のであれば良好な軟磁性を示すことが判った。又、現在
実用されているヘッド材料として最高の飽和磁束密度な
持つセンダストの飽和磁束密度が0.9キロガウスであ
ることから!て上記の如くコノtルトを主体とし、ニオ
ブを4ON子%以下、特に好ましくは30原子シ以下含
む二元系非晶質磁性材料は十分に実用化しさる材料であ
り、更に第2表に示す如くこれに第3元素を加えること
Kより域領磁束密ltす大巾に改梼し与るので、上記の
コバルトを主体とし、ニオノを40原子シ以下、%に好
ましくは30原子%以下含む非晶w磁性材料は容易に極
めて高い磁束密iのものを得ることが可能となる。 以上鮮細に説明した通り1本発明は軟磁気特性が良<、
WA械的、化学的性質が良いので、例えば磁気ヘット0
材料、低周波及び高周波トランス、磁気増幅器及び磁気
フィルターとしての実用性が大きく、更にその組成によ
りキエーリ一点が変化することから熱センサとしても用
いることが可能である。 第2表 第31I 第4 第 ・ 表 第 1* 4、図面の簡単な説明 第111は本発明のスパッタ非晶質磁性材料を作成する
装Nf1概略断画図、第2図は本発明のス2ツタ非晶質
材料の耐食性を示すグラフ、第BWJは本発明のスノ臂
ツタ非晶質材料の加熱処il!による効果を示すグラフ
である。 亀1111111.0!容I1.2kttl:/−¥、
 3417/−ド、4,5,7.9は電源、6はターゲ
ット電番、8は基鈑である。 (嫌か3名)  学 13Wi 熱廻理清膚Ta(’C)
11th! ! l is the sputtered amorphous magnetic material of Honjitsu I14 [
In the schematic cross-sectional view of the apparatus O to be produced, zg is a graph showing the corrosion resistance of the sputtered amorphous material O of the present invention. Of the 1911th, 1 is a container! is Kando, S is 7 (and 5 others) 1B1 Figure 2 Figure 2 Nb (Original 3I-%) Procedure Supplement II:, Book 1M4Fil 59 jN May + > 6th l Neutral table small + 11 (411574# Patent Application No. 28064/2
Name of Tsuko Akira: Suno Tsuta Amorphous Magnetic Material and Manufacturing Method 3, Person Making Amendment (1) Relationship with Patent Applicant Name: Fuji A Keiyasu Kasumigaseki Hill Post Office P.O. Box No. 49 No. 7 Amendment Description of the subject matter 1, Title of the invention S/4 Ivy amorphous magnetic material and method for producing the same!411 Claims 1) '3-north ζ-olt as a main component and containing niobium at 40 atoms secent or less Features: Amorphous magnetic material. 2) Contains not more than 40 atomic percent of nitrogen, and further contains at least L additional elements selected from the group consisting of titanium, zirconium, hafnium, vanadium, mental, steel, molybdenum, and tungsten. Is the claim 1 stating “V*mold”? Sputtered amorphous magnetic material. Department. 3); A patent claim characterized in that it is mainly composed of Palt, contains 40 or less atomic cents of niobium, and further contains at least one additional element selected from the group consisting of chromium, manganese, nickel, and iron. Scope of the invention The amorphous magnetic material according to item 1. 4) Mainly Conocerto, 40 Niosi atoms, R-
and at least 111 additional elements selected from the group consisting of boron, carbon, silicon, phosphorus, germanium, soot, indium, arsenic, and antisulfur. Range W, sputtered amorphous magnetic material described in item 1. 5) Let niobium be the main subject and 401 [child) (-
4. The sputtered amorphous magnetic material according to claim 3, further comprising at least one additional element selected from the group consisting of iron and manganese. 6) A method for producing a sputtered amorphous magnetic material, which comprises heat-treating a sputtered amorphous magnetic material which is mainly made of niobium and contains 40 atoms or less of niobium at a temperature below the crystallization temperature. 3. Detailed Description of the Invention The present invention relates to a sputtered amorphous magnetic material and a method for manufacturing the same, and in particular to sputtered amorphous magnetic materials, which have excellent soft magnetic properties such as high saturation magnetic flux density, low coercive force and small magnetostriction. The present invention relates to highly magnetic materials and methods of manufacturing the same. Sputtered amorphous magnetic materials obtained using the sputtering method are known. The amorphous magnetic material thus obtained does not have a regular atomic arrangement unlike a crystalline magnetic material and does not have a long periodic structure. Since it is a material with a disordered atomic arrangement, it has no crystal magnetic anisotropy and exhibits good soft magnetic properties. Moreover, since this sputtered amorphous magnetic material is an amorphous material obtained by agglomerating metal in a gaseous state, that is, by a kind of freezing effect that directly forms a solid from a gas, i! The magnetic material in the molten state is injected, brought into contact with a high-speed rotating drum Km, and rapidly cooled to form an amorphous magnetic material ribbon. IIfI can get waist
Furthermore, in the ultra-quenching method described above, #I
- While an amorphous magnetic material cannot be formed unless the magnetic material further contains non-magnetic elements such as boron or silicon, in the snottering method, an amorphous magnetic material can be formed even without the addition of such elements. It can be said that the material obtained by this process is essentially a KM material. An object of the present invention is to provide a novel sputtered amorphous magnetic material and a method for manufacturing the same. The present invention mainly consists of niobium, with 40 atoms of niobium.
It is a sputtered amorphous magnetic material characterized by containing less than 100% of niobium.
01-7-7 A method for producing a sputtered amorphous magnetic material characterized by heat-treating an amorphous magnetic material containing less than 7 cents at a temperature below the crystallization temperature. Further, one embodiment of the present invention mainly contains cobalt. Contains less than 40 atoms of niobium, as well as titanium, zirconium, hafnium, panazicum, tantalum, steel,
Another aspect of the present invention is a sputtered amorphous magnetic material characterized by containing a small amount of additional elements selected from the group consisting of molybdenum, tungsten,
It is characterized by containing 1 rut as the main ingredient, 4 on % or less of 2 nitrate, and further containing at least ls of additional elements selected from the group consisting of chromium, manganese, nickel, and iron. The other aIII of the present invention, which is a crystalline magnetic material, is mainly composed of cobalt, niobium v40 atoms] (including less than -cent, and further contains Kfij elements, carbon, silicon, phosphorus, germanium, tin, benzene9 atoms, arsenic , at least one selected from the group consisting of antimony
It is a sputtered amorphous magnetic material characterized by containing additional elements of species, and Honji Town's other i** is mainly composed of cobalt, contains less than 40 atoms/sec of niobium, and further contains iron and manganese. A sputtered amorphous magnetic material containing at least one additional element selected from the group consisting of **. Next, an example of a method for manufacturing the sputtered amorphous magnetic material of the present invention will be described with reference to FIG. FIG. 1 is a schematic cross-sectional view showing an example of an apparatus for producing the sputtered amorphous magnetic material of the present invention. In Figure 1, the inside of container 1 is approximately 10 Torr.
A 9.99% Ar gas atmosphere is maintained. The introduction of Ar gas into the chamber 61 is carried out after preliminary evacuation of, for example, 10-'' Torr, and the chamber 61 is maintained at a vacuum of 10-'' Torr. Reference numerals 2 and 3 denote a cathode and an anode 9, each composed of a tungsten filament and a stainless steel plate.
A voltage and current of approximately V and 40 A are applied to generate plasma in the container 1. Here, the anode 3 is water-cooled, and a direct current positive voltage of about 100 V or less "t" may be applied by a power source 5. 6 is a target electrode, and a material containing at least Conolite and niobium is installed.
It is water cooled. A negative voltage of about 0 to 1500 V is applied to this target electrode 6 by a power source 7. Reference numeral 8 denotes a substrate for digitizing the amorphous magnetic material of the present invention, which is water-cooled and is further supplied with a power supply of up to 500 V by a power source 9.
A relatively negative voltage may be applied. The amorphous magnetic material of the present invention generates plasma by applying a voltage current of approximately IQV and 40 A between the cathode 92 and the 7 node 3, and ions generated in the plasma are
The target electrode 6 is sputtered by accelerating with a strong electric field of 2 KVC (maximum approximately 300 mm) to emit constituent atoms, which adhere to a substrate 8. Obtained by depositing K. In this way, it was possible to obtain an amorphous magnetic material with a thickness of about 200 μm by continuously cultivating it for 3 days. Next, the results of experiments conducted on the amorphous magnetic material of the present invention produced by IIK will be explained based on Tables 1 and 2. Tables 1 and 2 show disk-shaped samples with a thickness of 0.2 m and a diameter of 40 cm, and ring-shaped samples with an outer diameter of 30 m and an inner diameter of 20 cm, prepared by depositing an amorphous magnetic material on a substrate using the manufacturing method described above. Each sample was prepared and subjected to magnetic analysis, magnetization curve measurement, differential thermal analysis, hardness test, and polarization curve measurement to determine the soft magnetic properties and thermal stability of the sample. This shows the results of an investigation into mechanical properties and corrosion resistance. The determination that the magnetic material produced in this way exhibits an amorphous structure was made by measuring the x!1 diffraction line using Ka radiation as a target of "CFe".The results are shown in Table 1 and The X6 diffraction line of the sample shown in Table 2 shows only 2 to 3 scattered diffraction rings and no sharp diffraction lines like crystals, making it clear that these have an amorphous structure. Table 1 shows the saturation magnetization, fIs sum magnetic flux density, magnetostriction, coercive force, hardness, and crystallinity at room temperature of the sputtered amorphous magnetic materials of the present invention made by varying the composition of Colt and Niosci. In Table 1, which shows the magnetization temperature and Curie point, respectively, the saturation magnetization and saturation magnetic flux density show higher values as the niobium content is lower (in a binary system [and the cobalt content is higher)]. In order for a material to exhibit high saturation magnetic flux density and excellent soft magnetism, it is necessary to have a small magnetostriction (magnetostriction).1 The sputtered amorphous magnetic material of the present invention has a relatively small magnetostriction that is negative in both cases. One of the major features of the sputtered amorphous magnetic material of the present invention is that the magnetostriction exhibits a relatively small value, and furthermore, this value is negative. 〇-based amorphous magnetic materials (Co-Ti, Zr, Hf, Ta, W) have attracted attention and have been published as exhibiting excellent soft magnetic properties. Among these, OO-T1-based and Go- Zr-based and Co-Hf-based amorphous magnetic materials are materials in which magnetostriction exhibits a positive value, so in order to make this magnetostriction substantially zero, it is necessary to add, for example, N1.Mo and Or. Such elements reduce the saturation magnetic flux density of the magnetic material.On the other hand, since the magnetostriction of Co-Ta and Co-W amorphous magnetic materials is negative, for example, Fe, Mnk may be added to substantially reduce the magnetostriction. Furthermore, these elements can be said to be good amorphous magnetic materials because they increase the saturation magnetic flux density of the magnetic material or at least do not significantly reduce it. Even in the case of the -W-based amorphous magnetic material, a saturation magnetic flux density lower than that of the Co--Nb-based amorphous magnetic material of the present invention can only be obtained. Tests in Table 2 below @
(OOu, 5Ff34.5Nbto) It is possible to create a material that has substantially zero strain and has an extremely large saturation magnetic flux density of 12 to 13 kilogauss or more. Therefore, the most preferred amorphous magnetic material in the present invention is mainly composed of cobalt and contains less than 40 atoms/scent of niobium,
Further, it contains at least one of iron and manganese in an amount such that the magnetostriction is substantially zero, and the amount of this additional element is 1, for example (Ool-Eμnz)8jNb
In the amorphous magnetic material having the composition No. 15, X often has a value of 0.02 to 0.06, and (Go, -xF
ew) asNbxi or CCJ, 13-JeX N
b1g, 16 sets fill) For non-&'lim material Km, X may have a value of 0.01 to 0.03 (1
゜Also, considering the decrease in saturation magnetic flux density and the change in magnetostriction when adding an element such as boron to facilitate the formation of an amorphous structure, the amorphous magnetic material INK of the present invention
preferably does not contain these elements. The smooth amorphous magnetic material KIL of the present invention [coercive force is an important property as a measure of the required soft magnetism. This coercive force is required to be as small as possible, and the sputtered amorphous magnetic material of the present invention shows relatively good values as shown in Table 1, and this coercive force is shown in Table 3. It can be made even smaller than that obtained by heat treatment under suitable conditions. That is, as shown in Table 3, sample 43 (CO
The coercive force without heat treatment in the composition of ss, 5Nbtt, - is 180 m (le value is shown, but it can be seen that the coercive force becomes even smaller by heat treatment for 30 minutes at each temperature shown in table #!3. For example, when heat treated at a temperature of 360°C, K shows an extremely low value of 30!DO· when heat treated at a temperature of 360°C. When the niobium composition ratio is high, heat treatment at a relatively low temperature produces an effect, but when the niobium composition ratio is low, a relatively high temperature heat treatment is required. In other words, the heat treatment temperature is 150°C to the crystallization temperature for several hours to 1 minute when the niobium composition ratio is high, and 25°C when the niobium composition ratio is low.
It may be incubated for several hours to one minute at 0°C to the crystallization temperature. Further, after heating, it is preferable to perform slow cooling for about 2 to 3 hours by furnace cooling or the like, and it is preferable to apply a magnetic field of several Oe to #j of 1000 g necessary for saturation magnetization. The sputtered amorphous magnetic material of the present invention has excellent soft magnetism as described above, but also has other material properties such as good mechanical properties and high corrosion resistance. That is, in Table 3, the hardness of the Go-N, b binary amorphous magnetic material is shown as an example, and the hardness of the amorphous magnetic material of the present invention is 520 to 10 according to the Vickers hardness test method.
It has an extremely high mechanical strength of 23%Cl/m'', and has the property of increasing as the amount of Nb increases.Next, the corrosion resistance of the amorphous magnetic material of the present invention will be explained based on FIG. 2. In Figure 2, one electrode is a material peeled from a 0,3 to 0,4R Co-Nb amorphous magnetic material substrate formed by the method described above, and HgxC4x t
``The other electrode is immersed in l-regulated hydrochloric acid, a voltage is applied between the two electrodes, and the potential of non-uniform current flowing between the two electrodes is measured.The results are shown below. The above results show that the presence of chlorine ions in the amorphous magnetic material of the present invention significantly suppresses pitting corrosion, which is typical of localized corrosion normally observed, and has extremely good corrosion resistance. Furthermore, since amorphous materials are generally in a kind of frozen metastable state, it is known that they crystallize at a certain temperature; The higher the temperature, the more stable the magnetic properties can be obtained, and as shown in Table 1, the amorphous magnetic material of the present invention can have these temperatures extremely high and stably obtain good magnetic properties. In the above description, the amorphous magnetic material of the Go--Nb binary system was mainly described, but various third elements may be added to the amorphous magnetic material of the present invention. Examples of the third element include Ti, Zr, H, V, TatGu, and M as elements that mainly change magnetostriction. and W, etc., and CCr, b, which is an element that mainly changes the saturation magnetization, and Ruta 1, which mainly facilitates the formation of an amorphous structure.
61'>Elements include Boo, St, P, Go, So. There are In, AI, Sb, etc., and these are used alone or in combination.Since the amorphous magnetic material of the present invention exhibits a relatively small magnetostriction, it is preferable to change the magnetostriction in a positive direction and to achieve saturation. i'e that does not reduce magnetic flux density
, Mn is most preferable. It is also preferable that IIK contains at least one of Zr and If, which can change the magnetostriction in a positive direction by adding a small amount, and C of the present invention. Since the -Nb-based material can have an amorphous structure without containing elements such as B that facilitate the formation of an amorphous structure, it is preferable to use a material that does not contain these elements. The results of adding the third element to the amorphous magnetic material of the present invention are shown in Table 2. From these results, the saturation magnetization and It can be seen that the saturation magnetic flux density is improved by changing the magnetic properties compared to the binary amorphous magnetic material described above. More Ktl! ,4f? Nioite, CC; o1-IMx),
, Wbl, Fe as - of the amorphous magnetic material with r>M composition,
Using Mn, 9! The saturation magnetization and magnetostriction are shown when the KXv value is varied. Furthermore, in this Table 4, N1. The case using Ti is also shown. As is clear from the results in Table 4, when appropriate amounts of Fe and Mn are added as U to an amorphous magnetic material having the above composition, K can significantly improve saturation magnetization and magnetostriction. As is clear from a comparison of samples 426.32.37 and 38, which show extremely small values, sample A626.32 shows a large saturation magnetization value. Even in such a ternary amorphous magnetic material, the coercive force can be further reduced by heat treatment, similar to the above-mentioned binary amorphous magnetic material. That is, the saturation magnetic flux density of a sample formed of amorphous magnetic materials of various compositions in the shape of a ring with an outer diameter of 25 wa + φ, an inner diameter of 15 φ, and a thickness of 0.3 mm, and the rotation speed of 3.
50 times/min, 400°C in a rotating magnetic field of 1000°
, Table 5 shows the holding power before and after heat treatment when slowly cooling after heat treatment for 30 minutes.
It can be seen that the coercivity of amorphous magnetic materials (of these various types) is significantly improved by heat treatment. Furthermore, in this heat treatment, as shown in Fig. 3, the coercive force is improved as the heat treatment temperature increases, and since this heating is performed in the presence of a magnetic field, it is possible to conduct heating in the absence of a magnetic field. It can be seen that the coercive force is further improved significantly compared to the case where the sapphire single crystal substrate (
8th side) Kl [Co□ with thickness 5.700A, -2. . An amorphous magnetic material with a composition of Nb1@, 5 (
Sample layer 45) and film thickness 1150 GA t> Go,,
,,Fe,5Nb,. (sample 46) formed of an amorphous magnetic material with a composition of
Prepare a constant magnetic field (Hm) of 100 e
Table 6 shows the results of measuring the magnetic properties under the conditions of 550H2.
The amorphous magnetic material having composition No. 5 exhibits more preferable magnetic properties than the amorphous magnetic material of sample A46. By heat-treating the amorphous magnetic material of the present invention at a temperature below its crystallization temperature, the coercive force can be improved as described above, and the anisotropy magnetic field (Hk) can also be improved. Table 7 shows examples in which the amorphous magnetic material of the sample layer 45 was heat-treated at various temperatures.As is clear from this table, it is clear that the anisotropic magnetic field can be further improved by heat-treating. . Based on the results shown in Tables 1 to 7 and Figures 2 and 3, the Go-Ni amorphous magnetic material of the present invention is mainly composed of cobalt and contains up to 40 at% of niobium. It was found that if the material is 100%, it exhibits good soft magnetism. Also, Sendust has the highest saturation magnetic flux density of any head material currently in use, with a saturation magnetic flux density of 0.9 kilogauss! As mentioned above, the binary amorphous magnetic material which is mainly composed of niobium and contains 4ON% or less, particularly preferably 30 atoms or less, is a material that can be put to practical use, and is further shown in Table 2. Adding a third element to this will greatly improve the regional magnetic flux density than K, so the above-mentioned cobalt will be the main component, and iono will be included at less than 40 atoms, preferably at most 30 at%. Amorphous magnetic materials with extremely high magnetic flux density i can be easily obtained. As explained in detail above, the present invention has good soft magnetic properties.
WA has good mechanical and chemical properties, so for example, magnetic head 0
It has great practicality as a material, low-frequency and high-frequency transformers, magnetic amplifiers, and magnetic filters, and furthermore, because the Chieri point changes depending on its composition, it can also be used as a thermal sensor. Table 2, No. 31I, No. 4 - Table No. 1 * 4, Brief description of the drawings No. 111 is a schematic cross-sectional view of the apparatus Nf1 for producing the sputtered amorphous magnetic material of the present invention, and FIG. A graph showing the corrosion resistance of the ivy amorphous material, No. BWJ shows the heat treatment of the ivy amorphous material of the present invention! This is a graph showing the effect of Turtle 1111111.0! Volume I1.2kttl:/-¥,
3417/- code, 4, 5, 7.9 are power supplies, 6 is the target electrical number, and 8 is the base plate. (3 people who don't like it) Gaku13 Wi Netsumawari Seihada Ta ('C)

Claims (1)

【特許請求の範囲】 1)コパル)倉主体とし、ニオブを40原子パー−ント
以下含むことを特徴とするスパッタ非晶質磁性材料。 2)コバルトを主体とし、ニオブを40原子パー竜ント
以下含み、更にチタン、ジルコニウム、ハフニウム、バ
ナジウム、タンタル、銅、モリブデン21ングスデンか
ら成る群から選ばれ良少なくと41種の追加的元素を含
む仁とを特徴とする特許饋求O範日第1項記載のスパッ
タ非晶質磁性材料。 3)コバルトか主体とし、ニオブ會40j[子バー士ン
ト以下含み、更にり寵ム、マンガン、ニッケル、鉄から
載る詳からaばれた少なくとも1゛種O追加的元嵩を會
むことを特徴とする特許―求の軛囲第1項配蒙Oスパッ
タ非晶質磁性材れ。 リ コバルト【主体とし、ニオブを40原子パーセント
以下含み、更にほう素、炭素、けい素、リン、ゲルマニ
ウム、すす、インジウム、ひ素、アンチモンから成る群
から違ばれた少くとも1種O追加的元素を含む仁とを特
徴とする特許請求の範囲91項記載のスパッタ非晶質磁
性材料。 5)コバルトを主体とし、ニオブfr40J[子パーセ
ント以下含み更に鉄及びマンガンからなる群から選ばれ
え少くとも1種O追加的元素を含むこと1*黴とする特
許請求の範囲第S項記載Oスパッタ非晶質磁性材料。 6)コバルトを主体とし、ニオブを405子パー七ント
以下含むスパッタ非晶質磁性材料【結晶化Ill以下O
II度で熱処理すること七%黴とするスパッタ非晶質磁
性材料O製造方法。
[Scope of Claims] 1) A sputtered amorphous magnetic material which is mainly composed of copal and contains 40 atomic percent or less of niobium. 2) Mainly composed of cobalt, containing up to 40 atoms per ton of niobium, and further containing at least 41 additional elements selected from the group consisting of titanium, zirconium, hafnium, vanadium, tantalum, copper, and 21 ngsdenum of molybdenum. The sputtered amorphous magnetic material according to item 1 of the patent application, characterized in that: 3) Mainly composed of cobalt, containing at least 100% of niobium (including niobium, manganese, nickel, iron, etc.) and an additional mass of at least 1 species, which is further atomized from manganese, nickel, and iron. Patent entitled - Clause 1: Dispersion of sputtered amorphous magnetic materials. cobalt [mainly containing 40 atomic percent or less of niobium, and at least one additional element different from the group consisting of boron, carbon, silicon, phosphorus, germanium, soot, indium, arsenic, and antimony. 92. The sputtered amorphous magnetic material according to claim 91, characterized in that the sputtered amorphous magnetic material comprises: 5) Mainly composed of cobalt, containing less than 40% of niobium fr40J, and further containing at least one additional element selected from the group consisting of iron and manganese. Sputtered amorphous magnetic material. 6) Sputtered amorphous magnetic material mainly composed of cobalt and containing less than 405% niobium [crystallized Ill or less O
A method for producing sputtered amorphous magnetic material O by heat treatment at II degree to make it 7% moldy.
JP57028064A 1982-02-25 1982-02-25 Sputtered amorphous magnetic material and its manufacture Pending JPS58147538A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP57028064A JPS58147538A (en) 1982-02-25 1982-02-25 Sputtered amorphous magnetic material and its manufacture
FR8303001A FR2522188B1 (en) 1982-02-25 1983-02-24 MAGNETIC MATERIAL AMORPHOUS BY SPRAYING PROCESS AND METHOD FOR THE PRODUCTION THEREOF
NL8300695A NL8300695A (en) 1982-02-25 1983-02-24 SPUTTER PROCESS AMORF MAGNETIC MATERIAL AND METHOD FOR PREPARING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57028064A JPS58147538A (en) 1982-02-25 1982-02-25 Sputtered amorphous magnetic material and its manufacture

Publications (1)

Publication Number Publication Date
JPS58147538A true JPS58147538A (en) 1983-09-02

Family

ID=12238329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57028064A Pending JPS58147538A (en) 1982-02-25 1982-02-25 Sputtered amorphous magnetic material and its manufacture

Country Status (3)

Country Link
JP (1) JPS58147538A (en)
FR (1) FR2522188B1 (en)
NL (1) NL8300695A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62210607A (en) * 1986-03-12 1987-09-16 Matsushita Electric Ind Co Ltd Magnetic alloy film
CN102649162A (en) * 2012-04-26 2012-08-29 中山大学 Method for preparing noble metal nano material or transitional metal oxide nano material
CN104451467A (en) * 2014-12-15 2015-03-25 郑州大学 Cobalt-based block amorphous alloy and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193235A (en) * 1983-04-15 1984-11-01 Hitachi Ltd Co-nb-zr type amorphous magnetic alloy and magnetic head using the same
US20160160331A1 (en) * 2013-07-12 2016-06-09 Hewlett-Packard Development Company, L.P. Amorphous thin metal film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE7511398L (en) * 1974-10-21 1976-04-22 Western Electric Co MAGNETIC DEVICE
US4056411A (en) * 1976-05-14 1977-11-01 Ho Sou Chen Method of making magnetic devices including amorphous alloys
WO1981000861A1 (en) * 1979-09-21 1981-04-02 Hitachi Metals Ltd Amorphous alloys
JPS5789450A (en) * 1980-11-21 1982-06-03 Matsushita Electric Ind Co Ltd Amorphous magnetic alloy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62210607A (en) * 1986-03-12 1987-09-16 Matsushita Electric Ind Co Ltd Magnetic alloy film
JPH0573242B2 (en) * 1986-03-12 1993-10-14 Matsushita Electric Ind Co Ltd
CN102649162A (en) * 2012-04-26 2012-08-29 中山大学 Method for preparing noble metal nano material or transitional metal oxide nano material
CN104451467A (en) * 2014-12-15 2015-03-25 郑州大学 Cobalt-based block amorphous alloy and preparation method thereof
CN104451467B (en) * 2014-12-15 2016-04-27 郑州大学 A kind of cobalt-base body amorphous alloy and preparation method thereof

Also Published As

Publication number Publication date
NL8300695A (en) 1983-09-16
FR2522188A1 (en) 1983-08-26
FR2522188B1 (en) 1988-06-24

Similar Documents

Publication Publication Date Title
US4236946A (en) Amorphous magnetic thin films with highly stable easy axis
JPS5827941A (en) Manufacture of amorphous thin film
CN107614715A (en) Contain L10The iron-nickel alloy constituent of sections nickel rule phase, contain L10The manufacture method of the iron-nickel alloy constituent of sections nickel rule phase, the iron-nickel alloy constituent using amorphous as principal phase, the foundry alloy of amorphous material, amorphous material, the manufacture method of magnetic material and magnetic material
JP2004171606A (en) Manufacturing of nanocomposite thin film for high density magnetic recording medium
JPH0533461B2 (en)
JPS60157715A (en) Magnetic recording medium
US6350323B1 (en) High permeability metal glassy alloy for high frequencies
JPS58147538A (en) Sputtered amorphous magnetic material and its manufacture
JPS60220914A (en) Magnetic thin film
Miyazaki et al. Giant magnetoresistance in Co–Cu granular alloy films and nanowires prepared by pulsed-electrodeposition
Ma et al. A study of sputtering process for nanocrystalline FeAlN soft magnetic thin films
JP2000503169A (en) Distributed gap electric choke
KR940007048B1 (en) Soft-magnetic materials
Fukumiya et al. Thermal stability and hardness of metastable Co–C composite alloy films
CN108251799B (en) Magnetoelectric coupling heterojunction structure based on amorphous SmCo and preparation method and application thereof
EP0007755B1 (en) Method for producing a magnetic recording medium and magnetic recording medium so produced
Nadzri et al. A review of iron nitride based thin films development
JP2710441B2 (en) Soft magnetic laminated film
JPS6039157A (en) Manufacture of amorphous magnetic alloy
JP3075332B2 (en) High electrical resistivity magnetic thin film
Sánchez Magnetic properties of NiTi/(Ni, Co) heterostructures
Kitada Annealing behaviour and magnetic properties of Co/Pt and Fe/Pt bilayer thin films
JPS6289312A (en) Magnetically soft thin film
JPS5975610A (en) Iron base magnetic alloy thin film and manufacture thereof
Richards Some Recent Developments in Magnetic Alloys