JPS5814525A - Manufacturing semiconductor device - Google Patents

Manufacturing semiconductor device

Info

Publication number
JPS5814525A
JPS5814525A JP11186781A JP11186781A JPS5814525A JP S5814525 A JPS5814525 A JP S5814525A JP 11186781 A JP11186781 A JP 11186781A JP 11186781 A JP11186781 A JP 11186781A JP S5814525 A JPS5814525 A JP S5814525A
Authority
JP
Japan
Prior art keywords
substrate
region
single crystal
temperature
semiconductor region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11186781A
Other languages
Japanese (ja)
Other versions
JPH0376017B2 (en
Inventor
Junji Sakurai
桜井 潤治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP11186781A priority Critical patent/JPS5814525A/en
Publication of JPS5814525A publication Critical patent/JPS5814525A/en
Publication of JPH0376017B2 publication Critical patent/JPH0376017B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To perform single crystallization surely by a method wherein thermal resistance between a part of a non-single crystal semiconductor region and the bottom surface of a substrate is made smaller than between the other parts and the bottom surface of the substrate, then a part of which temperature reaches the crystallization temperature first after an energy beam irradiated is set around the center in the semiconductor region. CONSTITUTION:On an Si substrate 1, an Si3N4 mask 3 and selectively SiO2 2 are provided. With the mask eliminated, SiO2 4 having the thickness of approximately 50mm. is formed on the part 3. A non-single crystal Si region 5 that is formed on the SiO2 4 is irradiated by the laser beam, etc. to heat up to more than the fusion temperature, then cooled from the substrate side. Heat is conducted from the region 5 to the substrate 1 through the films 2 and 4. The thermal resistivity of SiO2 is approximately 10 times larger than that of Si, therefore, the temperature at a position corresponding to the part 3 will be lowest, thereby the temperature reaches the recrystallization temperature faster than the other positions, and recrystallization begins and gradually spreads toward the perimeter, resulting in sure completion of single crystallization.

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法、特に絶縁基板面上の分
離さt1次非単結晶半導体額斌tエネ゛ルギ線の照射に
より単結晶化する方法に関す。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of monocrystallizing a separated t1-order non-single crystal semiconductor on an insulating substrate surface by irradiating it with a t energy beam.

表面妙IP#物よりなる基板上に島状に分離され次午導
体素子全形成するSol(f3111eonanIna
ut10ng  5ubstrat@)構造の半導体装
置の製造工sにおいて、絶縁基板面上の非単結晶シリコ
ンすなわち多結晶シリコン或い扛非結晶シリコンにより
形成された島状に分離された薄膜状牛導体領竣會単結晶
化する熱処理に実施する場合に、特に対策を講じない@
す、各牛導体領絨の端部がその中央部分に比較して低温
となり、再結晶化は周辺部分より始する穴めに多結晶と
なり易く、単結晶化の目的を達成するためKは各半導体
領域の中央附近の一個所に温度の最低点を設けて、再結
晶化tこの位置より開始させることが必要とされている
Sol (f3111eonanIna
In a manufacturing process for a semiconductor device having a ut10ng 5ubstrat@) structure, thin film conductor regions separated into islands formed by non-single crystal silicon, that is, polycrystalline silicon or amorphous silicon on an insulating substrate surface are completed. No special measures are taken when performing heat treatment to form a single crystal.
The ends of each conductor area are lower in temperature than the center, and recrystallization tends to form polycrystals in the holes starting from the peripheral areas.In order to achieve the purpose of single crystallization, K is It is necessary to provide a lowest temperature point at a location near the center of the semiconductor region and to initiate recrystallization from this location.

本発明は、勅記の単結晶化のためのエネルギ線すなわち
波動或い扛粒子ビーム照射による熱処理において、再結
晶化【−個所より開始せしめる具体的でかつ確実な方法
を得ること上目的とする。
The purpose of the present invention is to obtain a specific and reliable method for starting recrystallization from a point in heat treatment using an energy beam, that is, wave or particle beam irradiation for single crystallization according to the Imperial Rescript. .

本発明は、非単結晶半導体領域の一部分と基板下面との
間の熱抵抗を、非単結晶半導体領域の他の部分と基板下
面との間の熱抵抗より小ならしめて、エネルギ線の照射
後結晶化温度に最初に到達する位置を各半導体領域内k
、通常は中央附近に設定することKより達成される。
The present invention makes the thermal resistance between a part of the non-single crystal semiconductor region and the lower surface of the substrate smaller than the thermal resistance between the other part of the non-single crystal semiconductor region and the lower surface of the substrate, and The position where the crystallization temperature first is reached is determined by k within each semiconductor region.
, is usually achieved by setting K near the center.

9下本発明を実施例により図面を用いて詳細に説明する
。第1図(a)及び(b)は第一の実施例を示す平面図
及び断面図である0本実施例においてにシリコン基板1
のRmK二酸化シリ”7(S i O,)よpなる絶縁
膜2t−熱酸化法により形成するKあ7’l、予め基板
l上に窒化シリコン(811N4)等より々るマスクを
配設することくより、%牛導体領琥形成位置に一個所づ
つ、24mX2μm程駅の面積食前する酸化を阻止され
た部分3を設けて厚さ約1μmの二酸化シリコン膜を形
成し、次いで前記マスクを除去して更に酸化を行ない、
先の酸化を阻止された部分3にシいて厚さ約50nmの
二酸化シリコン膜4管形成した・これが本発明の特徴と
する給線基板の一例である。なお二酸化シリコンli4
に代えて、窒化シリコン膜等を形成してもよい。
9, the present invention will be explained in detail by way of examples with reference to the drawings. FIGS. 1(a) and 1(b) are a plan view and a cross-sectional view showing a first embodiment.
An insulating film 2t made of RmK silicon dioxide (S i O,) is formed by a thermal oxidation method, and a mask made of silicon nitride (811N4) or the like is placed on the substrate l in advance. Specifically, a silicon dioxide film with a thickness of about 1 μm was formed by forming a silicon dioxide film with a thickness of about 1 μm by providing a portion 3 of about 24 m x 2 μm in area where the area of the conductor was to be formed, and which was prevented from oxidation, and then removing the mask. and further oxidize,
Four tubes of silicon dioxide film with a thickness of about 50 nm were formed on the portion 3 where the oxidation was previously prevented.This is an example of a feed line substrate that is a feature of the present invention. Furthermore, silicon dioxide li4
Instead, a silicon nitride film or the like may be formed.

以上の如き絶縁基板上に化学蒸着法等により非単結晶シ
リコン層を厚さ約400 nmK形成し、島状に分離さ
れた非単結晶シリコン領域5を形成すべき部分に窒化シ
リコンよjlにるマスクを用い1熱酸化処理を行なう、
この熱酸化処Mは隣接する領域との中間の部分の非単結
晶シリコン層が完全に酸化されるまで行ない、分離され
九非単結晶シリコン領琥5を形成する。
A non-single crystal silicon layer with a thickness of about 400 nm is formed on the insulating substrate as described above by chemical vapor deposition or the like, and a layer of silicon nitride is deposited on the portion where the island-shaped non-single crystal silicon region 5 is to be formed. 1. Perform thermal oxidation treatment using a mask.
This thermal oxidation treatment M is carried out until the non-single crystal silicon layer in the intermediate portion between adjacent regions is completely oxidized, and is separated to form nine non-single crystal silicon regions 5.

この基板上レーザ光等の波動或いは電子その他の粒子ビ
ームを照射することKよシ加熱して非単結晶シリコン領
域5t−融解温度以上とし、主として基板側より冷却す
る。このとき、非単結晶シリコン領域5より基板1への
熱伝導は二酸化シリコン膜2及び4を介して行なわれる
が、二酸化シリコンの熱比抵抗にシリコンに比較して大
略lO倍程度であるためにに酸化シリコン膜厚の薄い第
一の酸化管阻止された部分3に対応する位置が非単結晶
シリコン領域5内で最も低温となり、この位置が最初に
再結晶温度に到達して再結晶化はこの位置より始tり次
第に周囲に拡がるために単結晶を得る。
The substrate is heated by irradiating waves such as laser light or beams of electrons or other particles to a temperature higher than the melting temperature of the non-single crystal silicon region 5t, and is cooled primarily from the substrate side. At this time, heat conduction from the non-single crystal silicon region 5 to the substrate 1 is carried out via the silicon dioxide films 2 and 4, but since the thermal specific resistance of silicon dioxide is approximately 1O times that of silicon, The position corresponding to the first oxidation tube blocked portion 3 where the silicon oxide film is thin becomes the lowest temperature in the non-single crystal silicon region 5, and this position first reaches the recrystallization temperature and recrystallization does not occur. Starting from this position, a single crystal is obtained by gradually expanding to the periphery.

以上の如く形成された島状に分離された単結晶シリコン
領域が配設されたf!板面上KN−MO8電界効果トラ
ンジスタ(N−MOS  FET)k形成した実施例を
第1110(c)及び(d)K示す、第1図(c)は平
面図であって、ゲート電極6、ソース領域7、ドレイン
領域8、及びゲート電極6への配線9、ソース領j11
7への配@10、ドレイン領域8への配置111及び各
配線のコンタクトのための層間絶縁膜の開口及び第一の
酸化管阻止され′fcs分3のみを示し、第1図(d)
H#!1図(c)OA−A断面図である。
The f! 1110(c) and (d)K show an embodiment in which a KN-MO8 field effect transistor (N-MOS FET) was formed on a plate surface. FIG. 1(c) is a plan view, in which the gate electrode 6, Source region 7, drain region 8, wiring 9 to gate electrode 6, source region j11
7, the arrangement 111 to the drain region 8, the openings in the interlayer insulating film for the contacts of each wiring, and only the first oxidized tube blocked 'fcs part 3 are shown, as shown in FIG. 1(d).
H#! FIG. 1(c) is a sectional view taken along OA-A.

第1図−)乃至(d) K示した実施例においては第一
の酸化t−阻止された部分3はN−MOSFETのソ・
−ス領域7の下に位置したが、苧導体素子の形成に際し
て、絶縁膜の薄い第一の酸化t−阻止されり部分30直
上を避けることも゛可能である・即ち第211(a)K
示す如く、第1図(b)[示した第一の実施例と同様に
基板21の表面に絶縁膜22及び絶縁膜の薄い部分23
に形成後、非単結晶シリコン層を形成し、パターニング
を行って島状に分離された非単結晶シリコン領域を得、
次いでレーザ光等の波動或いは電子その他の粒子ビーム
vm射することにより加熱[7丁卯単結晶シリコン領緘
會融解し、これを冷却するとき絶縁膜の薄い部分23の
効果により単結晶シリコン領域24t−得る。こン等に
よるマスク25t−形成して熱酸化することにより、前
記単結晶シリコン領堵24のうち、絶縁膜の薄い部分2
31に含むマスク25の被覆しな・い部分に酸化さ名、
新たな単結晶シリコン領域26を得る。或いに、前記マ
スク25に:代ってホトリソグラフィ用マスク25′を
形成し、絶縁膜の薄い部分23の真土部等t″選択的に
除去して新たな単結晶シリコン9A斌を得る。
1-) to (d) K In the embodiment shown, the first oxidation-blocked portion 3 is the
However, when forming the conductor element, it is also possible to avoid directly above the thin first oxidation-blocking portion 30 of the insulating film.
As shown in FIG. 1(b) [similar to the first embodiment shown, an insulating film 22 and a thin part 23 of the insulating film are formed on the surface of the substrate 21.
After forming a non-single crystal silicon layer, patterning is performed to obtain non-single crystal silicon regions separated into islands.
Next, the single crystal silicon region 24t is heated by irradiating waves such as laser light or electron or other particle beams to melt the single crystal silicon region 24t, and when it is cooled, the single crystal silicon region 24t is - get. By forming a mask 25t using the above and thermally oxidizing the thin portion 2 of the insulating film in the single crystal silicon region 24,
Oxidized portions of the mask 25 included in 31 that are not covered,
A new single crystal silicon region 26 is obtained. Alternatively, a photolithography mask 25' is formed in place of the mask 25, and the base part etc. of the thin part 23 of the insulating film is selectively removed to obtain a new single crystal silicon 9A. .

v上の実施例においてに、基板をシリコン、基板上の絶
縁膜を二酸化シリコンとしたが、基板及び絶縁膜?形成
する物質は前記例に限定されるものでになく、μ・板を
形成する物質の熱比抵抗が絶縁膜を形成する物質の熱比
抵抗より/J1となる組合せ倉選択し、単結晶化する領
域のうち、再結晶化を開始した11点の下部においτP
#Ht簿〈すればよい。
v In the above embodiment, the substrate was silicon and the insulating film on the substrate was silicon dioxide, but what about the substrate and the insulating film? The material to be formed is not limited to the above example, but a combination in which the thermal resistivity of the material forming the μ plate is /J1 than that of the material forming the insulating film is selected, and a single crystal is formed. τP at the bottom of the 11 points where recrystallization started in the region where
#Ht book〈Just do it.

更に熱抵抗の小なる部分を形成する他の方法として框、
基板より熱比抵抗が小である瞼質、例えばモリブデン(
Mo)による点状パターンをシリコン基板上に配設し、
しかる後に化学蒸着法等により絶縁膜を形成すれば、点
状パターンが埋設された位置は熱抵抗が低くなる。
Another way to create a part with even lower thermal resistance is to use a frame,
Eyelid materials with lower thermal resistivity than the substrate, such as molybdenum (
A dot pattern made of Mo) is arranged on a silicon substrate,
If an insulating film is then formed by chemical vapor deposition or the like, the thermal resistance will be lowered at the position where the dotted pattern is embedded.

また、基板が半導体、例えばシリコンよりなりその比抵
抗が20ohm−amであるとき、放熱路を配設する位
置Oみに選択的に多量のイオン注入を行ない、例えば砒
素イオン(As”l濃f會4 x lG”/−程度とす
る。このとき電気抵抗とともにこの位置の熱抵抗もイオ
ン注入しない領域に比験して相対的に低下する。
Further, when the substrate is made of a semiconductor, for example, silicon and its resistivity is 20 ohm-am, a large amount of ions are selectively implanted only at the position O where the heat dissipation path is provided, for example, arsenic ions (As) 4.times.1G"/-. At this time, the thermal resistance at this position as well as the electrical resistance is relatively reduced compared to the region where ions are not implanted.

本発明は以上説明した如く、SOI構造の半導体装置の
製造工程において、l!緑基板上の非単結晶シリコンに
より形成された半導体領域會エネルギ線すなわち波動或
いは粒子ビーム照射によ9糎熱融解し再結晶せしめて単
結晶化するに際し、序導体領域の一部分と基板下面との
間の熱抵抗を、半導体領域の他の部分と基板下面との間
O熱a仇より小とすることKより1半導体領櫨内に設定
された一点が最初に再結晶温[K到達して仁の点より再
結晶化が開始さ名ることにより単結晶化を確実ならしめ
る効果を有する。
As explained above, the present invention provides l! When a semiconductor region formed of non-single-crystal silicon on a green substrate is thermally melted and recrystallized into a single crystal by irradiation with an energy beam, that is, a wave or a particle beam, a part of the conductor region and the bottom surface of the substrate are The thermal resistance between the other parts of the semiconductor region and the bottom surface of the substrate should be smaller than the thermal resistance between the other part of the semiconductor region and the lower surface of the substrate. Since recrystallization starts from the core point, it has the effect of ensuring single crystallization.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)及び(c)は本発明の実施例を示す1lI
s平面図、第1図(b)及び(d)はそれヤれ第11侃
)或いは(e) K対応する断面図で#り、第2WJ(
a)及び(b)*他の実施例管示す断面@でIhゐ・ 図において、1は基板、2ね終縁膜、3は第一の酸化を
阻止された部分、4はP縁膜、5はシリコン領域、6は
ゲート電極、7はソース領域、8にドレイン領域、9灯
配曽、10は配線、11は配線、21は基板、22FX
?縁膜、23は終縁膜の薄い部分、24はシリコン領域
、25はiスフ、26はシリコン領域を示す。 :P1図((L) (レノ フ (Q) (d) P2図(勾 2 (し)
FIGS. 1(a) and (c) show an embodiment of the present invention.
s plan view, Figures 1 (b) and (d) are the 11th section) or (e) K is the corresponding sectional view, and the 2nd WJ (
a) and (b) *Cross section showing other embodiments @Ihゐ In the figure, 1 is the substrate, 2 is the terminating film, 3 is the first oxidation-blocked part, 4 is the P rim film, 5 is a silicon region, 6 is a gate electrode, 7 is a source region, 8 is a drain region, 9 is a light source, 10 is a wiring, 11 is a wiring, 21 is a substrate, 22FX
? 23 is a thin portion of the terminating film, 24 is a silicon region, 25 is an i-splash, and 26 is a silicon region. : P1 figure ((L) (Lenov (Q) (d) P2 figure (gradient 2 (shi)

Claims (1)

【特許請求の範囲】[Claims] 基板上に形成された絶縁膜上に非単結晶半導体領域を配
設し、エネルギ繊の照射により#非単結晶半導体領域を
単結晶半導体領域に変換し、該単結晶半導体領域に半導
体素子を形成する半導体装置の製造方法において、該非
単結晶半導体領域の一部分と骸基板下面との間の熱抵抗
を、該非単結晶半導体領域の他の部分と該基板下面との
間の熱抵抗より小ならしめて、腋エネルギ線照射を行な
うことに特徴とする半導体装置の製造方法。
A non-single-crystal semiconductor region is provided on an insulating film formed on a substrate, the non-single-crystal semiconductor region is converted into a single-crystal semiconductor region by irradiation with an energy fiber, and a semiconductor element is formed in the single-crystal semiconductor region. In the method of manufacturing a semiconductor device, the thermal resistance between a part of the non-single crystal semiconductor region and the bottom surface of the skeleton substrate is made smaller than the thermal resistance between the other part of the non-single crystal semiconductor region and the bottom surface of the substrate. , a method for manufacturing a semiconductor device characterized by performing armpit energy ray irradiation.
JP11186781A 1981-07-17 1981-07-17 Manufacturing semiconductor device Granted JPS5814525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11186781A JPS5814525A (en) 1981-07-17 1981-07-17 Manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11186781A JPS5814525A (en) 1981-07-17 1981-07-17 Manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS5814525A true JPS5814525A (en) 1983-01-27
JPH0376017B2 JPH0376017B2 (en) 1991-12-04

Family

ID=14572149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11186781A Granted JPS5814525A (en) 1981-07-17 1981-07-17 Manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPS5814525A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147425A (en) * 1983-02-10 1984-08-23 Seiko Instr & Electronics Ltd Formation of semiconductor crystal film
JPS6017911A (en) * 1983-07-11 1985-01-29 Agency Of Ind Science & Technol Manufacture of semiconductor device
JPS60210833A (en) * 1984-04-05 1985-10-23 Agency Of Ind Science & Technol Manufacture of semiconductor device
JPS6178917A (en) * 1984-09-22 1986-04-22 Teruo Koi Construction of foundation pile

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
APPL PHYS LETT *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147425A (en) * 1983-02-10 1984-08-23 Seiko Instr & Electronics Ltd Formation of semiconductor crystal film
JPS6017911A (en) * 1983-07-11 1985-01-29 Agency Of Ind Science & Technol Manufacture of semiconductor device
JPS60210833A (en) * 1984-04-05 1985-10-23 Agency Of Ind Science & Technol Manufacture of semiconductor device
JPS6178917A (en) * 1984-09-22 1986-04-22 Teruo Koi Construction of foundation pile

Also Published As

Publication number Publication date
JPH0376017B2 (en) 1991-12-04

Similar Documents

Publication Publication Date Title
JPS6281709A (en) Manufacture of semiconductor device
JPS5891621A (en) Manufacture of semiconductor device
JPS63102265A (en) Manufacture of semiconductor device
JPS62132311A (en) Recrystallizing method for conductor film
JPS5814525A (en) Manufacturing semiconductor device
JPH0450746B2 (en)
JPS6159820A (en) Manufacture of semiconductor device
JPS5918629A (en) Manufacture of semiconductor device
JPS5928328A (en) Preparation of semiconductor device
JPS6017911A (en) Manufacture of semiconductor device
JPS5825220A (en) Manufacture of semiconductor substrate
JPS60147111A (en) Manufacture of semiconductor device
JPS5837918A (en) Manufacture of semiconductor device
JPS63265464A (en) Manufacture of semiconductor device
JPS6017910A (en) Manufacture of semiconductor device
JPS60144931A (en) Manufacture of semiconductor device
JP2526380B2 (en) Method for manufacturing multilayer semiconductor substrate
JPS62219510A (en) Formation of single crystal island region
JPS61117821A (en) Manufacture of semiconductor device
JPH07131029A (en) Fabrication of thin film transistor
JPS63213340A (en) Semiconductor device
JPS6380521A (en) Manufacture of semiconductor thin film crystal layer
JPS5837916A (en) Manufacture of semiconductor device
JPH04278521A (en) Manufacture of semiconductor device
JPS5961118A (en) Manufacture of semiconductor device