JPS58140938A - Solid time limiting element - Google Patents

Solid time limiting element

Info

Publication number
JPS58140938A
JPS58140938A JP2339082A JP2339082A JPS58140938A JP S58140938 A JPS58140938 A JP S58140938A JP 2339082 A JP2339082 A JP 2339082A JP 2339082 A JP2339082 A JP 2339082A JP S58140938 A JPS58140938 A JP S58140938A
Authority
JP
Japan
Prior art keywords
solid
electrode
electrodes
state timing
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2339082A
Other languages
Japanese (ja)
Inventor
小澤 直
近藤 行広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2339082A priority Critical patent/JPS58140938A/en
Publication of JPS58140938A publication Critical patent/JPS58140938A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Unknown Time Intervals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は発振回路(遅延回路)等に用いられる固体時
限素子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solid-state time element used in oscillation circuits (delay circuits) and the like.

固体時限素子は、一般に第1図に示されるような構造を
している。図にみるように、この固体時限素子は固体電
解質からなるタブレット(成形体)1を備え、このタブ
レットの両側には、前記固体電解質と化学的に反応しな
い金属からなる電極(不働態極)2および固体電解質の
可動イオンと同種の金属からなる電極(活件質極)3が
それぞれ固着されている。両電極2.3には、それぞれ
リード線4,5がエポキシ系導電性接着剤6.7等で接
着されるなどして固着されている。タブレット1および
両電極2,3は必要に応じエポキシ樹脂等からなる被覆
層8により被われている。
A solid state timer generally has a structure as shown in FIG. As shown in the figure, this solid-state timing device includes a tablet (molded body) 1 made of a solid electrolyte, and electrodes (passive electrodes) 2 made of a metal that does not chemically react with the solid electrolyte are placed on both sides of the tablet. and electrodes (active material electrodes) 3 made of the same type of metal as the mobile ions of the solid electrolyte are fixed respectively. Lead wires 4 and 5 are fixed to both electrodes 2.3, respectively, by adhering them with an epoxy conductive adhesive 6.7 or the like. The tablet 1 and both electrodes 2 and 3 are covered with a coating layer 8 made of epoxy resin or the like, if necessary.

この固体時限素子は次のような特性をもつ。すなわち、
これを、電極2.3に金および銀がそれぞれ使用され、
固体電解質にAg3SIが使用されている場合について
説明する。固体時限素子の電極2.3に、直流電源の負
極および正極をそれぞれ接続し、電流(充電電流)を通
す。そうすると、Ag 電極3の銀が銀イオンとなって
固体電解質中に移るとと本に、固体電解質中の銀イオン
が銀となってAu  電極2に析出する。つぎに、電極
2゜3に電源の正極および負極をそれぞれ接続し、前記
の場合とは逆向きの電流を流す。そうすると、Au 電
極2に析出していた銀が銀イオンとなって溶解して行く
。すhわち、固体電解質中にもどって行く。同時に、固
体電解質中の銀イオンが銀となってAg  電極3に析
出する。放電電流を流し続け、Au 電極2に析出して
いた銀がすべて溶解し終えたとき、固体時限素子の分極
状態が著しくhす、内部抵抗が高くなる。したがって、
電極2゜3間の電圧(端子電圧)が急敏に上昇する。す
なわち、Au  ’を極2に一定量の銀を析出させてお
き、固体時限素子に一定量きさの放電電流を流すと、フ
ァラデーの法則に従って一定時間後に電極2゜3間の電
圧(端子電圧)が急上昇する。この電圧上昇を電気回路
により検出すれば、信号が入って一定時間後に応答を得
ることができるのである。
This solid-state timer has the following characteristics. That is,
In this case, gold and silver are used for the electrodes 2.3, respectively,
A case where Ag3SI is used as the solid electrolyte will be explained. The negative and positive electrodes of a DC power source are connected to the electrodes 2.3 of the solid-state timer, respectively, and a current (charging current) is passed therethrough. Then, when the silver in the Ag electrode 3 turns into silver ions and moves into the solid electrolyte, the silver ions in the solid electrolyte turn into silver and are deposited on the Au electrode 2. Next, the positive and negative electrodes of a power source are respectively connected to the electrodes 2.degree. 3, and current is passed in the opposite direction to that in the above case. Then, the silver deposited on the Au electrode 2 becomes silver ions and dissolves. In other words, it returns to the solid electrolyte. At the same time, silver ions in the solid electrolyte turn into silver and are deposited on the Ag electrode 3. When the discharge current continues to flow and all the silver deposited on the Au electrode 2 is completely dissolved, the polarization state of the solid-state timing element becomes extremely h and the internal resistance becomes high. therefore,
The voltage between electrodes 2 and 3 (terminal voltage) rises rapidly. In other words, if a certain amount of silver is deposited on the Au' electrode 2 and a certain amount of discharge current is passed through the solid-state timing element, the voltage between the electrodes 2 and 3 (terminal voltage ) rises rapidly. If this voltage rise is detected by an electric circuit, a response can be obtained after a certain period of time after a signal is input.

ところで、従来の固体時限素子においては、電極は、固
体電解質のタブレットに金、銀等の電極用金属を蒸着さ
せること等によシつくられていたため、電極の固着力が
弱い。したがって、信号を受けてから応答するまでの応
答時間を充分に長くすること、すなわち長時間の時限動
作を行なわせることができなかった。長時間の時限動作
を行なわせるには、充電時には不働態極、放電時には活
性負極にそれぞれ多量の銀等を析出させなければならな
いのであるが、このようにすると電極がタブレットから
剥離して時限素子が破損される恐れがあるからである。
By the way, in conventional solid-state timing devices, the electrodes are made by vapor-depositing electrode metals such as gold and silver onto solid electrolyte tablets, so the adhesion of the electrodes is weak. Therefore, it has not been possible to sufficiently lengthen the response time from receiving a signal to responding, that is, to perform a timed operation for a long time. In order to perform long-term timed operation, a large amount of silver, etc. must be deposited on the passive electrode during charging and the active negative electrode during discharging, but if this is done, the electrodes will peel off from the tablet and the timer will be damaged. This is because there is a risk that it may be damaged.

−1だ、短時間のうちに多量の銀を析出させてもやはり
電極が剥離する恐れがあるので、電極に対する電流密度
を一定限度以下とし、固体時限素子に高電流を流すこと
ができないという不便もあった。
-1. Even if a large amount of silver is deposited in a short period of time, there is still a risk that the electrode will peel off, so the current density to the electrode must be kept below a certain limit, and it is inconvenient that a high current cannot be passed through the solid-state timing element. There was also.

この発明はこのような事情に鑑みなされたもので、不働
態極および活性負極のうちの少なくとも一方(一方の場
合はなるべくは不働態極)の電極のタブレットと向き合
う面を粗面とすることによって、長時間の時限動作が可
能となるようにした。
This invention was made in view of the above circumstances, and by making the surface facing the tablet of at least one of the passive electrode and the active negative electrode (preferably the passive electrode in the case of one) a rough surface. , enabling long-term timed operation.

すなわち、この発明は、固体電解質をはさんで一方に電
解質中の可動イオンと同種の金属の電極が配置され、他
方に電解質と化学的に反応しない金属の電極が配置され
た固体時限素子であって、両電極のうちの少なくとも一
方の電極の固体電解質と向き合う面が粗面となっている
固体時限素子をその要旨とするのである。これについて
以下に詳しく説明する。
That is, the present invention is a solid-state timing element in which an electrode made of the same kind of metal as the mobile ions in the electrolyte is placed on one side of a solid electrolyte, and an electrode made of a metal that does not chemically react with the electrolyte is placed on the other side. Therefore, the gist of the solid-state timing element is a solid-state timing element in which the surface of at least one of the electrodes facing the solid electrolyte is roughened. This will be explained in detail below.

この発明にかかる固体時限素子の基本的な構造は、従来
と同様である。すなわち第1図に示されるような構造を
している。固体電解質も、従来と同様、Ag3SI等が
用いられる。しかし、不働態極および活性負極のうちの
少なくとも一方の電極は、固体電解質に向かう面が粗面
となっている。粗面を持つ電極はたとえばつぎのように
してつくられる。Cu 、 NiおよびAl  で構成
される群の中から選ばれた1種の金属の発泡体(多孔質
金属)からなる基板に、固体電解質とは反応しない電極
用金属、たとえば金をメッキして不働態極とし、あるい
は電解質中の可動イオンと同種の電極用金属、たとえば
銀をメッキして活性負極とする。また、銅基板にPdN
i −WC等の複合メッキ、さらにその上に所望の電極
用金属をメッキして電極としてもよいのである。もちろ
ん、これらの場合電極用金蔵のメッキ層が厚くなってメ
ッキ面が平坦になってしまわないよう注意しなければな
らない。これらのような電極はたとえばつぎのようにし
て固体電解質のタブレットに固着される。すなわち、電
極の電極用金属メッキ側をタブレットに合わせるように
して、圧着成型を行なう。この際、固体電解質が電極の
電極用金属メッキ面すなわち粗面と噛み合い、時にはそ
の孔中に圧入するので、電極とタブレットとが互いに非
常に固く固着する。
The basic structure of the solid-state timing element according to the present invention is the same as the conventional one. That is, it has a structure as shown in FIG. As for the solid electrolyte, Ag3SI or the like is used as in the conventional case. However, at least one of the passive electrode and the active negative electrode has a rough surface facing the solid electrolyte. For example, an electrode with a rough surface is made as follows. A substrate made of a foam (porous metal) of one type of metal selected from the group consisting of Cu, Ni, and Al is plated with an electrode metal that does not react with the solid electrolyte, such as gold. It is used as a working electrode, or it is plated with an electrode metal of the same type as the mobile ions in the electrolyte, such as silver, to form an active negative electrode. In addition, PdN on the copper substrate
It is also possible to use composite plating such as i-WC and further plate a desired electrode metal thereon to form an electrode. Of course, in these cases, care must be taken to prevent the plated layer of the electrode metal from becoming too thick and the plated surface becoming flat. Electrodes such as these are fixed to solid electrolyte tablets, for example, in the following manner. That is, the electrode metal plated side of the electrode is aligned with the tablet, and pressure molding is performed. At this time, the solid electrolyte meshes with the metal-plated surface of the electrode, that is, the rough surface, and is sometimes press-fitted into the hole, so that the electrode and the tablet are very firmly fixed to each other.

不働態極および活性負極はそのいずれか一方のみ(その
場合は好ましくは不働態極)が粗面であってもよいが、
両方ともが粗面を有するようにするのが最も好ましい。
Only one of the passive electrode and the active negative electrode (in that case, preferably the passive electrode) may have a rough surface,
Most preferably both have rough surfaces.

この発明にかかる固体時限素子は、このように構成され
るものであって、少なくとも一方の電極がそのタブレッ
ト側が粗面となってタブレットに固く結合しているので
、従来よりも通電電気量を多くして多量の銀等を析出さ
せても電極がタブレットから剥離する恐れが少ない。し
たがって、固体時限素子に長時間の時限動作を行なわせ
ることができる。また、電極のタブレット側の表面積が
増加したので、従来と電流密度の限度が同じであるとす
ると、表面積の増加分だけ従来より高電流を流すことが
でき、そのようにしても、電極がタブレットから剥離す
る恐れは少ない。
The solid-state timing device according to the present invention is configured as described above, and since at least one electrode has a rough surface on the tablet side and is firmly bonded to the tablet, it can conduct a larger amount of electricity than before. Even if a large amount of silver or the like is deposited in this way, there is little risk of the electrode peeling off from the tablet. Therefore, it is possible to cause the solid-state timing element to perform a timed operation for a long time. In addition, since the surface area of the electrode on the tablet side has increased, assuming the current density limit is the same as before, it is possible to flow a higher current than before by the increased surface area. There is little risk of it peeling off.

つぎに実施例を比較例と合わせて説明する。Next, examples will be described together with comparative examples.

〔実施例1〕 つぎのようにして実施例1の固体時限素子をつくった。[Example 1] The solid-state timing device of Example 1 was produced in the following manner.

Ni  の発泡体(多孔質金属)からなる基板に厚み2
μの金メッキを施した電極および同基板に厚み2μの銀
メッキを施したものをそれぞれつくった。固体電解質と
してAg 3 Slを使用し、このAg3SIをIt/
cm2 の圧力で予備成型してタブレットをつくった。
A substrate made of Ni foam (porous metal) with a thickness of 2
An electrode plated with gold to a thickness of μ and an electrode plated with silver to a thickness of 2 μ were made on the same substrate. Ag 3 SI is used as a solid electrolyte, and this Ag 3 SI is
Tablets were made by preforming at a pressure of cm2.

前22種類の電極の金メツキ面および銀メツキ面をタブ
レットの両面にそれぞれ合わせるようにして、2 t/
cm2  で加圧成型を行ない、全体の大きさを直径1
0mm、厚み約3mmとした。エポキシ系導電性接着剤
で両電極にリード線をそれぞれ接着し、タブレットおよ
び両電極をエポキシ樹脂で被覆して固体時限素子をイu
た。
Align the gold-plated and silver-plated sides of the first 22 types of electrodes with both sides of the tablet, and then
Pressure molding is performed in cm2, and the overall size is 1 in diameter.
0 mm, and the thickness was approximately 3 mm. Glue the lead wires to both electrodes with epoxy-based conductive adhesive, cover the tablet and both electrodes with epoxy resin, and install the solid-state timing element.
Ta.

このようにして得られた固体時限素子につぎのような通
電操作を行なった。2mAの充電電流を2分間流したあ
と、100μAの放電電流を流した。
The solid-state timing device thus obtained was energized as follows. After a charging current of 2 mA was applied for 2 minutes, a discharging current of 100 μA was applied.

すると、約40分後に端子電圧が上昇した。この様子を
第2図のグラフに示す。図中、Aは充電電流、Bは放電
電流をそれぞれあられす。同様の通電操作を10回繰り
返しても、固体時限素子に異常は生じなかった。
Then, after about 40 minutes, the terminal voltage increased. This situation is shown in the graph of FIG. In the figure, A represents the charging current and B represents the discharging current. Even when the same energization operation was repeated 10 times, no abnormality occurred in the solid-state timing element.

〔実施例2〕 つぎのようにして実施例2の固体時限素子をつくった。[Example 2] The solid-state timing device of Example 2 was produced in the following manner.

銅基板にPdNi −WCの複合メッキを施し、さらに
その上に厚み2μの金メッキを施した電極および複合メ
ッキの上に厚み2μの銀メッキを施した電極をそれぞれ
つくった。あとは実施例1と同様にして固体時限素子を
得た。この固体時限素子の性能は実施例1のものと同様
であった。
An electrode was prepared by applying PdNi-WC composite plating to a copper substrate, and then gold plating to a thickness of 2μ on top of that, and an electrode by applying silver plating to a thickness of 2μ on the composite plating, respectively. The rest was carried out in the same manner as in Example 1 to obtain a solid-state timing element. The performance of this solid state timing element was similar to that of Example 1.

〔比較例〕[Comparative example]

固体電解質としてAg3SIを使用し、このAg3SI
を加圧成型して直径10mm、厚み3 mmのタブレッ
ト側作った。タブレットの両面に、金および銀をそれぞ
れ蒸着し電極とした。エポキシ系導電性接着剤で両電極
にリード線を接着したのち、タブレットおよび両電極を
エポキシ樹脂で被覆して固体時限素子を得た。
Ag3SI is used as a solid electrolyte, and this Ag3SI
A tablet side with a diameter of 10 mm and a thickness of 3 mm was made by pressure molding. Gold and silver were deposited on both sides of the tablet to form electrodes. After bonding lead wires to both electrodes with an epoxy-based conductive adhesive, the tablet and both electrodes were coated with epoxy resin to obtain a solid-state timing element.

このようにして得られた固体時限素子につぎのような通
電操作を行なった。100μAの充電電流を80秒間流
したあと、100μAの放電電流を流した。すると、8
0秒後に端子電圧が上昇した。
The solid-state timing device thus obtained was energized as follows. After a charging current of 100 μA was passed for 80 seconds, a discharging current of 100 μA was passed. Then, 8
The terminal voltage increased after 0 seconds.

この様子を第3図のグラフに示す。図中、Aは充電電流
、Bは放電電流をそれぞれあられす。つぎに実施例1と
同様の通電操作を行なおうとして2mAの充電電流を流
したところ、2分経過する前に全極がタブレットから剥
離し、固体時限素子が破損された。
This situation is shown in the graph of FIG. In the figure, A represents the charging current and B represents the discharging current. Next, when a charging current of 2 mA was applied in an attempt to carry out the same energization operation as in Example 1, all the electrodes were peeled off from the tablet before 2 minutes had elapsed, and the solid-state timing element was damaged.

以上にみたように、実施例はいずれも比較例よりも長時
間の時限動作を行なうことができた。
As seen above, all of the examples were able to perform a timed operation for a longer time than the comparative example.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は固体時限素子の縦断面図、第2図はこの発明に
かかる時限素子に通電操作を行なったときの時間と端子
電圧の関係をあられすグラフ、第3図は従来の固体時限
素子に通電操作を行ったときの時間と端子電圧の関係を
あられすグラフである。 1・・・固体電解質タブレット 2,3・・・電極4.
5・・・リード線 6.7・・・接着剤 8・・・被覆
層 A・・・充電電流 B・・・放電電流特許出願人 
松下電工株式会社
Fig. 1 is a vertical cross-sectional view of a solid-state timer, Fig. 2 is a graph showing the relationship between time and terminal voltage when the timer according to the present invention is energized, and Fig. 3 is a graph of a conventional solid-state timer. This is a graph showing the relationship between time and terminal voltage when energizing is performed. 1... Solid electrolyte tablet 2, 3... Electrode 4.
5...Lead wire 6.7...Adhesive 8...Coating layer A...Charging current B...Discharging current Patent applicant
Matsushita Electric Works Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)固体電解質をはさんで一方に電解質中の可動イオ
ンと同種の金属の電極が配置され、他方に電解質と化学
的に反応しない金属の電極が配置された固体時限素子で
あって、両電極のうちの少なくとも一方の電極の固体電
解質と向き合う面が粗面となっている固体時限素子。
(1) A solid-state timing element in which an electrode made of the same kind of metal as the mobile ions in the electrolyte is placed on one side of a solid electrolyte, and an electrode made of a metal that does not chemically react with the electrolyte is placed on the other side. A solid-state timing element in which at least one of the electrodes has a rough surface facing the solid electrolyte.
(2)粗面が、Cu 、 NiおよびA1  で構成さ
れる群の中から選ばれた1種の金属の発泡体からなる基
板に電極用金属がメッキされてなるメッキ面である特許
請求の範囲第1項記載の固体時限素子。
(2) Claims in which the rough surface is a plated surface formed by plating an electrode metal on a substrate made of a foam of one type of metal selected from the group consisting of Cu, Ni, and A1. The solid-state timing element according to item 1.
(3)粗面が、銅基板上のPdNi −WC複合メッキ
面に電極用金属がメッキされてなるメッキ面である特許
請求の範囲第1項記載の固体時限素子。
(3) The solid-state timing element according to claim 1, wherein the rough surface is a plated surface formed by plating an electrode metal on a PdNi-WC composite plated surface on a copper substrate.
JP2339082A 1982-02-15 1982-02-15 Solid time limiting element Pending JPS58140938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2339082A JPS58140938A (en) 1982-02-15 1982-02-15 Solid time limiting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2339082A JPS58140938A (en) 1982-02-15 1982-02-15 Solid time limiting element

Publications (1)

Publication Number Publication Date
JPS58140938A true JPS58140938A (en) 1983-08-20

Family

ID=12109184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2339082A Pending JPS58140938A (en) 1982-02-15 1982-02-15 Solid time limiting element

Country Status (1)

Country Link
JP (1) JPS58140938A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005059817A1 (en) * 2003-12-19 2005-06-30 Nec Corporation Id tag

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005059817A1 (en) * 2003-12-19 2005-06-30 Nec Corporation Id tag
CN100456321C (en) * 2003-12-19 2009-01-28 日本电气株式会社 ID tag
US7586215B2 (en) 2003-12-19 2009-09-08 Nec Corporation ID tag

Similar Documents

Publication Publication Date Title
KR100214545B1 (en) Making method of chip size semicomductor package
US5937321A (en) Method for manufacturing ceramic multilayer circuit
JP2002134360A (en) Solid electrolytic capacitor and its manufacturing method
JPS62270393A (en) Ic card and manufacture thereof
JPH02263424A (en) Chip type solid electrolytic capacitor and manufacture thereof
US6127205A (en) Process for manufacturing a molded electronic component having pre-plated lead terminals
TW200908833A (en) Metal plugged substrates with no adhesive between metal and polyimide
JP2005244033A (en) Electrode package and semiconductor device
JP3158453B2 (en) Manufacturing method of chip type solid electrolytic capacitor with fuse
JPS58140938A (en) Solid time limiting element
JPS6041847B2 (en) Manufacturing method for chip-type electronic components
JP2919178B2 (en) Molded chip type solid electrolytic capacitor
JP3427038B2 (en) Method of manufacturing piezoelectric device
JPH071790B2 (en) Method for manufacturing plug-in type semiconductor package
JPH07183304A (en) Manufacture of semiconductor device
JPH01208847A (en) Integrated circuit device
JP3420469B2 (en) Wiring board
JP2003125492A (en) Piezoelectric acoustic device
JPH03274755A (en) Resin-sealed semiconductor device and manufacture thereof
JP2002134361A (en) Solid electrolytic capacitor and its manufacturing method
JPS63216365A (en) Semiconductor device
JP2604621B2 (en) Manufacturing method of semiconductor device storage package
JPH0225230Y2 (en)
JPS5926985A (en) Soldering bondage of glass or ceramics and copper
JP2001326449A (en) Electronic component, electronic component mounting body and method of manufacturing the same