JPS5813998B2 - memory device - Google Patents

memory device

Info

Publication number
JPS5813998B2
JPS5813998B2 JP53153366A JP15336678A JPS5813998B2 JP S5813998 B2 JPS5813998 B2 JP S5813998B2 JP 53153366 A JP53153366 A JP 53153366A JP 15336678 A JP15336678 A JP 15336678A JP S5813998 B2 JPS5813998 B2 JP S5813998B2
Authority
JP
Japan
Prior art keywords
drain
circuit
memory
field effect
effect transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53153366A
Other languages
Japanese (ja)
Other versions
JPS5580885A (en
Inventor
家田信明
武谷健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP53153366A priority Critical patent/JPS5813998B2/en
Publication of JPS5580885A publication Critical patent/JPS5580885A/en
Publication of JPS5813998B2 publication Critical patent/JPS5813998B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/412Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger using field-effect transistors only

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Static Random-Access Memory (AREA)

Description

【発明の詳細な説明】 本発明はスタティック形のメモリ装置に関する。[Detailed description of the invention] The present invention relates to a static type memory device.

スタティック形のメモリ装置に使用するメモリ回路とし
て、従来、第1図にて全体としてUで示す如き、ドレイ
ンが負荷L1に、ソースが接地に夫々接続せる例えばn
チャンネル型のMIS電界効果型トランジスタ(以下簡
単の為トランジスタと称す)Q1と、ドレインが負荷L
2及びトランジスタQ1のゲートに、ソースが接地に、
ゲートがトランジスタQ1のトレインに接続せるnチャ
ンネル型のトランジスタQ2と、ドレイン及びソースの
何れか一方がトランジスタQ1のドレイン及び負荷L1
の接続中点P1に、他方が書込・読出用線(以下ビット
線と称す)B1 に、ゲートが制御用線(以下ワード線
と称す)Wに夫々接続せるnチャンネル型のトランジス
タQ3と、ドレイン及びソースの何れか一方がトランジ
スタQ2のドレイン及び負荷L2の接続中点P2に、他
方が他のビット線B1’に、ゲートがワード線Wに夫々
接続せるnチャンネル型のトランジスタQ4とを具備し
、而してこの場合負荷L1及びL2のトランジスタQ1
及びQ2側が電源線路Fを介して正極性の電源端子VD
に接続されてなる構成のものが提案されている。
Conventionally, as a memory circuit used in a static type memory device, the drain is connected to the load L1 and the source is connected to the ground, for example n, as shown overall by U in FIG.
A channel type MIS field effect transistor (hereinafter referred to as a transistor for simplicity) Q1 and a drain connected to a load L
2 and the gate of transistor Q1, the source is grounded,
An n-channel transistor Q2 whose gate is connected to the train of the transistor Q1, and whose drain and source are connected to the drain of the transistor Q1 and the load L1.
an n-channel type transistor Q3 whose other side is connected to the connection midpoint P1, whose other side is connected to a write/read line (hereinafter referred to as a bit line) B1, and whose gate is connected to a control line (hereinafter referred to as a word line) W; It is equipped with an n-channel transistor Q4 whose drain and source are connected to the connection midpoint P2 between the drain of the transistor Q2 and the load L2, the other to the other bit line B1', and whose gate is connected to the word line W. However, in this case, the transistor Q1 of the loads L1 and L2
and the Q2 side is connected to the positive power supply terminal VD via the power supply line F.
A configuration has been proposed in which the

尚本例に於では負荷L1がドレイン及びゲートを電源線
路Fに、ソースをトランジスタQ1のドレインに接続せ
るトランジスタQ5でなり、又負荷L2が同様にドレイ
ン及びゲ−トを電源線路Fに、ソースをトランジスタQ
2のドレインに接続せるトランジスタQ6でなる場合が
示されている。
In this example, the load L1 is a transistor Q5 whose drain and gate are connected to the power supply line F and whose source is connected to the drain of the transistor Q1, and the load L2 is similarly connected to the power supply line F and its source. The transistor Q
A case is shown in which the transistor Q6 is connected to the drain of the transistor Q6.

又斯るメモリ回路を使用したメモリ装置として第2図に
示す如き、複数M×N個のメモリ回路Ull t UI
2・・・・・・・・・U1N;U2,,U2・・・・・
・・・・・U2 N+・・・・・・・・・UMl +
UM2・・・・・・・・・UMNと、複数M本のワード
線W1,W2・・・・・・・・・WMと、複数N対のビ
ット線B1及びB1′,B2及びB2′,・・・・・・
・・・BN及び及びB/と、複数N本の電源線F1,F
2・・・・・・・・・FNとを具備し、而してこの場合
メモリ回路U11(i=1,2・・・・・・・・・M,
j=1.2・・・・・・・・・N)が、第1図のメモリ
回路Uと同様の構成を有し、但しメモリ回路Ui のト
ランジスタQ3のドレイン及びソースの他方がビツド線
Bjに、ゲートがワード線Wiに夫々接続され、メモリ
回路UiiのトランジスタQ4のドレイン及びソースの
他方がビット線B′に、ゲートがワード線W,に夫々接
続され、メモリ回路Uiiの負荷L1及びL2のトラン
ジスタQ1及びQ2側とは反対側が電源線路Fを介して
正極性の電源端子VDに接続され、一方ビット線Bi及
びB!が充電用回路Di、及び入力回路H1及び出力回
路H2を接続せる選択接続回路Gに接続されてなる構成
のものが提案されている。
Further, as a memory device using such a memory circuit, a plurality of M×N memory circuits UlltUI as shown in FIG.
2......U1N;U2,,U2...
...U2 N+...UMl +
UM2......UMN, a plurality of M word lines W1, W2...WM, and a plurality of N pairs of bit lines B1 and B1', B2 and B2',・・・・・・
...BN and and B/ and a plurality of N power supply lines F1, F
2...FN, and in this case, the memory circuit U11 (i=1, 2...M,
j=1.2...N) has the same configuration as the memory circuit U in FIG. 1, except that the other of the drain and source of the transistor Q3 of the memory circuit Ui is connected to the bit line Bj. The gates are connected to the word line Wi, the other of the drain and source of the transistor Q4 of the memory circuit Uii is connected to the bit line B', the gate is connected to the word line W, and the loads L1 and L2 of the memory circuit Uii are connected to the word line Wi. The side opposite to the transistors Q1 and Q2 of the transistors Q1 and Q2 is connected to the positive polarity power supply terminal VD via the power supply line F, while the bit lines Bi and B! A configuration has been proposed in which the charging circuit Di is connected to a selection connection circuit G that connects the input circuit H1 and the output circuit H2.

尚本例に於ては充電回路Diがドレインが電源端子VD
に、ソースがビット線B に、ゲートがクロックパルス
源Kに夫々接続せるトランジスタQ7と、ドレインが電
源端子VDに、ソースがビット線B ′,に、ゲートが
クロツクパルス源Kに夫々接続せるトランジスタQ8と
を以って構成されている場合が示されている。
In this example, the drain of the charging circuit Di is the power supply terminal VD.
, a transistor Q7 whose source is connected to the bit line B, a gate connected to the clock pulse source K, and a transistor Q8 whose drain is connected to the power supply terminal VD, the source is connected to the bit line B', and the gate is connected to the clock pulse source K. A case is shown in which the system is configured with the following.

所で第2図に示されているメモリ装置によれば、以下述
べる機能が得られるものである。
According to the memory device shown in FIG. 2, the following functions can be obtained.

即ちクロツクパルス源Kより第3図Aに示す如き周期T
That is, the clock pulse source K generates a period T as shown in FIG. 3A.
.

を有する負極性のクロツクパルス列CPを得、而してワ
ード線Wiに第3図Bに示す如きクロツクパルス列CP
の一のパルスの得られる周期Tkに於てその期間Tkの
頭初の時点t1又はこれより僅かに遅れた時点より期間
Tkの終りの時点t3又はこれより僅かに遅れた時点迄
の区間Twに於て高レベルをとるクロツクパルス列CP
と同期せる正極性の制御パルスWP1を与え、又ビット
線Bi(又はB′・)に入力回路H1及び選択接続回路
Gを介して第3図Cに示す如きクロックパルス列CPの
一のパルスの得られる期間Tkに於ける制御パルスWP
iの得られる時点より遅れた時点t2より期間Tkの終
りの時点t3迄の区間TBに於て低レベルをとる負極性
の書込パルスBPi(又はBP/ )を与えるものとす
れば、ビット線Bi及びB′,と接地との間の浮遊容量
Cj及びC′,が、期間Tkの前及び後に於て充電用回
路DjのトランジスタQ7及びQ8がオンであることに
より、電源端子VDよりの正極性の電源にて充電され、
又浮遊容量C (又はC′・)が、期間TBの前后に於
てビット線Bj (又はB勺に入力回路H1及び選択接
続回路Gを介して高レベルが与えられていることにより
、選択接続回路G側より充電され、更に浮遊容量C’(
又はCi)が、期間TBの前后を問わずビット線B’(
又はBi)に入力回路H1及び選択接続回路Gを介して
高レ1ベルが与えられていることにより、選択接続回路
G側より充電されるものであるが、期間Tkに於ける制
御パルスWPiが高レベルの区間をとる期間に於てメモ
リ回路UiiのトランジスタQ3及びQ4がオンとなり
、一方ビット線Bi(又はB′)に入力回路H1及び選
択接続回路Gを介して低レベルが与えられることにより
、期間TBに於て浮遊容量Ci(又はC′)の充電電荷
が選択接続回路G側に放電し、この為期間TBに於てメ
モリ回路UIjの接続中点P1が強制的に低レベルとな
つてメモリ回路UiiのトランジスタQ2(又はQl)
がオフ、これに応じてトランジスタQl(又はQ2)が
オンとなり、そしてその状態が期間TBを過ぎても2値
表示で例えば「1」の情報として維持され、斯くてメモ
リ回路Uiiへの情報「1」の書込がなされることとな
るものである。
A negative polarity clock pulse train CP is obtained, and a clock pulse train CP as shown in FIG. 3B is applied to the word line Wi.
In the period Tk in which one pulse is obtained, in the interval Tw from the beginning of the period Tk, the first time t1, or a time slightly later than this, to the end of the period Tk, the time t3, or a time slightly later than this. The clock pulse train CP takes a high level at
A control pulse WP1 of positive polarity is applied to the bit line Bi (or B'. Control pulse WP during period Tk
If we apply a negative polarity write pulse BPi (or BP/) that takes a low level in the interval TB from time t2, which is later than the time when i is obtained, to time t3, which is the end of period Tk, the bit line Since the transistors Q7 and Q8 of the charging circuit Dj are on before and after the period Tk, the stray capacitances Cj and C' between Bi and B' and the ground are connected to the positive terminal from the power supply terminal VD. It is charged with a natural power source,
In addition, the stray capacitance C (or C') is caused by the selective connection because a high level is applied to the bit line Bj (or Bj) via the input circuit H1 and the selection connection circuit G before and after the period TB. It is charged from the circuit G side, and the stray capacitance C'(
or Ci) is bit line B'(
Or Bi) is given a high level 1 via the input circuit H1 and the selection connection circuit G, so that it is charged from the selection connection circuit G side, but the control pulse WPi in the period Tk is During the high level period, transistors Q3 and Q4 of the memory circuit Uii are turned on, while a low level is applied to the bit line Bi (or B') via the input circuit H1 and the selection connection circuit G. , during the period TB, the charge of the stray capacitance Ci (or C') is discharged to the selective connection circuit G side, and therefore the connection midpoint P1 of the memory circuit UIj is forced to a low level during the period TB. Transistor Q2 (or Ql) of memory circuit Uii
is off, the transistor Ql (or Q2) is turned on in response to this, and even after the period TB has passed, the state is maintained as information "1" in a binary display, and thus the information "1" is sent to the memory circuit Uii. 1" will be written.

又斯る状態より、クロックパルス源Kより第3図Aに示
す如きクロツクパルス列CPを得、而してワード線Wi
に第3図Bに示す如き制御パルスWPiを与え、更にビ
ット線Bi(又はB′・)を第3図Cにて上述せる書込
パルスTBの期間TBと同じ期間に於て選択接続回路G
を介して出力回路H2に接続するものとすれば、期間T
kに於ける制御パルスWPiが高レベルをとる区間に於
てメモリ回路UijのトランジスタQ3及びQ4がオン
となり、この場合メモリ回路UijのトランジスタQ1
(又はQ2)がオン、トランジスタQ2(又はQl)
がオンであることにより、浮遊容量Ci(又はC1)の
充電電荷がトランジスタQ3(又はQ4)及びQ1(又
はQ2)を通じて接地に放電し、この為期間TBに於て
ビット線Bi(又はB1)が低レベルとなり、そしてそ
れが選択接続回路Gを介して出力回路H2にてメモリ回
路Uijの情報が「1」であるとして読出され、斯くて
メモリ回路Uijの「1」の情報の読出しがなされるこ
ととなるものである。
Also, from this state, a clock pulse train CP as shown in FIG. 3A is obtained from the clock pulse source K, and the word line Wi
A control pulse WPi as shown in FIG. 3B is applied to the bit line Bi (or B'), and the selection connection circuit G is applied to the bit line Bi (or B') in FIG.
If the connection is made to the output circuit H2 via the period T
In the period in which the control pulse WPi takes a high level at k, transistors Q3 and Q4 of the memory circuit Uij are turned on, and in this case, the transistor Q1 of the memory circuit Uij is turned on.
(or Q2) is on, transistor Q2 (or Ql)
is on, the charge in the stray capacitance Ci (or C1) is discharged to the ground through the transistors Q3 (or Q4) and Q1 (or Q2), and therefore the bit line Bi (or B1) is turned on during the period TB. becomes a low level, and the information in the memory circuit Uij is read as "1" at the output circuit H2 via the selection connection circuit G, and thus the information "1" in the memory circuit Uij is read out. This is something that will happen.

尚上述せるメモリ回路Uiiへの情報「1」の書込がな
されて居らずメモリ回路UijのトランジスタQ1(又
はQ2)がオフ、トランジスタQ2(又はQ1)がオン
である場合は、メモリ回路Uijに情報「01の書込が
なされていることを意味し、又斯る状態より上述せる読
出しをなせば、浮遊容量Ci(又はC1)の充電電荷が
メモリ回路Ui,のトランジスタQl(又はQ2)のオ
フの為に放電されず、従って期間TBに於てビット線B
j (又はB′j)が低レベルとなることはなく、従っ
て出力回路H2にてメモリ回路Uiiの情報が「0」で
あるとして読出されるものである。
Note that if the information "1" is not written to the memory circuit Uii described above and the transistor Q1 (or Q2) of the memory circuit Uij is off and the transistor Q2 (or Q1) is on, the memory circuit Uij is This means that the information "01" has been written, and if the above reading is performed from such a state, the charge in the stray capacitance Ci (or C1) will be transferred to the transistor Ql (or Q2) of the memory circuit Ui. The bit line B is not discharged because it is off, and therefore the bit line B is not discharged during the period TB.
j (or B'j) never becomes a low level, and therefore the information in the memory circuit Uii is read as "0" by the output circuit H2.

然し乍ら第2図に示されている従来のメモリ回路の場合
、そのメモリ回路UiiのトランジスタQ1及びQ2の
負荷L1及びL2のトランジスタQ1及びQ2側とは反
対側が、電源線路F を介して電源端子VDに接続され
ていることにより、上述せるメモリ機能が得られる様に
なされている為、メモリ回路Uiiの負荷L1及びL2
及び電源端子VD間に電源線路Fiを要するものである
However, in the case of the conventional memory circuit shown in FIG. 2, the sides of the loads L1 and L2 of the transistors Q1 and Q2 of the memory circuit Uii opposite to the transistors Q1 and Q2 side are connected to the power supply terminal VD via the power supply line F. Since the above-mentioned memory function is obtained by being connected to the memory circuit Uii, the loads L1 and L2 of the memory circuit Uii are
A power supply line Fi is required between the power supply terminal VD and the power supply terminal VD.

この為従来のメモリ装置は、それを所謂半導体モノリシ
ックに半導体集積化して構成するものとした場合、その
構成を高密度、小型化するに一定の限度を有したという
欠点を有していたものである。
For this reason, conventional memory devices had the drawback that when they were constructed by integrating semiconductors into a so-called semiconductor monolith, there were certain limitations in achieving high density and miniaturization of the structure. be.

依って本発明は上述せる欠点のない新規なメモリ装置を
提案せんとするもので、以下詳述する所より明らかとな
るであろう。
Therefore, the present invention seeks to propose a novel memory device free from the above-mentioned drawbacks, which will become clear from the detailed description below.

第4図は本発明によるメモリ装置に使用するメモリ回路
の一例を示し、第1図との対応部分には同一符号を附し
詳細説明はこれを省略するも、第1図にて上述せる構成
に於てその負荷L1及びL2のトランジスタQ1及びQ
2側とは反対側が電源線Fを介して電源端子VDに接続
されているに代え、ビット線Bl’に接続されているこ
とを除いては第1図の場合と同様の構成を有する。
FIG. 4 shows an example of a memory circuit used in the memory device according to the present invention. Parts corresponding to those in FIG. The transistors Q1 and Q of its loads L1 and L2 in
The configuration is the same as that in FIG. 1, except that the side opposite to the second side is connected to the bit line Bl' instead of being connected to the power supply terminal VD via the power line F.

又第5図は第4図に示されているよるメモリ回路Uを使
用した本発明によるメモリ装置の一例を示し、第2図と
の対応部分には同一符号を附し詳細説明はこれを省略す
るも、第2図にて上述せる構成に於て複数N本の電源線
F1〜FNが省略され、又メモリ回路Ui,が第4図の
メモリ回路Uと同様の構成を有し、而してそのメモリ回
路Uijの負荷LI及びL2のトランジスタQ1及びQ
2側とは反対側が電源線Fjを介して電源端子VDに接
続されているに代え、今Mが奇数であるものとすれ?メ
モリ回路U11,U31・・・・・・・・・UMt ’
U1,U3・・・・・・・・・UM2’・・・・・・
・・・” I N+ U3N・・・・・・・・・UMN
の負荷L1及びL2のトランジスタQ1及びQ2側とは
反対側が夫々ビット線B′. ; B′, ;・・・・
・・・・・B′Nに、メモリ回路U21, U4,・・
・・・・・・・U(M−+)t’UU ・・・・・・
・・・U ゛ ・・・・・・i; U2N ,2
2フ 42 (M−1)2 ”U4N・
・・・・・・・・U(M−+)Nの負荷L1及びL2の
トランジスタQ1及びQ2側とは反対側が夫々ビット線
B1; B2;・・・・・・・・・BNに夫々接続され
ていることを除いては第2図の場合と同様の構成を有す
る。
Further, FIG. 5 shows an example of a memory device according to the present invention using the memory circuit U shown in FIG. 4, and corresponding parts to those in FIG. However, in the configuration described above in FIG. 2, the plurality of N power supply lines F1 to FN are omitted, and the memory circuit Ui has the same configuration as the memory circuit U in FIG. The load LI of the memory circuit Uij and the transistors Q1 and Q of L2
Suppose that the side opposite to the second side is connected to the power terminal VD via the power line Fj, and that M is an odd number. Memory circuits U11, U31...UMt'
U1, U3...UM2'...
・・・” I N+ U3N・・・・・・・・・UMN
The opposite sides of the loads L1 and L2 from the transistors Q1 and Q2 are respectively connected to the bit lines B'. ;B′、;・・・・
...B'N has memory circuits U21, U4,...
・・・・・・U(M-+)t'UU ・・・・・・
・・・U ゛ ・・・・・・i; U2N ,2
2F 42 (M-1)2 ”U4N・
・・・・・・The opposite sides of the transistors Q1 and Q2 of the loads L1 and L2 of U(M−+)N are respectively connected to the bit lines B1; B2; ・・・・・・・・・BN. It has the same configuration as the case in FIG. 2 except that it is shown in FIG.

以上で本発明によるメモリ装置の一例構成が明らかとな
ったが、斯るメモリ装置の構成によれば、第2図のメモ
リ装置につき前述せると同様のメモリ機能を得ることが
出来るものである。
The configuration of one example of the memory device according to the present invention has been clarified above, and according to the configuration of such a memory device, it is possible to obtain the same memory function as described above with respect to the memory device of FIG. 2.

即ち、第5図のメモリ装置の構成によれば、そ?が第2
図にて上述せる構成に於てそのメモリ回路Uijの負荷
L1及びL2のトランジスタQ1及びQ2側とは反対側
が電源線Fiを介して電源端子VDに接続されているに
代え、メモリ回路U,1,U31・・・・・・・・・U
M1;U,2,U3。
That is, according to the configuration of the memory device shown in FIG. is the second
In the configuration described above in the figure, instead of the sides of the loads L1 and L2 of the memory circuit Uij opposite to the transistors Q1 and Q2 being connected to the power supply terminal VD via the power supply line Fi, the memory circuits U, 1 , U31......U
M1; U, 2, U3.

・・・・・・・・・UM2;・・・・・・・・・;UI
NIU3N・・・・・・・・・UMNの負荷L1及びL
2のトランジスタQ1及びQ2側とは反対側が夫々ビツ
ト線B]’ ; B2’ ;・・・・・・・・・;BN
′に接続され、又メモリ回路U21,U4I・・・・・
・・・・U(M−1)1 ; U22 1U4・・・・
・・・・・U(M−1)2 ’・・・・・・・・・:
U2N t U4N・・・・・・・・・U(M−t)N
の負荷L1及びL2のトランジスタQ1及びQ2側とは
反対側が夫々ビット線B,;)B2・・・・・・・・・
BNに夫々接続されていることを除いては第2図の場合
と同様であるので、メモリ回路UijのトランジスタQ
1のゲート容量と負荷L2のインピーダンスとによる時
定数、及びトランジスタQ2のゲート容量と負荷L1の
インピーダンスとによる時定数が、クロツクパルス源K
より得られる第3図Aにて上述せるクロツクパルスCP
の周期T。
・・・・・・・・・UM2;・・・・・・・・・;UI
NIU3N......UMN loads L1 and L
The sides opposite to the transistors Q1 and Q2 of 2 are the bit lines B]';B2';
', and also memory circuits U21, U4I...
...U(M-1)1; U22 1U4...
・・・・・・U(M-1)2'・・・・・・・・・:
U2N t U4N・・・・・・U(M-t)N
The opposite sides of the loads L1 and L2 from the transistors Q1 and Q2 are the bit lines B, ;)B2, respectively.
The transistor Q of the memory circuit Uij is the same as the case of FIG. 2 except that it is connected to the BN respectively.
The time constant due to the gate capacitance of the transistor Q1 and the impedance of the load L2, and the time constant due to the gate capacitance of the transistor Q2 and the impedance of the load L1 are determined by the clock pulse source K.
The clock pulse CP mentioned above in FIG. 3A obtained by
period T.

に比し大である(2倍程度以上大であるを可とする)様
に例えば負荷L1及びL2のインピーダンスを予め選ん
で置けば、又周期T。
For example, if the impedances of the loads L1 and L2 are selected in advance so that they are larger than the period T (permissible to be about twice as large), the period T.

及びTkがTk/Toく1なる関係を有していれば、第
2図にて上述せる場合と同様に、クロツクパルス源Kよ
り第3図Aに示す如きクロツクパルス列CPを得、而し
てワード線Wiに第3図Bに示す如き制御パルスWPi
を与え、又ビット線Bi(又はB′i)に第3図Cに示
す如き期間TBに於て低レベルをとる書込パルスBPi
(又はBP’j)を与えるものとすることにより、第2
図にて上述せる場合と同様にビット線Bi及びB/と接
地との間の浮遊容量Ci及びC′iが期間Tkの前后に
於て電源端子VDよりの電源により充電され、浮遊容量
Ci(又はC′i)が期間TBの前后に於て選択接続回
路G側より充電され、浮遊容量C′(又はCi )が期
間TBの前后を問わず選択接続回路G側より充電される
ものであるが、第2図にて上述せる場合と同様に期間T
kに於ける制御パルスWPiが高レベルをとりメモリ回
路UiiのトランジスタQ3及びQ4がオンとなり、一
方第2図にて上述せる場合と同様に周期TBに於てビッ
ト線Bi(又はB′i)が低レベルとなることにより期
間TBに於て浮遊容量Cj (又はC′i )の充電電
荷が選択接続回路側に放電し、この為期間TBに於て第
2図の場合と同様にトランジスタQ1(又はQ2)がオ
ンとなり、その状態が情報「1」として維持され、斯く
てメモリ回路Uiiへの情報「1」の書込がなされるこ
ととなるものである。
If Tk and Tk have the relationship Tk/To less 1, the clock pulse train CP as shown in FIG. 3A is obtained from the clock pulse source K, as in the case described above with reference to FIG. A control pulse WPi as shown in FIG. 3B is applied to the word line Wi.
and a write pulse BPi which takes a low level on the bit line Bi (or B'i) during a period TB as shown in FIG. 3C.
(or BP'j), the second
Similarly to the case described above in the figure, the stray capacitances Ci and C'i between the bit lines Bi and B/ and the ground are charged by the power from the power supply terminal VD before and after the period Tk, and the stray capacitances Ci ( Or C'i) is charged from the selective connection circuit G side before and after the period TB, and the stray capacitance C' (or Ci) is charged from the selective connection circuit G side regardless of before and after the period TB. However, as in the case described above in Fig. 2, the period T
The control pulse WPi at time k takes a high level and transistors Q3 and Q4 of the memory circuit Uii are turned on, while at period TB the bit line Bi (or B'i) turns on, as in the case described above in FIG. As a result, during the period TB, the charge in the stray capacitance Cj (or C'i) is discharged to the selected connection circuit side, and therefore, during the period TB, as in the case of FIG. 2, the transistor Q1 (or Q2) is turned on and its state is maintained as information "1", thus writing information "1" into the memory circuit Uii.

又斯る状態より第2図の場合と同様にクロツクパルス源
Kより第3図Aに示す如きクロックパルス列CPを得、
ワード線Wiに第3図Bに示す如き制御パルスWPiを
与え、更にビット線Bj (又はB′i)を期間TBと
同じ期間に於て出力回路H2に接続するものとすれば、
第2図の場合と同様に期間TBに於てビット線Bi(又
はB′i )が低レベルとなりそしてそれが出力回路H
2にてメモリ回路Uiiの「1」の情報の読出しがなさ
れることとなるものである。
Also, from this state, as in the case of FIG. 2, a clock pulse train CP as shown in FIG. 3A is obtained from the clock pulse source K,
If we apply a control pulse WPi as shown in FIG. 3B to the word line Wi and further connect the bit line Bj (or B'i) to the output circuit H2 during the same period as the period TB,
As in the case of FIG. 2, during the period TB, the bit line Bi (or B'i) becomes low level and the output circuit H
At step 2, the information "1" in the memory circuit Uii is read out.

勿論第2図の場合と同様に上述せるメモリ回路Uiiへ
の情報「1」の書込がなされていない場合は、メモリ回
路Uijに情報「0」の書込がなされていることを意味
し、又斯る状態より上述せる読出しをなせば出力回路H
2にてメモリ回路Uijの情報が「0」であるとして読
出されるものである。
Of course, as in the case of FIG. 2, if the information "1" is not written to the memory circuit Uii described above, it means that the information "0" is written to the memory circuit Uij. In addition, if the above-mentioned reading is performed from such a state, the output circuit H
2, the information in the memory circuit Uij is read as "0".

従って第5図に示す本発明によるメモリ装置に依れば、
第2図に示す従来のメモリ装置と同様のメモリ機能が得
られるものであるが、この場合、そのメモリ回路Uii
のトランジスタQ1及びQ2の負荷L1及びL2のトラ
ンジスタQ1及びQ2側とは反対側が、ビット線Bi及
びB′の何れかに接続されていて第2図の場合の如くに
電源線Fjを介して電源端子VDに接続されていないの
で、第2図の場合の如くに電源線Fiを要さず、この為
本発明のメモリ装置によれば、それを所謂半導体モノリ
シックに半導体集積化して構成するものとした場合その
構成を第2図の場合に比し高密度、小型化することが出
来る大なる特徴を有するものである。
Therefore, according to the memory device according to the present invention shown in FIG.
Although the same memory function as the conventional memory device shown in FIG. 2 can be obtained, in this case, the memory circuit Uii
The sides of the loads L1 and L2 of the transistors Q1 and Q2 opposite to the transistors Q1 and Q2 are connected to either the bit lines Bi or B', and the power is supplied via the power line Fj as in the case of FIG. Since it is not connected to the terminal VD, there is no need for a power supply line Fi as in the case of FIG. In this case, it has a great feature that the structure can be made higher density and smaller than the case shown in FIG.

又上述せる本発明のメモリ装置の場合、メモリ回路U1
,U漏・・・・・・・・・iUMI : U12t U
32・・・・・・・・・UM2 r・・・・・・・・・
;UINtU3N・・・・・・・・・UMNの負荷L1
及びL2のトランジスタQ1及びQ2側とは反対側が夫
々ビット線B’, , B;・・・・・・・・・;B(
に、メモリ回路U21,U4、・・・・・・・・・U(
M−t ),: U22 ,U42・・・・・・・・・
U(M−1)2’・・・・・・・・・’ U2N +
U4N・・・・・・・・・U(M−t)Nの負荷L1及
びL2のトランジスタQ1及びQ2側とは反対側がビッ
ト線B 1 : B2 :・・・・・・・・・;BNに
夫々接続されていることにより各ビット線に接続せるメ
モリ回路の数が略々等しいので、各メモリ回路に流れ込
む電流が互に略々等しいものとなり、従って安定なメモ
リ機能が得られるものである。
Furthermore, in the case of the memory device of the present invention described above, the memory circuit U1
, U leakage...iUMI: U12t U
32・・・・・・・・・UM2 r・・・・・・・・・
; UINtU3N・・・・・・・・・Load L1 of UMN
The opposite sides of transistors Q1 and Q2 of L2 are connected to bit lines B', , B;
, memory circuits U21, U4, ......U(
M-t),: U22, U42...
U(M-1)2'......' U2N +
The side opposite to the transistors Q1 and Q2 of the loads L1 and L2 of U4N......U(M-t)N is the bit line B1: B2:...;BN Since the number of memory circuits connected to each bit line is approximately equal, the current flowing into each memory circuit is approximately equal to each other, and a stable memory function can therefore be obtained. .

尚上述に於ては本発明の僅かな例を示したに留まり、図
示説明はこれを省略するも例えば第5図にて上述せる構
成に於ける充電用回路DIに於て点線図示の如くトラン
ジスタQ7及びQ8と並列にインピーダンス素子X1及
びX2を接続して、メモリ回路Ui の負荷L1及びL
2のトランジスタQ1及びQ2がビット線に接続されて
いることによりメモリ回路Ui での電流消費に基きビ
ット線B 及びB ′,の電圧レベルが無視し得ないも
のとした場合、それを補償する様にすることも出来、更
にメモリ回路の負荷L1及びL2を第6図に示す如くダ
イオードの如き単方向性素子DLとインピーダンス素子
XLとの直列回路とし、而してその場合の負荷L1及び
L2をビット線側よりトランジスタQ1及びQ2側に素
子DLを通じて電流が供給される極性を以って接続し、
メモリ回路側よりビット線側への不必要な放電を回避す
る様になすことも出来、勿論メモリ回路に用いられてい
るトランジスタをPチャンネル型に代え、これに応じて
クロツクパルス列、制御パルス及び書込用パルスの極性
も上述せる場合とは逆とすることも出来、その他本発明
の精神を脱することなしに種種の変更をなし得るであろ
う。
The above description has only shown a few examples of the present invention, and illustrations and explanations thereof will be omitted. For example, in FIG. Impedance elements X1 and X2 are connected in parallel with Q7 and Q8 to reduce loads L1 and L of the memory circuit Ui.
If the voltage level of the bit lines B and B' becomes non-negligible due to the current consumption in the memory circuit Ui due to the transistors Q1 and Q2 of the second transistor being connected to the bit line, there is a method to compensate for this. Furthermore, the loads L1 and L2 of the memory circuit can be made into a series circuit of a unidirectional element DL such as a diode and an impedance element XL as shown in FIG. Connected with polarity such that current is supplied from the bit line side to the transistors Q1 and Q2 through the element DL,
It is also possible to avoid unnecessary discharge from the memory circuit side to the bit line side, and of course replace the transistors used in the memory circuit with P-channel types, and adjust the clock pulse train, control pulses, and The polarity of the write pulse may also be reversed from that described above, and various other changes may be made without departing from the spirit of the invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は夫々従来のメモリ回路及びメモリ装
置を示す接続図、第3図はその説明に供する波形図、第
4図及び第5図は夫々本発明によるメモリ回路及びメモ
リ装置の一例を示す接続図、第6図はそれに用いる負荷
の他の例を示す接続図である。
1 and 2 are connection diagrams showing a conventional memory circuit and a memory device, respectively, FIG. 3 is a waveform diagram for explaining the same, and FIGS. 4 and 5 are diagrams of a memory circuit and a memory device according to the present invention, respectively. A connection diagram showing one example, and FIG. 6 is a connection diagram showing another example of a load used therein.

Claims (1)

【特許請求の範囲】[Claims] 1 複数M個のメモリ回路U, , U2・・・・・・
・・UMと、複数M本の制御用線W,,W,・・・・・
・・・・wMと、第1及び第2の書込・読出用線とを具
備し、上記メモリ回路U,(i=1,2・・・・・・・
・・M)が、ドレインが第1の負荷に、ソースが接地に
夫々接続せる第1のMIS電界効果型トランジスタと、
ドレインが第2の負荷及び上記第1のMIS電界効果型
トランジスタのゲートに、ソースが接地に、ゲートが上
記第1のMIS電界効果型トランジスタのドレインに夫
々接続せる第2のMIS電界効果型トランジスタと、ド
レイン及びソースの何れか一方が上記第1のMIS電界
効果型トランジスタのドレイン及び上記第1の負荷の接
続中点に、他方が上記第1の書込・読出用線に、ゲート
が上記制御用線W,に夫々接続せる第3のMIS電界効
果型トランジスタと、ドレイン及びソースの何れか一方
が上記第2のMIS電界効果型トランジスタのドレイン
及び上記第2の負荷の接続中点に、他方が上記第2の書
込・読出用線に、ゲートが上記制御用信号線Wiに夫々
接続せる第4のMIS電界効果型トランジスタとを具備
するメモリ装置に於いて、上記複数M個のメモリ回路U
,,U2−・・・・・・・UMを2分した場合のその一
方のメモリ回路に関し、その上記第1及び第2の負荷の
上記第1及び第2のMIS電界効果型トランジスタ側と
は反対側が上記第1の書込・読出用線に、他方のメモリ
回路に関し、その上記第1及び第2の負荷の上記第1及
び第2のMIS電界効果型トランジスタ側とは反対側が
上記第2の書込・読出用線に夫々共通に接続されてなる
事を特徴とするメモリ装置。
1 M plurality of memory circuits U, , U2...
...UM and multiple M control lines W,,W,...
. . wM and first and second write/read lines, and the memory circuit U, (i=1, 2 . . .
...M) is a first MIS field effect transistor whose drain is connected to a first load and whose source is connected to ground, respectively;
a second MIS field effect transistor having a drain connected to a second load and a gate of the first MIS field effect transistor, a source connected to ground, and a gate connected to the drain of the first MIS field effect transistor; , one of the drain and source is connected to the connection midpoint between the drain of the first MIS field effect transistor and the first load, the other is connected to the first write/read line, and the gate is connected to the connection point between the drain and the first load. a third MIS field effect transistor connected to the control line W, and one of its drain and source connected to the connection midpoint of the drain of the second MIS field effect transistor and the second load; In the memory device, the plurality of M memories each include a fourth MIS field effect transistor, the other of which is connected to the second write/read line, and the gate of which is connected to the control signal line Wi, respectively. circuit U
,, U2-... Regarding one of the memory circuits when UM is divided into two, what is the first and second MIS field effect transistor side of the first and second loads? The opposite side is connected to the first write/read line, and the side opposite to the first and second MIS field effect transistor sides of the first and second loads is connected to the second memory circuit. A memory device characterized in that the memory device is commonly connected to write and read lines respectively.
JP53153366A 1978-12-11 1978-12-11 memory device Expired JPS5813998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53153366A JPS5813998B2 (en) 1978-12-11 1978-12-11 memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53153366A JPS5813998B2 (en) 1978-12-11 1978-12-11 memory device

Publications (2)

Publication Number Publication Date
JPS5580885A JPS5580885A (en) 1980-06-18
JPS5813998B2 true JPS5813998B2 (en) 1983-03-16

Family

ID=15560874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53153366A Expired JPS5813998B2 (en) 1978-12-11 1978-12-11 memory device

Country Status (1)

Country Link
JP (1) JPS5813998B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4976437A (en) * 1972-11-24 1974-07-23
JPS5255336A (en) * 1975-10-30 1977-05-06 Fairchild Camera Instr Co Memory cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4976437A (en) * 1972-11-24 1974-07-23
JPS5255336A (en) * 1975-10-30 1977-05-06 Fairchild Camera Instr Co Memory cell

Also Published As

Publication number Publication date
JPS5580885A (en) 1980-06-18

Similar Documents

Publication Publication Date Title
US5119334A (en) Dynamic random access memory having improved word line control
KR100266714B1 (en) Semiconductor stroage device
TW425549B (en) Semiconductor memory device
US4338679A (en) Row driver circuit for semiconductor memory
US7243180B2 (en) Semiconductor memory device with bus driver circuit configured to transfer an output on a common bus onto an output bus with inversion or no inversion
KR900000052B1 (en) The semiconductor memory device
US4551821A (en) Data bus precharging circuits
JP3392497B2 (en) Test potential transfer circuit and semiconductor memory device using the same
JPH03222183A (en) Semiconductor memory device
JPH0470716B2 (en)
JPH0766675B2 (en) Programmable ROM
JPH0766669B2 (en) Decoder buffer circuit
JPS5813998B2 (en) memory device
JPH0697557B2 (en) Memory device
JP4386523B2 (en) Dynamic logic circuit
JPS61222096A (en) Cmos rom data selection circuit
JP2738793B2 (en) Semiconductor storage device
US6452976B1 (en) Data transfer circuit with reduced current consumption
JP2822401B2 (en) Bus drive circuit
JPS60202596A (en) Semiconductor memory
JPH11184432A (en) Driving circuit for liquid crystal display device
JP3255847B2 (en) Low power drive circuit
JPH07105152B2 (en) Non-volatile memory circuit device
JPH0150999B2 (en)
JP2528825B2 (en) Reset signal generation circuit for semiconductor memory device