JPH0566360B2 - - Google Patents

Info

Publication number
JPH0566360B2
JPH0566360B2 JP60170020A JP17002085A JPH0566360B2 JP H0566360 B2 JPH0566360 B2 JP H0566360B2 JP 60170020 A JP60170020 A JP 60170020A JP 17002085 A JP17002085 A JP 17002085A JP H0566360 B2 JPH0566360 B2 JP H0566360B2
Authority
JP
Japan
Prior art keywords
diamond
gas
film
hydrogen
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60170020A
Other languages
Japanese (ja)
Other versions
JPS61158899A (en
Inventor
Hiroshi Aida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP60170020A priority Critical patent/JPS61158899A/en
Publication of JPS61158899A publication Critical patent/JPS61158899A/en
Publication of JPH0566360B2 publication Critical patent/JPH0566360B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は膜のダイヤモンド特性を向上せしめ且
つその膜形成速度を大きくしたダイヤモンド膜の
製法に関するものである。 〔従来技術〕 ダイヤモンドは高価な装置を使用して超高圧・
超高温のもとで合成されるようになつたが、他
方、硬度や熱伝導性等の優れた特性又は半導体特
性を生かして更に広範な用途に答えると共に効率
的にダイヤモンドを合成するために低圧気相合成
技術が研究されており、例えばプラズマCVD法
によるダイヤモンド合成が提案されている。 このプラズマCVD法によるダイヤモンド合成
によれば、炭化水素ガス及び水素ガスから成る混
合ガスを反応室に導入して高周波、マイクロ波、
直流電圧などによりプラズマを発生させ、基体表
面上にダイヤモンド膜を形成するものである。
(特開昭58−153774号公報、特開昭59−3098号公
報参照) 〔発明が解決しようとする問題点〕 しかしながら、ダイヤモンド生成用ガスに炭化
水素ガス及び水素ガスから成る混合ガスを用いた
だけではダイヤモンドの生成速度が小さく、約
1μmの膜厚を得るため3〜4時間も要している
のが現状である。 更にこのプラズマCVD法により得られたダイ
ヤモンド膜においても高硬度特性等の優れたダイ
ヤモンド特性が未だ満足できるところまで達して
おらず、その特性の一層の向上が望まれている。 〔発明の目的〕 従つて本発明は叙上した問題を解決するために
完成され、その目的はダイヤモンドの生成速度を
高めて製造コストを低減せしめたダイヤモンド膜
の製法を提供することにある。 本発明の他の目的は高硬度特性など優れたダイ
ヤモンド特性を有するダイヤモンド膜の製法を提
供することにある。 〔問題を解決するための手段〕 本発明によれば、内部に基体が設置された反応
室へダイヤモンド生成用ガスを導入し、該ガスよ
り該基体表面上にダイヤモンドを気相成長させる
ダイヤモンド膜の製法において、前記ガスに、少
なくとも炭化水素ガス及び酸素含有ガスを含むと
共に該炭化水素ガスに対する酸素含有ガスのモル
比率を0.0001〜2の範囲に設定したことを特徴と
するダイヤモンド膜の製法が提供される。 本発明においては、ダイヤモンド生成用気相成
長技術のすべてについて適しており、以下、プラ
ズマCVDを例にとつて詳細に説明する。 プラズマCVDによりダイヤモンドを生成する
ガスには炭化水素ガス及び水素ガスなどを用いて
おり、本発明はこのガスに酸素原子を含有するよ
うにしたものである。この酸素原子は例えば酸素
ガスをダイヤモンド生成用ガスに導入すればよ
く、これによりダイヤモンド膜が高速に成膜でき
ることが判つた。 本発明に係るプラズマCVDには、後述する実
施例で述べる通り、高周波プラズマCVD、マイ
クロ波プラズマCVD、電子サイクロトロン共鳴
(ECR)プラズマCVDなどがあり、他に化学輸送
法等の方法によつても本発明の目的が達成できる
ことを確認した。かかるプラズマCVDによれば
プラズマ空間の電子がイオン、中性分子種に比べ
て著しく大きな運動エネルギーをもつている。そ
のために、プラズマ空間で炭化水素が電子と衝突
して励起し、反応の活性化エネルギーの相対的低
下と共に反応速度が促進し、更に炭化水素が解離
して原子状となり、所定の温度に加熱されだ基体
の表面に炭素原子がダイヤモンド状になつて析出
するというものである。 ダイヤモンド生成用ガスには水素原子を含有す
ることが多く、例えば炭化水素ガス中の水素原子
があり、また特開昭58−135117号公報に比べてい
るように水素プラズマを発生させるために水素ガ
スを導入する場合もある。かかる水素原子は水素
プラズマを発生させてプラズマを効率的に発生さ
せたり、或いはダイヤモンド膜が形成するのに伴
つて生じる黒鉛状炭素と反応し、これを除去する
ように働くものである。 しかしながら、プラズマ空間中において活性化
した炭化水素や炭素が水素ガスや分解後の水素と
衝突して再結合を起こし、その活性を失つてい
る。そのため多くの炭化水素が基体に達してもダ
イヤモンドを生成するのはそのうちの一部とな
り、大部分が気相中へ再放出されている。 従つて本発明は、このプラズマ空間に酸素を加
えるとO-、OH-のイオン種が生成し、これらが
炭化水素と反応して活性化が促進され、その結
果、ダイヤモンド膜の生成速度が大幅に向上する
という知見にもとづいている。 更に本発明によれば、ダイヤモンド生成用ガス
に水素が多量に含有しているため、成膜に伴つて
水素が取り込まれて本来の高硬度特性及び高熱伝
導性を劣化せしめているが、酸素を導入すること
により成膜に伴つて取り込まれようとする水素が
引き抜かれ、その結果、膜のダイヤモンド特性が
顕著に向上することが判つた。 本発明者が種々の実験を繰り返し行つたとこ
ろ、マイクロビツカース硬度で7000〜12000Kg/
mm2という値まで得られ、また成膜時間は時間当り
1〜50μmにまで高めることができた。 本発明によれは、ダイヤモンド生成用ガスに炭
化水素を用いており、これには例えばメタン、エ
タン、プロパン、ブタン、エチレン、プロピレ
ン、アセチレン、アレンシクロプロパン、シクロ
ブタン、ベンゼン、トルエン、キシレン等飽和又
は不飽和鎖状炭化水素、脂環式炭化水素、芳香族
炭化水素等があり、炭化水素の種類にもよるが更
に水素プラズマを発生させるために水素ガスを加
えてもよい。又、この水素ガスの全部又は一部を
アルゴンやヘリウムなどの中性ガスで置換するこ
とは何等差支えない。 更に本発明によれば、ダイヤモンド生成用ガス
に酸素ガスを加えて酸素原子供給源とする他に、
CO、CO2、H2O、NO2、NO、N2O等の酸素の窒
化物、炭化物、水素化物など、二原子分子、三原
子分子などの酸素化合物を用いても効果がある。 本発明の製法においては、ダイヤモンド生成用
ガスの種類に加えて、これらガス成分の比率を所
定の範囲に設定するとよい。 即ち、炭化水素ガスに対する酸素含有ガスのモ
ル比率を0.0001〜2の範囲に設定するのがよく、
望ましくは0.0002〜0.2の範囲がよい。又、水素
ガスを加える場合では水素ガスに対する炭化水素
ガスのモル比率を0.0005〜100の範囲に設定する
のが好適であり、更に好適には0.001〜0.1の範囲
がよい。上述した所定範囲内においては優れたダ
イヤモンド特性を有するダイヤモンド膜が比較的
高速に成膜できるという効果が顕著になるためで
ある。 更に本発明の製法においてはダイヤモンド膜が
形成される基体の温度及び成膜中のガス圧を所定
の範囲に設定するのがよい。 本発明者の実験によれば、基体温度を400〜
1400℃の範囲に、またガス圧を10-5〜100Torrの
範囲に設定することにより本発明の目的が達成で
きることを確認した。 次に高周波プラズマCVD、マイクロ波プラズ
マCVD、ECRプラズマCVDの方法によりダイヤ
モンド生成用ガスからダイヤモンド膜を生成した
実施例を順次説明する。 実施例 1 反応室として石英管の外側に高周波電流用コイ
ルを4回巻に形成し、その内部には所定の温度に
設定してある基体を設置した。高周波プラズマ
CVD法に基いて該コイルに13.56MHzの高周波電
流を流すと共に石英管内部にダイヤモンド生成用
ガスを第1表に示す通りに導入し、ガス圧力を設
定し、プラズマを発生させた。 かくして得られた各々のダイヤモンド膜につい
て走査型電子顕微鏡に析出速度、マイクロビツカ
ースによる硬度、二次イオン質量分析による膜中
の水素含有量、オージエ電子分光による膜中の酸
素含有量を測定したところ、第1票に示す通りの
結果が得られた。
[Industrial Field of Application] The present invention relates to a method for producing a diamond film that improves the diamond properties of the film and increases the film formation rate. [Prior art] Diamonds are processed under ultra-high pressure using expensive equipment.
Diamond has been synthesized under ultra-high temperatures, but on the other hand, low pressure is required to utilize its excellent properties such as hardness and thermal conductivity, as well as its semiconducting properties, to meet a wider range of applications and to efficiently synthesize diamond. Gas phase synthesis technology is being researched, and for example, diamond synthesis using plasma CVD has been proposed. According to diamond synthesis using this plasma CVD method, a mixed gas consisting of hydrocarbon gas and hydrogen gas is introduced into a reaction chamber, and radio frequency, microwave, and
A diamond film is formed on the surface of a substrate by generating plasma using a DC voltage or the like.
(Refer to JP-A-58-153774 and JP-A-59-3098) [Problems to be solved by the invention] However, it is only possible to use a mixed gas consisting of hydrocarbon gas and hydrogen gas as the gas for diamond production. In this case, the diamond formation rate is low, approximately
Currently, it takes 3 to 4 hours to obtain a film thickness of 1 μm. Further, even in the diamond film obtained by this plasma CVD method, excellent diamond properties such as high hardness have not yet been achieved to a satisfactory level, and further improvement of these properties is desired. [Object of the Invention] Therefore, the present invention was completed in order to solve the above-mentioned problems, and its object is to provide a method for manufacturing a diamond film that increases the diamond production rate and reduces the manufacturing cost. Another object of the present invention is to provide a method for producing a diamond film having excellent diamond properties such as high hardness. [Means for solving the problem] According to the present invention, a diamond-forming gas is introduced into a reaction chamber in which a substrate is installed, and diamond is grown in a vapor phase on the surface of the substrate using the gas. There is provided a method for producing a diamond film, characterized in that the gas contains at least a hydrocarbon gas and an oxygen-containing gas, and the molar ratio of the oxygen-containing gas to the hydrocarbon gas is set in a range of 0.0001 to 2. Ru. The present invention is suitable for all vapor phase growth techniques for producing diamond, and will be described in detail below using plasma CVD as an example. Hydrocarbon gas, hydrogen gas, and the like are used as gases for producing diamonds by plasma CVD, and the present invention allows these gases to contain oxygen atoms. It has been found that the oxygen atoms can be introduced into the diamond-forming gas by introducing, for example, oxygen gas into the diamond-forming gas, thereby making it possible to form a diamond film at high speed. As described in the examples below, plasma CVD according to the present invention includes high frequency plasma CVD, microwave plasma CVD, electron cyclotron resonance (ECR) plasma CVD, and other methods such as chemical transport method. It has been confirmed that the object of the present invention can be achieved. According to such plasma CVD, electrons in the plasma space have significantly greater kinetic energy than ions and neutral molecular species. For this purpose, hydrocarbons collide with electrons in the plasma space and are excited, accelerating the reaction rate with a relative decrease in the activation energy of the reaction, and furthermore, the hydrocarbons dissociate into atomic forms and are heated to a predetermined temperature. Carbon atoms are deposited in a diamond shape on the surface of the substrate. Diamond generating gases often contain hydrogen atoms, for example hydrogen atoms in hydrocarbon gas, and hydrogen gas is used to generate hydrogen plasma as compared to Japanese Patent Application Laid-Open No. 135117/1983. may be introduced. These hydrogen atoms work to generate hydrogen plasma to efficiently generate the plasma, or to react with and remove graphitic carbon produced as a diamond film is formed. However, activated hydrocarbons and carbon in the plasma space collide with hydrogen gas and hydrogen after decomposition, causing recombination and losing their activity. Therefore, even if many hydrocarbons reach the substrate, only a small portion of them will form diamonds, and the majority will be released back into the gas phase. Therefore, in the present invention, when oxygen is added to this plasma space, O - and OH - ion species are generated, which react with hydrocarbons to promote activation, and as a result, the rate of diamond film formation is significantly increased. This is based on the knowledge that it improves performance. Furthermore, according to the present invention, since the diamond-forming gas contains a large amount of hydrogen, hydrogen is incorporated during film formation and deteriorates the original high hardness characteristics and high thermal conductivity. It has been found that by introducing hydrogen, which tends to be incorporated during film formation, is extracted, and as a result, the diamond properties of the film are significantly improved. The inventor repeatedly conducted various experiments and found that the microvitkers hardness was 7,000 to 12,000 Kg/
mm 2 , and the film formation time could be increased to 1 to 50 μm per hour. According to the present invention, hydrocarbons are used as diamond-forming gases, including saturated or Examples include unsaturated chain hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, etc. Depending on the type of hydrocarbon, hydrogen gas may be added to generate hydrogen plasma. Furthermore, there is no problem in replacing all or part of this hydrogen gas with a neutral gas such as argon or helium. Furthermore, according to the present invention, in addition to adding oxygen gas to the diamond-forming gas to provide an oxygen atom supply source,
It is also effective to use oxygen compounds such as diatomic molecules, triatomic molecules, etc., such as oxygen nitrides, carbides, and hydrides such as CO, CO 2 , H 2 O, NO 2 , NO, and N 2 O. In the manufacturing method of the present invention, in addition to the type of diamond-generating gas, the ratio of these gas components may be set within a predetermined range. That is, the molar ratio of oxygen-containing gas to hydrocarbon gas is preferably set in the range of 0.0001 to 2.
It is preferably in the range of 0.0002 to 0.2. Further, when hydrogen gas is added, the molar ratio of hydrocarbon gas to hydrogen gas is preferably set in the range of 0.0005 to 100, more preferably in the range of 0.001 to 0.1. This is because within the above-mentioned predetermined range, the effect that a diamond film having excellent diamond properties can be formed at a relatively high speed becomes remarkable. Furthermore, in the manufacturing method of the present invention, the temperature of the substrate on which the diamond film is formed and the gas pressure during film formation are preferably set within predetermined ranges. According to the inventor's experiments, the substrate temperature was
It was confirmed that the object of the present invention could be achieved by setting the temperature in the range of 1400°C and the gas pressure in the range of 10 -5 to 100 Torr. Next, examples will be sequentially described in which a diamond film was produced from a diamond-producing gas by high-frequency plasma CVD, microwave plasma CVD, and ECR plasma CVD. Example 1 A high-frequency current coil was formed with four turns on the outside of a quartz tube as a reaction chamber, and a base body set at a predetermined temperature was installed inside the coil. high frequency plasma
Based on the CVD method, a high-frequency current of 13.56 MHz was passed through the coil, and a diamond-generating gas was introduced into the quartz tube as shown in Table 1, the gas pressure was set, and plasma was generated. For each of the diamond films obtained in this way, the deposition rate, hardness by micro-Vickers, hydrogen content in the film by secondary ion mass spectrometry, and oxygen content in the film by Auger electron spectroscopy were measured using a scanning electron microscope. , the results shown in the first vote were obtained.

【表】 *印の試料は本発明の範囲外である
第1表から明らかな通り、本発明の試料番号1
乃至5については析出速度及び硬度が顕著に大き
くなり、また膜中の水素含有量についても比較例
(試料番号6及び7)より著しく小さくなり、高
品質なダイヤモンド膜が得られた。 実施例 2 本実施例においてはマイクロ波プラズマCVD
法に基いて、2.45GHzのマイクロ波を用いて成膜
するに当つて、ダイヤモンド生成用ガスを第2表
に示す通りに導入し、基体温度及びガス圧力も所
定の範囲に設定しながらプラズマを発生させた。 かくして得られた各々のダイヤモンド膜につい
て、実施例1と同じように析出速度、ビツカース
硬度、膜中の水素含有量、膜中の酸素含有量を測
定したところ、第2表に示す通りの結果が得られ
た。
[Table] Samples marked with * are outside the scope of the present invention. As is clear from Table 1, sample number 1 of the present invention
For Samples 5 to 5, the deposition rate and hardness were significantly higher, and the hydrogen content in the film was also significantly lower than in Comparative Examples (Sample Nos. 6 and 7), resulting in high-quality diamond films. Example 2 In this example, microwave plasma CVD
When forming a film using 2.45GHz microwaves based on the method, diamond-generating gas is introduced as shown in Table 2, and plasma is generated while the substrate temperature and gas pressure are set within the specified range. caused it to occur. For each diamond film thus obtained, the deposition rate, Vickers hardness, hydrogen content in the film, and oxygen content in the film were measured in the same manner as in Example 1, and the results were as shown in Table 2. Obtained.

【表】 *印の試料は本発明の範囲外である
第2表から明らかな通り、本発明の試料番号8
乃至13については析出度及び硬度が顕著に大きく
なつたことが判る。尚、試料番号15についてはダ
イヤモンドが膜状に均一成膜せず、基体表面が一
部露出しながら、粒状に成膜するのが認められ
た。 実施例 3 本実施例においては本発明者が特願昭58−
208006号公報にて提案したようなECRプラズマ
CVD法にイオンビームを組み合わせた方法に基
いてダイヤモンド膜を形成した。そして、ダイヤ
モンド生成用ガスを第3表に示す通りに導入し、
基体温度及びガス圧力も所定の範囲に設定しなが
らプラズマを発生させた。 かくして得られた各々のダイヤモンド膜につい
て、実施例1と同じようにして析出速度、硬度、
膜中の水素含有量と酸素含有量を測定したとこ
ろ、第3表に示す通りの結果が得られた。
[Table] Samples marked with * are outside the scope of the present invention. As is clear from Table 2, sample number 8 of the present invention
It can be seen that for Nos. 1 to 13, the degree of precipitation and hardness increased significantly. Regarding sample No. 15, it was observed that the diamond was not uniformly formed into a film, but formed into a granular film with a portion of the substrate surface being exposed. Example 3 In this example, the inventor filed a patent application in 1983-
ECR plasma as proposed in Publication No. 208006
A diamond film was formed using a combination of CVD and ion beams. Then, diamond-generating gas was introduced as shown in Table 3,
Plasma was generated while the substrate temperature and gas pressure were also set within predetermined ranges. For each diamond film thus obtained, the deposition rate, hardness,
When the hydrogen content and oxygen content in the film were measured, the results shown in Table 3 were obtained.

〔発明の効果〕〔Effect of the invention〕

以上の実施例が示す通り、本発明の製法による
ダイヤモンド膜については膜中の水素含有量が従
来周知のダイヤモンド膜のものに比べて小さくな
つてダイヤモンド特性に優れ、例えば硬度に優れ
ていることが判る。また析出速度も一段と優れて
おり、製造コストを低減せしめたダイヤモンド膜
の製法が提供される。
As shown in the above examples, the diamond film produced by the method of the present invention has a lower hydrogen content than conventionally known diamond films and has excellent diamond characteristics, such as excellent hardness. I understand. Furthermore, the deposition rate is also much higher, and a method for manufacturing a diamond film is provided that reduces manufacturing costs.

Claims (1)

【特許請求の範囲】[Claims] 1 内部に基本が設置された反応室へダイヤモン
ド生成用ガスを導入し、該ガスより該基体表面上
にダイヤモンドを気相成長させるダイヤモンド膜
の製法において、前記ガスに、少なくとも炭化水
素ガス及び酸素含有ガスを含むと共に該炭化水素
ガスに対する酸素含有ガスのモル比率を0.0001〜
2の範囲に設定したことを特徴とするダイヤモン
ド膜の製法。
1. A diamond film manufacturing method in which a diamond-forming gas is introduced into a reaction chamber in which a base is installed, and diamond is grown in vapor phase from the gas onto the surface of the substrate, wherein the gas contains at least a hydrocarbon gas and oxygen. The molar ratio of the oxygen-containing gas to the hydrocarbon gas is 0.0001 to 0.0001.
A method for manufacturing a diamond film, characterized in that the method is set in the range of 2.
JP60170020A 1985-07-31 1985-07-31 Production of diamond film Granted JPS61158899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60170020A JPS61158899A (en) 1985-07-31 1985-07-31 Production of diamond film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60170020A JPS61158899A (en) 1985-07-31 1985-07-31 Production of diamond film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59278645A Division JPS61183198A (en) 1984-12-29 1984-12-29 Production of diamond film

Publications (2)

Publication Number Publication Date
JPS61158899A JPS61158899A (en) 1986-07-18
JPH0566360B2 true JPH0566360B2 (en) 1993-09-21

Family

ID=15897108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60170020A Granted JPS61158899A (en) 1985-07-31 1985-07-31 Production of diamond film

Country Status (1)

Country Link
JP (1) JPS61158899A (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63117995A (en) * 1986-11-05 1988-05-21 Kobe Steel Ltd Device for synthesizing diamond in vapor phase
JPS63117996A (en) * 1986-11-05 1988-05-21 Kobe Steel Ltd Device for synthesizing diamond in vapor phase
JPH0776147B2 (en) * 1986-12-27 1995-08-16 京セラ株式会社 Diamond film manufacturing method
JPH0811719B2 (en) * 1986-12-27 1996-02-07 京セラ株式会社 Diamond film manufacturing method
JPS6461396A (en) * 1987-09-01 1989-03-08 Idemitsu Petrochemical Co Synthesis of diamond and installation therefor
JPH08757B2 (en) * 1988-12-26 1996-01-10 住友電気工業株式会社 Diamond and its vapor phase synthesis method
EP0371145B1 (en) * 1988-05-28 1994-02-16 Sumitomo Electric Industries, Ltd. Process for vapor-phase synthesis of diamond
JP2730144B2 (en) * 1989-03-07 1998-03-25 住友電気工業株式会社 Single crystal diamond layer formation method
JPH0647517B2 (en) * 1989-03-17 1994-06-22 株式会社石塚研究所 High-quality diamond and manufacturing method thereof
US5704976A (en) * 1990-07-06 1998-01-06 The United States Of America As Represented By The Secretary Of The Navy High temperature, high rate, epitaxial synthesis of diamond in a laminar plasma
JPH04193794A (en) * 1990-11-28 1992-07-13 Japan Steel Works Ltd:The Synthesis of diamond
JPH04193795A (en) * 1990-11-28 1992-07-13 Japan Steel Works Ltd:The Synthesis of diamond
JPH059735A (en) * 1991-07-09 1993-01-19 Kobe Steel Ltd Vapor synthesis of diamond
JPH06263595A (en) * 1993-03-10 1994-09-20 Canon Inc Diamond-coated material and its production
CN105506576B (en) * 2016-02-02 2018-04-13 太原理工大学 A kind of preparation method of high-quality Diamond wafer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3030188A (en) * 1958-07-23 1962-04-17 Union Carbide Corp Synthesis of diamond
US3371996A (en) * 1964-01-20 1968-03-05 Henry J. Hibshman Diamond growth process
US3749760A (en) * 1970-04-24 1973-07-31 V Varnin Method of producing diamonds
JPS58135117A (en) * 1982-01-29 1983-08-11 Natl Inst For Res In Inorg Mater Preparation of diamond
JPS60191097A (en) * 1984-03-08 1985-09-28 Mitsubishi Metal Corp Crystallizing method of artificial diamond
JPH0566359A (en) * 1991-09-09 1993-03-19 Ricoh Co Ltd Unmagnified coupling element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3030188A (en) * 1958-07-23 1962-04-17 Union Carbide Corp Synthesis of diamond
US3371996A (en) * 1964-01-20 1968-03-05 Henry J. Hibshman Diamond growth process
US3749760A (en) * 1970-04-24 1973-07-31 V Varnin Method of producing diamonds
JPS58135117A (en) * 1982-01-29 1983-08-11 Natl Inst For Res In Inorg Mater Preparation of diamond
JPS60191097A (en) * 1984-03-08 1985-09-28 Mitsubishi Metal Corp Crystallizing method of artificial diamond
JPH0566359A (en) * 1991-09-09 1993-03-19 Ricoh Co Ltd Unmagnified coupling element

Also Published As

Publication number Publication date
JPS61158899A (en) 1986-07-18

Similar Documents

Publication Publication Date Title
Muhl et al. A review of the preparation of carbon nitride films
US4816286A (en) Process for synthesis of diamond by CVD
JPH0566360B2 (en)
CA2018886A1 (en) Process for making diamond, doped diamond, diamond-cubic boron nitride composite films at low temperature
JPH0566359B2 (en)
KR20200052125A (en) method for forming graphene
JPH08225395A (en) Production of diamond doped with boron
JPH04958B2 (en)
US4974544A (en) Vapor deposition apparatus
May et al. Investigation of the addition of nitrogen-containing gases to a hot filament diamond chemical vapour deposition reactor
JPS6136200A (en) Method for vapor-phase synthesis of diamond
Sung et al. A novel form of carbon nitrides: Well-aligned carbon nitride nanotubes and their characterization
He et al. Preparation and characterization of RF-PECVD deposited films containing β-C3NN4 microcrystallites
JPH0471034B2 (en)
JP3246780B2 (en) Method and apparatus for forming hard carbon film
JP2617539B2 (en) Equipment for producing cubic boron nitride film
JPS63265890A (en) Production of thin diamond film or thin diamond-like film
JPS63185894A (en) Production of diamond thin film or diamond-like thin film
JPS63215596A (en) Production of diamond film or diamond like film
JP4480192B2 (en) Method for synthesizing high purity diamond
JPH01246357A (en) Production of cubic boron nitride film
JPH0768078B2 (en) Diamond film manufacturing method
JP2636856B2 (en) Method for producing diamond thin film
JPS63107899A (en) Formation of thin film
JPH0524991B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term