JPS58104166A - Continuous measuring method for thickness of electroless plating - Google Patents

Continuous measuring method for thickness of electroless plating

Info

Publication number
JPS58104166A
JPS58104166A JP20000281A JP20000281A JPS58104166A JP S58104166 A JPS58104166 A JP S58104166A JP 20000281 A JP20000281 A JP 20000281A JP 20000281 A JP20000281 A JP 20000281A JP S58104166 A JPS58104166 A JP S58104166A
Authority
JP
Japan
Prior art keywords
sensors
thickness
plated
plating
electroless plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20000281A
Other languages
Japanese (ja)
Inventor
Takashi Kanamori
孝史 金森
Hideo Sawai
澤井 秀夫
Toshiko Suwa
諏訪 敏子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP20000281A priority Critical patent/JPS58104166A/en
Publication of JPS58104166A publication Critical patent/JPS58104166A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1675Process conditions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1664Process features with additional means during the plating process
    • C23C18/1671Electric field

Abstract

PURPOSE:To measure deposition thickness continuously and accurately by providing multipolar sensors which measure the film thickness of the objects to be plated continuously by sensing the change in the resistance value of deposited metal and converting the same to the film thickness, selecting the sensors by each piece from the lapse of time with the common electrode maintained at the ground potential and measuring the resistance values of the sensors. CONSTITUTION:Multipolar sensors having plural pieces of measuring systems are used as sensors 9, and the sensors are selected by each piece in making measurement, so that the sensors once used from the start up to the end of plating are no longer used. Since there are no differences in the plating deposition thickness of the surfaces of be plated of an object 2 to be plated and the sensors 9, the thickness of electroless plating can be measured accurately. Further, a plating soln. 1, the common electrode of the sensors 9 and the earth terminal of a resistance measuring circuit 26 are grounded; therefore, the stable measurement is possible.

Description

【発明の詳細な説明】 この発明は、無電解めっき液中で刻々変化する無電解析
出厚さを連続して正確に一定する無電解めっき厚さ連続
測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for continuously measuring electroless plating thickness, which continuously and accurately keeps the electroless deposit thickness constantly changing in an electroless plating solution.

従来、析出反応中の無電解のめつき厚さを連続的KIl
定する方法として、めっき被膜の電気伝導度を利用して
、センナ材料を゛めつき液中に浸漬し、電気伝導度の変
化をめつ龜厚さの変化に換算して連続的Kll定するΦ
が一般的である。
Conventionally, the electroless plating thickness during the deposition reaction was continuously measured by KIl.
As a method of determining the electrical conductivity of the plating film, the senna material is immersed in a plating solution, and the change in electrical conductivity is converted into a change in the thickness of the plating film to continuously determine Kll. Φ
is common.

第1図は従来の無電解めっき厚さ測定装置の構成を示す
図、で−あシ、この第1図における1は無電解めつ電液
、2は被めっき物9.3はセンサ、4はセンサホルダで
ある。センナ3の出力は抵抗橢定器Sに2て測定され、
るようになってい、る。
FIG. 1 is a diagram showing the configuration of a conventional electroless plating thickness measuring device. is the sensor holder. The output of the sensor 3 is measured by the resistance regulator S2,
It has become so.

被めっき物2とセンサ3を同時に無電解めつ重液IK浸
漬し、センサ3に析出しためつき被膜よ〕電5気伝導度
が変、化し、その変化量を抵抗測定針sKよ〕計測し、
めっき厚さとして轡算測定するものである。     
  、 第2図は従来使用して−るセ・ンナ3の斜視図であゐ。
The object to be plated 2 and the sensor 3 are immersed in an electroless heavy liquid IK at the same time, and the electrical conductivity of the deposited film deposited on the sensor 3 changes, and the amount of change is measured using the resistance measuring needle sK. death,
The plating thickness is calculated by counting.
FIG. 2 is a perspective view of the sensor 3 used conventionally.

この第2図における6は被めっき物2と竺じ材質の基板
、・7は電極引出し用接続バード、8は被めっき面を示
す。1.。
In FIG. 2, reference numeral 6 indicates a substrate made of the same material as the object 2 to be plated, 7 indicates a connection bar for leading out electrodes, and 8 indicates a surface to be plated. 1. .

また−第3図は従来の無電解めっき厚さの測定装置で実
際に発明者らがめつき厚さを測定しえものである。この
第3図において、特性Aはl14つ1物2のめつき時間
と析出厚さを示し、特性Bはセンサ3の被めっき面8の
めつき時間と析出厚さを示したものである。
Furthermore, FIG. 3 shows a conventional electroless plating thickness measuring device that the inventors were able to use to actually measure the plating thickness. In FIG. 3, characteristic A shows the plating time and deposit thickness for each object 2, and characteristic B shows the plating time and deposit thickness for the plated surface 8 of the sensor 3.

めっ!条件として、めっき1llKは、周知の無電解N
1−B浴、被めっき物2は前処理を施したエポキシ箪、
センt3にはエポキシ板を用いている。
Me! As a condition, plating 1llK is performed using well-known electroless N
1-B bath, the object to be plated 2 is a pretreated epoxy tank,
An epoxy board is used for cent t3.

この第3図に示すように、被めり11とセンナ3の材料
の析出厚さが異なる原因として、センナ3には一定のた
め、外部よ〕電位がかかるために、センナson藺での
無電解めっき反応としての酸化還元電位が被めっき物と
なる九めに起ζるものと思われる。
As shown in Fig. 3, the reason why the deposited thickness of the material of the cover 11 and the senna 3 is different is that because the senna 3 is constant, an electric potential is applied from the outside. It is thought that the oxidation-reduction potential as an electrolytic plating reaction occurs when the object is plated.

この丸め、析出厚さを数千ムオーダで制御する場合は、
センナ3と被めっき物2の析出厚さが異なる大め、正し
く厚さを一定することが困難であった。同様に%センナ
3として、金属ワイヤを用いる方法もあるが、被めつ龜
材料が異なる場合にも無電解めっきでの結晶成長方向が
反応初期で異なるため、析出速度に差を生じ、正確なめ
つき厚さを測定することが困難でjつた。
If you want to control this rounding and precipitation thickness on the order of several thousand mu,
The deposited thicknesses of the senna 3 and the material to be plated 2 were different, and it was difficult to maintain the correct thickness. Similarly, there is a method of using a metal wire as % Senna 3, but since the direction of crystal growth in electroless plating differs at the initial stage of the reaction even when the plate material is different, this causes a difference in the deposition rate, making it difficult to measure accurately. It was difficult to measure the thickness.

この発明は、上記従来O欠点を除去するためになされた
もので、七yす材料と被めっき物の間に析出厚″g+o
m差がなく、無電僻めつき途中で0正確な析出厚さを一
定できる無電解めっき厚さ連続一定方法を提供すること
を目的とする。
This invention was made in order to eliminate the above-mentioned conventional O defect, and has a precipitate thickness of ``g+o'' between the material and the object to be plated.
It is an object of the present invention to provide a method for continuously constant electroless plating thickness, which has no difference in thickness and can maintain an accurate deposition thickness during electroless plating.

以下、ζ0発911o無電解めっき厚さ連続一定方法の
実施例について図1WK基づ會説明する。第4図はその
一実施例に適用される無電解めっき厚さ測定装置を示す
図である。この第4図において、第1図と同一部分には
同一符号を付して述べる仁とKする。
Hereinafter, an example of a method of continuously constant electroless plating thickness from ζ0 to 911o will be described based on FIG. 1WK. FIG. 4 is a diagram showing an electroless plating thickness measuring device applied to one embodiment. In FIG. 4, parts that are the same as those in FIG. 1 are designated by the same reference numerals.

第4図において、めりき槽lム内に無電解めっき液1が
充填されている。仁の無電解めつ11に被めっき物2、
センナSシよび接地用電極13が同時に浸漬されるもの
であみ。センf9はセンナ保持板10によ〕保持されて
シシ、コネクjfll。
In FIG. 4, an electroless plating solution 1 is filled in a plating tank 1. The object to be plated 2 on the electroless face 11 of Jin,
The senna S and the grounding electrode 13 are immersed at the same time. The sensor f9 is held by the sensor holding plate 10 and then connected.

多芯ケーブルl−を介して選択回路付抵抗計14に接続
されて%/%′暮。
It is connected to a resistance meter 14 with a selection circuit via a multi-core cable l-.

上記七ノデー:□は、−めっき物雪と同じ材質でかつ複
数個OIl定系を4つセンナを一体化した構成になって
お〕、センナ保持板10でねじによ〕接続固定されてい
る。センを保持板10には、センナ9と外部接続端子を
結ぶ導体配線が形成されてい為。    − また、選択回路付抵抗計14は複数個のセンナ9かも1
個のみ選択測定するための一回路が内蔵され、ナンプリ
ンダ時間および間隔は内蔵されたクロック発振回路によ
)任意に調節でき為ようKなって%/%為。     
    ゛ さもに″、接地用電極13はめっき液1と複数個のセン
ナのコーノ電極および選択回路付抵抗計14のアース電
位′と等しくUてノイズなどの影響な最少aKして測定
するために不可欠なものである。
The above seventh day: □ is made of the same material as the plating material and has a structure in which four sennas are integrated with a plurality of OIL constant systems], and are connected and fixed with screws with the senna holding plate 10. . The sensor holding plate 10 is formed with conductor wiring that connects the sensor 9 and the external connection terminal. - Also, the resistance meter 14 with selection circuit may be connected to multiple sensors 9 or 1.
A circuit for selectively measuring only one number is built in, and the number printer time and interval can be adjusted arbitrarily (by the built-in clock oscillation circuit).
In addition, the grounding electrode 13 is indispensable for measuring the plating solution 1, the corner electrodes of the plurality of sensors, and the earth potential of the resistance meter 14 with a selection circuit so as to minimize the influence of noise. It is something.

第s[IはとOl&羽を電気的KII続する丸めの回路
図であゐ。この第5図において、1Bはセンt、  部
であ〕、第4図におけるセンt9に相幽する部分である
。また、16は接続ケーブルであル、菖4図の多芯ケー
ブル12KIi幽する部分であ為。
The s[I is a rounded circuit diagram that electrically connects the s[I and Ol&wings to the KII. In this FIG. 5, 1B is the center part, which is a part that is opposite to the center part 9 in FIG. Also, 16 is the connection cable, and it is the part where the multi-core cable 12KIi in Figure 4 is hidden.

17は選択回路、16は選択回路17を駆動するための
ツインデコーダ回路であ)、このツインデコーダ回路l
Sにはりpツク発振部19からの′クロックが入力され
るようKtつている。選択回路部17とアース間には抵
抗測定回路26が接続されている。これらの選択回路部
17.デコーダ回路部18.クロック発振部19.抵抗
測定園路意6とによ)、第4図における選択回路付抵抗
計14が構成されている。
17 is a selection circuit, 16 is a twin decoder circuit for driving the selection circuit 17), and this twin decoder circuit l
Kt is connected to S so that the 'clock' from the pock oscillator 19 is input. A resistance measuring circuit 26 is connected between the selection circuit section 17 and ground. These selection circuit sections 17. Decoder circuit section 18. Clock oscillation section 19. According to the resistance measurement method 6), the resistance meter 14 with selection circuit shown in FIG. 4 is constructed.

上記センを部15においては、めっき抵抗体20゜セン
!とセンナ保持板との接続ポイント21を有し、また、
22はセンず保持板の出力端子を示している。そして、
セ/す部15はセンナ9とセンナ保持板10によシ構成
され、センナ9は複数のセンナ1 m−1b * 2m
−2b # 3a−ah en a −n bで構成さ
れ、コモン電極として、1b〜nbtでを一括接続する
接続ポイン)21を有していbo 仁の接続ポイント21はセンナ保持板lOO端子と圧!
III絖され、出力端子22に送られ、抵抗測定回路2
6に接続される。抵抗測定回路26では、これらの出力
端子21!を選択回路部17に接続され為。選択回路部
17は複数個のリレー開閉器で構成され、り四ツク発振
部19シよびツインデコーダ回路111によ〉、i c
 e 2 e e 3 a m ”・neと順次1個ず
つオンとなシ、選択的にリレーを閉じて1個のセンサを
ナンプリングし、抵抗測定回路26によ〕抵抗値を測定
し、めっき厚さに換算するものである。
At section 15, the plated resistor is 20 degrees centimeter! and a connection point 21 with the senna holding plate, and
Reference numeral 22 indicates an output terminal of the sensor holding plate. and,
The center part 15 is composed of a senna 9 and a senna holding plate 10, and the senna 9 is connected to a plurality of senna 1m-1b*2m.
-2b #3a-ah en a -n b, and has a connection point 21 for collectively connecting 1b to nbt as a common electrode.
III wire is sent to the output terminal 22, and the resistance measuring circuit 2
Connected to 6. In the resistance measurement circuit 26, these output terminals 21! Because it is connected to the selection circuit section 17. The selection circuit section 17 is composed of a plurality of relay switches, and is operated by a quad oscillator section 19 and a twin decoder circuit 111.
e 2 e 3 a m ”・ne are turned on one by one, the relay is selectively closed, one sensor is numbered, the resistance value is measured by the resistance measuring circuit 26, and the plating thickness is determined. It is converted to .

第6図はこの発明に使用される多極センナの一実施例を
示すものである。この第6図において、23はコモン電
極、24は取付穴を示している。
FIG. 6 shows an embodiment of a multipole sensor used in the present invention. In FIG. 6, 23 indicates a common electrode, and 24 indicates a mounting hole.

そして、被めつ電画8は被めっき物2と同一材料のもの
で、この材料がたとえば、エポキシ壜どであれば、銅張
エポキシ基板などを用いて電極を引出し用パッドおよび
コモン電極23をエツチングなどKよ多形成してプレス
などによ〕、外形を第6図に示すような形をとる。
The electrical image 8 to be plated is made of the same material as the object 2 to be plated, and if this material is, for example, an epoxy bottle, a copper-clad epoxy board or the like is used to connect the electrode to the lead-out pad and the common electrode 23. By etching, etc., a multilayer K is formed, and by pressing, etc., the outer shape is taken as shown in FIG.

まえ、その他のプラスチック板などの場合はあらかじめ
プラスチック板の食菌に無電解めっきを施し、その後、
銅張積層板と同じようにエツチングして電極を形成し、
プレ哀−よシ外形加工゛を行う。
In the case of other plastic plates, electroless plating is applied to the edible bacteria on the plastic plate in advance, and then
The electrodes are formed by etching in the same way as copper-clad laminates.
Perform pre-processing and external shape processing.

センナ9として、銅張積層板を使用する場合には、電極
引出し用パッド7およびコモン電極23の鋼箔はあらか
じめ目的O無電解めっき液で、0.5〜1.0μmめっ
きして、銅素地が露出しないようKしておく。
When using a copper-clad laminate as the senna 9, the steel foil of the electrode lead-out pad 7 and the common electrode 23 is plated in advance with a purpose O electroless plating solution to a thickness of 0.5 to 1.0 μm, and then the copper base plate is plated with a thickness of 0.5 to 1.0 μm. K so that it is not exposed.

これは、めつ゛き箪1として、銅板外の異種金属、たと
えば、ニッケルめっきを使用する場合K。
This is true when a different metal other than the copper plate, such as nickel plating, is used as the plating cabinet 1.

N1+1とCuの関に起動電力を発生し、測定誤差の原
因となるからである。
This is because starting power is generated between N1+1 and Cu, causing measurement errors.

第7図はセンナ保持板10とセンt9の取付図を分解斜
視図として示したものである。この第7図において、2
5は銅張積層板を示し、36はセンサ9の電極引出し用
接続パッド7と同じ矢きさの接続用パッドであシ、同一
ピッチで構成されている。
FIG. 7 is an exploded perspective view showing the installation of the senna holding plate 10 and the senna 9. In this Figure 7, 2
Reference numeral 5 indicates a copper-clad laminate, and reference numeral 36 indicates connection pads having the same width and pitch as the electrode lead-out connection pads 7 of the sensor 9.

また、27はコモン電極接続導体、28はセンサ9を圧
41!1続し:゛て固定するための押え板である。
Further, 27 is a common electrode connecting conductor, and 28 is a holding plate for connecting and fixing the sensor 9 with pressure.

1゜ この押え板28に“^υ、センt9の取付穴24と電極
引出し用接続パッド7を挾んで接続用パッド36に轟*
@せた状態で、取付穴24にねじ28&を通して螺着す
る。同様にして押え板29をセン+9のコモン電極23
に当接して、このコモン電極23をコモン電極接続導体
27と押え板29間に挾んでプラスチック固定ねじ21
1aKよ〉、取付穴24を通してプラスチックナラ)3
Gと螺着している。
1゜Place the holding plate 28 between the mounting hole 24 of the center 9 and the connection pad 7 for electrode extraction, and attach it to the connection pad 36 *
In the vertical position, insert the screw 28 & into the mounting hole 24 and screw it in place. In the same way, press the holding plate 29 to the +9 common electrode 23.
This common electrode 23 is sandwiched between the common electrode connecting conductor 27 and the holding plate 29, and the plastic fixing screw 21 is
1aK〉, insert the plastic oak through the mounting hole 24) 3
It is screwed to G.

を九、31はセンサ9の被めつt1爾8をめっき液IK
液接触せるための窓を示し、32は接続用パッド36を
接続端子へ導くための導体配線であ〉、さらに、33は
外部接続端子、34は導体配線32をめつきtlKm触
させないためのマスク板を示している。
9, 31 is the sensor 9 cover t1 and 8 is the plating solution IK
32 is a conductor wiring for guiding the connection pad 36 to the connection terminal, 33 is an external connection terminal, and 34 is a mask for preventing contact with the conductor wiring 32. It shows the board.

第7図において、上述しえように、センサ9(多極セン
サ)はあらかじめ被めっき物2と同じ前処理を行った後
、センナ保持板10に電極引出し用接続パッド7と接続
用パッド36を突き当てるように重ねて、押え板28と
と4にねじ28mで固定して使用する。
In FIG. 7, as mentioned above, the sensor 9 (multipolar sensor) has been subjected to the same pretreatment as the object to be plated 2, and then the connection pad 7 for electrode extraction and the connection pad 36 are attached to the senna holding plate 10. They are used by stacking them so that they butt against each other and fixing them to the presser plates 28 and 4 with screws 28m.

次に%第4図な4し第7図で示した無電解めっき厚さ測
定装置によシ、この発明の無電解めっき厚さ連続測定方
法を説明する。まず、めっき液1内に被めっき物2およ
びセンサ9を浸漬させ、無電解めっきを開始すると、時
間の経過とともに、被めっき物2およびセンサ9の被め
っき面8には無電解めっき反応で金属が析出される。こ
の析出厚さを抵抗値の変化に換算して測定するわけであ
るが、この発明はパルス的に所定時間間隔ととに連破的
に測定するものである。
Next, the method for continuously measuring electroless plating thickness of the present invention will be explained using the electroless plating thickness measuring apparatus shown in FIGS. 4 to 7. First, the object to be plated 2 and the sensor 9 are immersed in the plating solution 1 and electroless plating is started. As time passes, the surface 8 of the object to be plated and the sensor 9 is coated with metal due to an electroless plating reaction. is precipitated. This deposited thickness is measured by converting it into a change in resistance value, but in the present invention, the measurement is carried out in a continuous manner at predetermined time intervals in a pulsed manner.

いま、クロック発振部19からクロックツくルスがデコ
ーダ回路部18に送られると、デコーダ回路部18はこ
のクロックパルスを解読して、選択回路部11のリレー
を1個ずつ順次動作させる。
Now, when a clock pulse is sent from the clock oscillation section 19 to the decoder circuit section 18, the decoder circuit section 18 decodes this clock pulse and sequentially operates the relays of the selection circuit section 11 one by one.

このリレーの動作順序はたとえば、第5図において上方
から下方に向かって動作するものとすると、クロックパ
ルスがデコーダ回路18に入力されるごとに、選択回路
部17のリレーが順次動作して、その接点が上方から下
方向に1個ずつ順次切り換えられる。     ・  
゛ いま、一番上方の接点がオンになったとすると、抵抗測
定回路36−選択回路部17の一番上段の接点−接続ケ
ーブル部16−センサ部15の1a−1bを経てアース
に至る回路が形成され、第6図に示すセンナの一木目(
九とえば、図の右端)の被めっき面8が選択され、この
被めっき面8の析出厚さに相当する抵抗値に応じて1木
目のセンtK電−が渡りる。これを抵抗測定回路26で
測定することにより、1見目のクロックパルスの発生時
における多極センナの1木目の被めっき面8の析出厚さ
を測定できる。。
For example, assuming that the relay operates from the top to the bottom in FIG. The contacts are sequentially switched one by one from the top to the bottom.・
゛Now, if the uppermost contact is turned on, the circuit that goes through the resistance measurement circuit 36, the uppermost contact of the selection circuit section 17, the connection cable section 16, and the sensor section 15 1a-1b is connected to the ground. The first grain of senna is formed and shown in Figure 6 (
For example, the surface 8 to be plated (for example, the right end of the figure) is selected, and the centK current of the first grain is passed in accordance with the resistance value corresponding to the deposition thickness of this surface 8 to be plated. By measuring this with the resistance measuring circuit 26, it is possible to measure the deposition thickness on the plated surface 8 of the first grain of the multipolar sensor when the first clock pulse is generated. .

したがって、1発、目のクロックパルスの発生時におけ
る被めっき物2の金属の析出厚さ、すなわち、めっき厚
さを知ることができる。
Therefore, it is possible to know the thickness of the metal deposited on the object to be plated 2, that is, the plating thickness, when the first clock pulse is generated.

このようにして、以下同様圧して、クロック発振部19
から2見目、3発目・・・と順次クロックパルスが発生
するととに、選択回路部17のリレーを駆動させて、接
点を願、次上段から下段方向に切夛換、えて、多極セン
!のうちの1本のセンナを第6図において、たとえば右
、々向から左方向に順次選択して電流を流すことKよ1
)、そのクロック!くルスの発生し九時期における被め
つ−き物2のめっき厚さ全バク4的Kかつ連続的に測定
することができる。
In this way, the clock oscillation section 19 is pressed in the same manner as described above.
When a clock pulse is generated sequentially from 2nd, 3rd, and so on, the relay in the selection circuit section 17 is driven to request a contact, and then the switch is switched from the upper stage to the lower stage, and then the multi-pole Sen! In Fig. 6, select one of the sensors sequentially from the right direction to the left direction and apply current to it.
), that clock! It is possible to continuously measure the plating thickness of the glazed article 2 at the 9th stage of the occurrence of the warts, including all the defects.

以上説・明したように1上記実施例では、センサ9とし
て、複数個の測定系を有する多極センサを用い、1個ず
つ選択して測定し、めっき開始からめつき終了までに一
度使用したセンナは2度と使用しないようKしているか
ら、めっき開始から測定の間に1外部からの電位を全く
受けないために、被めっき物2とセンサ9の被めっき面
8のめつき析出厚さに差がなく、正確に無電解めっき厚
さを測定することができる。
As explained and clarified above, 1 In the above embodiment, a multi-pole sensor having a plurality of measurement systems is used as the sensor 9, and one by one is selected and measured, and the senna used once from the start of plating to the end of plating is measured. Since it is protected so that it will never be used again, the thickness of the plating deposit on the plated surface 8 of the plated object 2 and the sensor 9 is There is no difference in the electroless plating thickness, and the electroless plating thickness can be measured accurately.

また(セン・す数を多くし、測定インターバルを1〜2
秒とすれば、無電解めっき反応初期のめっき厚さを連続
的に測定することができる。さらK、めっき液1、セン
サ9のコモン電極23、抵抗測定回路26のア、1.−
ス端子を接地しているため、ノイ、ズなどの影響・、、
を受けにくく、安定した測定が可1111 能である。した、:・桁って、各種無電解めっき浴の連
□・。
Also (increase the number of sensors and increase the measurement interval by 1 to 2
If the time is seconds, the plating thickness at the initial stage of the electroless plating reaction can be continuously measured. Further, plating solution 1, common electrode 23 of sensor 9, resistance measuring circuit 26, 1. −
Because the power terminal is grounded, the influence of noise, noise, etc.
1111 It is not easily affected and stable measurements are possible. :・digit is a series of various electroless plating baths □・.

続厚さ測定針として使用することができ・る。Can be used as a continuous thickness measuring needle.

以上詳述したように、この発明の無電解めっき厚−さ連
続測定方法によれば、被めっき物と同じ材料でかつ複数
個の測定系をもつセンナを一体化して構成し、測定の際
に順次1回路のみ選択して抵抗値を測定するようKし九
ので、測定までの関に全く外部よシミ位を与えないで済
ませることができる。これKともない、センナの材料と
被めっき物の間に析出厚さの誤差がなく、無電解めっき
途中での正確な析出厚さを測定できる利点を有・する。
As described in detail above, according to the electroless plating thickness continuous measurement method of the present invention, a sensor made of the same material as the object to be plated and having a plurality of measurement systems is integrated and configured. Since only one circuit is selected one after another and the resistance value is measured, it is possible to avoid any external stains during the measurement process. Along with this, there is no error in the deposit thickness between the Senna material and the object to be plated, and there is an advantage that the deposit thickness can be accurately measured during electroless plating.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の無電解めつ自厚さ測定装置の構成を示す
図、第2図は従来の無電解めっき厚さ測定装置に使用さ
れるセンナの外観斜視図、第3図は従来の無電解めっき
厚さ測定装置を用いて実測したセンナと被めっき物のめ
つき時間と厚さの関係を示すグラフ、第4図はこの発明
の無電解めっき厚さ連続測定方法に適用される無電解め
っき厚さ測定装置の構成を示す図、第5図は第4図の無
電解めっき厚さ測定装置の電気回路図、第6図は第4図
の無電解めっき厚さ測定装置に使用されるセンナの正面
図、第7図は第6図に示すセyすの取付状態を説明する
丸めの分解斜視図である。 1・・・無電解めっき液、2・・・被めっき物、9・・
・センサ、10・・・センサ保持板、11・・・コネク
タ、12・・・多芯ケーブル、13・・・接地用電極、
14・・・選択回路付抵抗針、15・・・センナ部、1
6・・・接続ケーブル部、17・・・選択回路部、18
・・・ラインデコーダ回路、19・・・クロック発振部
、20・・・めっき抵抗体、21・・・接続ポイント、
22・・・出力端子、23・・・コモン電極。
Fig. 1 is a diagram showing the configuration of a conventional electroless plating thickness measuring device, Fig. 2 is an external perspective view of a senna used in the conventional electroless plating thickness measuring device, and Fig. 3 is a diagram showing the configuration of a conventional electroless plating thickness measuring device. Figure 4 is a graph showing the relationship between plating time and thickness of senna and the plated object, which were actually measured using an electroless plating thickness measuring device. Figure 5 is an electrical circuit diagram of the electroless plating thickness measuring device shown in Figure 4, and Figure 6 is a diagram showing the configuration of the electroless plating thickness measuring device shown in Figure 4. FIG. 7 is a front view of the senna shown in FIG. 6, and FIG. 7 is a rounded exploded perspective view illustrating how the case shown in FIG. 6 is attached. 1... Electroless plating solution, 2... Plating object, 9...
・Sensor, 10...Sensor holding plate, 11...Connector, 12...Multicore cable, 13...Grounding electrode,
14... Resistance needle with selection circuit, 15... Senna part, 1
6... Connection cable section, 17... Selection circuit section, 18
... line decoder circuit, 19 ... clock oscillation section, 20 ... plated resistor, 21 ... connection point,
22... Output terminal, 23... Common electrode.

Claims (1)

【特許請求の範囲】[Claims] 無電解めっき反応で析出する金属の抵抗値の変化よ〉被
めり1物の被膜厚さを換算してめっき厚さを連続的に測
定する際のセン、す釜多極センナとし、この多極センサ
のコ毫ン電極をアース電位とし、時間の経過によ)上記
多極センサな1個ずつ選択−してセンナの抵抗値を測定
することKよシ、上記被めっき物のめつき厚さを測定・
することを特徴とする無電解めつを厚さ連続測定方法。
Change in resistance value of metal deposited in electroless plating reaction Set the main electrode of the polar sensor to ground potential, and as time passes, measure the resistance value of the multi-pole sensor by selecting one of the multi-pole sensors one by one. Measure the
A method for continuously measuring the thickness of electroless eyelets.
JP20000281A 1981-12-14 1981-12-14 Continuous measuring method for thickness of electroless plating Pending JPS58104166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20000281A JPS58104166A (en) 1981-12-14 1981-12-14 Continuous measuring method for thickness of electroless plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20000281A JPS58104166A (en) 1981-12-14 1981-12-14 Continuous measuring method for thickness of electroless plating

Publications (1)

Publication Number Publication Date
JPS58104166A true JPS58104166A (en) 1983-06-21

Family

ID=16417156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20000281A Pending JPS58104166A (en) 1981-12-14 1981-12-14 Continuous measuring method for thickness of electroless plating

Country Status (1)

Country Link
JP (1) JPS58104166A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0113395A2 (en) * 1982-12-10 1984-07-18 International Business Machines Corporation Monitoring electroless plating
EP0194103A2 (en) * 1985-02-28 1986-09-10 C. Uyemura & Co Ltd Method and apparatus for detecting start of electroless plating
JPS61264180A (en) * 1985-05-18 1986-11-22 Canon Inc Automatic monitoring device for electroless plating device
JPS62287080A (en) * 1986-06-06 1987-12-12 Canon Inc Device for automatically monitoring electroless plating
EP0255063A2 (en) * 1986-07-28 1988-02-03 International Business Machines Corporation Controlling resistivity of plated metal
JPS63195274A (en) * 1987-02-09 1988-08-12 Canon Inc Method for controlling electroless plating

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0113395A2 (en) * 1982-12-10 1984-07-18 International Business Machines Corporation Monitoring electroless plating
EP0194103A2 (en) * 1985-02-28 1986-09-10 C. Uyemura & Co Ltd Method and apparatus for detecting start of electroless plating
JPS61264180A (en) * 1985-05-18 1986-11-22 Canon Inc Automatic monitoring device for electroless plating device
JPS62287080A (en) * 1986-06-06 1987-12-12 Canon Inc Device for automatically monitoring electroless plating
EP0255063A2 (en) * 1986-07-28 1988-02-03 International Business Machines Corporation Controlling resistivity of plated metal
JPS63195274A (en) * 1987-02-09 1988-08-12 Canon Inc Method for controlling electroless plating

Similar Documents

Publication Publication Date Title
EP0651248B1 (en) Water quality sensor apparatus
CA2126555A1 (en) Analyte and pH Measuring Sensor Assembly and Method
US4477484A (en) Electroless plating monitor
JPS6450948A (en) Ion activity measuring sensor, manufacture thereof and sensor attachment circuit therefor
US3124771A (en) Figure
US4479980A (en) Plating rate monitor
JPS58104166A (en) Continuous measuring method for thickness of electroless plating
DE102005012157A1 (en) Compact pressure sensor with high corrosion resistance and high accuracy
US5212018A (en) Conductivity meter and method of producing an electrode for use in same
US3282821A (en) Apparatus for making precision resistors
JP2638283B2 (en) Electroless plating deposition rate measuring device
US20080169121A1 (en) Printed wiring board unit for method of detecting rising level of electrically-conductive body in bore
US11022580B1 (en) Low impedance structure for PCB based electrodes
WO2013035780A1 (en) Plating current density distribution measurement device and plating current density distribution measurement method
US3768499A (en) Arrangement for the setting of the acid or alkali concentration for chemical baths having high acidity or alkalinity
JPS58104167A (en) Continuous measuring method for thickness of electroless plating
JPH01150390A (en) Cubic pattern interconnection structure and manufacture thereof
JP2692780B2 (en) Concrete filling detection system
SU1486764A1 (en) Method and apparatus for monitoring thickness of electroplating coating
JP2575316B2 (en) Ion sensor, sensor plate and manufacturing method thereof
JPH01150383A (en) Electrode body for pattern wiring
SU1120499A1 (en) Device for measuring resistance of metal coating in through holes of printed circuit boards
SU624177A1 (en) Arrangement for measuring electroconducting film resistance
RU1778201C (en) Apparatus for checking thickness of electroplated coating in the course of its deposition in electroplating bath
SU1157433A2 (en) Conductometric transmitter