JPS58104057A - Concrete - Google Patents

Concrete

Info

Publication number
JPS58104057A
JPS58104057A JP19684382A JP19684382A JPS58104057A JP S58104057 A JPS58104057 A JP S58104057A JP 19684382 A JP19684382 A JP 19684382A JP 19684382 A JP19684382 A JP 19684382A JP S58104057 A JPS58104057 A JP S58104057A
Authority
JP
Japan
Prior art keywords
concrete
aggregate
blast furnace
furnace slag
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19684382A
Other languages
Japanese (ja)
Inventor
中川 勝志
綾 亀一
猛彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP19684382A priority Critical patent/JPS58104057A/en
Publication of JPS58104057A publication Critical patent/JPS58104057A/en
Pending legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、比重に比較して圧縮強度、曲げ強度、及び
引張強度に優れており、しかもクラツクを生じ難いコン
クリートに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to concrete that has superior compressive strength, bending strength, and tensile strength compared to specific gravity, and is less prone to cracking.

従来から知られている一般のコンクリートは、セメント
と、粗骨材としての砂利、細骨材としての砂、及び水を
混練し、これを硬化させてつくられるが、セメントを骨
材の付着程度が低く、かつ、骨材の比表面積が小で、バ
インダーとしてのセメントの付着特性を治用することが
できず、比重に比較して圧縮強度、引張強度、曲げ強度
等の諸強度が低い欠点があった。
Conventionally known general concrete is made by mixing cement, gravel as a coarse aggregate, sand as a fine aggregate, and water, and then hardening the mixture. The specific surface area of the aggregate is low, the adhesion properties of cement as a binder cannot be improved, and various strengths such as compressive strength, tensile strength, and bending strength are low compared to specific gravity. was there.

一方コンクリートを打設した後直ちにその表面を■圧に
してコンクリートの強度向上を図る■圧コンクリートの
養生法が知られているが、この方法はコンクリート中の
余剰水分を除去し更に大気の圧力によりコンクリートを
加圧締固めるに通さず、水■及び空■が残り、諸強度の
増加はさしたるものではない。
On the other hand, a method of curing compressed concrete is known, in which the surface of the concrete is compressed immediately after it is poured to improve the strength of the concrete. The concrete does not pass through pressure compaction, water (■) and air (■) remain, and the increase in various strengths is not significant.

このような状況下で、減圧したミキサー内で材料を混練
し、これを取出して硬化させるコンクリートの製造法(
特開昭53−19644号公報)が開発されたが、この
方法ではコンクリート中に巻き込まれる空気が減少し、
或程度セメントと骨材の付着強度が増加しるとは言うも
のの、骨材の比表面積が小さいため、或程度の強度増加
が期待できるに過ぎない。
Under these circumstances, a method of manufacturing concrete (in which materials are kneaded in a mixer under reduced pressure, taken out and hardened) was developed.
(Japanese Unexamined Patent Publication No. 19644/1983) was developed, but this method reduces the amount of air trapped in concrete,
Although the adhesion strength between cement and aggregate increases to some extent, since the specific surface area of the aggregate is small, only a certain increase in strength can be expected.

また、上記公報の中には、旧コンクリート砕片を骨材と
するコンクリートの製造法が含まれているが、旧コンク
リートはその強度が特定されておらず、しかも一般に使
用される砂利や砂等の骨材に比し強度が小さく、また比
表面積も小さいことから、高強度コンクリートを製造す
ることは不可能であり、更に旧コンクリートの破砕時に
発生するクラックには、腹圧時モルタルが圧入されるが
、この力はくさぶのように旧コンクリート破片を割る方
に作用し、クラックの原因ともなる等の欠点があった。
In addition, the above publication includes a method for producing concrete using old concrete fragments as aggregate, but the strength of old concrete has not been specified, and moreover, the strength of old concrete is not specified, and moreover, It is impossible to produce high-strength concrete because it has lower strength and smaller specific surface area than aggregate, and mortar is forced into cracks that occur when old concrete is crushed during abdominal pressure. However, this force had the disadvantage of acting in a way that split the old concrete pieces like a wedge, causing cracks.

この発明は上記した従来のコンクリートの欠点を解消す
る。比重に比較して強度の高いコンクリートを提供する
ことを目的とするものであって、上記目的に沿うこの発
明のコンクリートは、圧力差を利用して組織中にセメン
トが圧入された多孔質骨材から均一に分散され埋設され
ていることを特徴とするもである。尚この発明で言う多
孔質骨材とは高炉スラグ、軽石、蛇紋岩、商品名メサラ
イト等のような無数の小気孔を有する骨材のことを言う
。また粗骨材とは粒径5〜25mm程度の骨材のことを
、細骨材とは粒径5mm以下の骨材のことを言う。
This invention overcomes the drawbacks of conventional concrete mentioned above. The purpose is to provide concrete with high strength compared to its specific gravity, and the concrete of this invention that meets the above purpose is made of porous aggregate in which cement is injected into the structure using a pressure difference. It is characterized by being uniformly dispersed and buried. Note that the porous aggregate referred to in this invention refers to an aggregate having numerous small pores, such as blast furnace slag, pumice, serpentine, trade name Mesalite, and the like. Further, coarse aggregate refers to aggregate with a particle size of about 5 to 25 mm, and fine aggregate refers to aggregate with a particle size of 5 mm or less.

実施例 ミキサー内へセメント414重量部、水165重量部、
砂617重量部、高炉スラグ粗骨材1000重量部を投
入し、ミキサーに開閉自在に取付けられた密閉蓋を閉じ
てミキサー内を密閉し、上記材料を混練すると共にミキ
サー内を減圧し、混練後4分間でミキサー内の圧力を6
00mmHgまで減圧し、この減圧条件下で更に4分間
混練を続け、ついで上記ミキサー内を大気圧に複圧して
高炉スラグ粗骨材の表面組織中へモルタルを圧入させ、
これを取出して成形し養生して硬化させた。
Example: 414 parts by weight of cement, 165 parts by weight of water,
617 parts by weight of sand and 1000 parts by weight of blast furnace slag coarse aggregate were introduced, the inside of the mixer was sealed by closing the airtight lid that was attached to the mixer so that it could be opened and closed, and the above materials were kneaded and the pressure inside the mixer was reduced. The pressure inside the mixer is increased to 6 in 4 minutes.
The pressure was reduced to 00 mmHg, and kneading was continued for an additional 4 minutes under this reduced pressure condition, and then the inside of the mixer was double pressured to atmospheric pressure to press mortar into the surface structure of the blast furnace slag coarse aggregate.
This was taken out, molded, and cured to harden.

上記実施例におけるスランプは7.5cm、7日後の圧
縮強度は407.6kg/cm2、28日後の圧縮強度
は548kg/cm2である、非減圧コンクリートに比
し軽量かつ高強度であることが判明した。
In the above example, the slump was 7.5 cm, the compressive strength after 7 days was 407.6 kg/cm2, and the compressive strength after 28 days was 548 kg/cm2, which was found to be lighter and stronger than non-decompressed concrete. .

尚上記実施例に材料の配合比及び高炉スラグのサイズを
種々変更してテストしたが、高強度を目的とした配合で
は最高圧縮強度960kg/cm2を得ることができ、
一般的には600〜900kg/cm2の圧縮強度が比
較的容易に得られ、これに伴い曲げ強度及び引張強度も
増大し、しかもバラツキが少ない均一な品質の軽量高強
度コンクリートを得ることばできた、また曲げ試験にお
ける圧縮側と引張側のひずみを検討した結果、比例限度
応力比は約0.67の一定値と高い応力比を得た。従っ
て初期ひび割れが従来のコンクリートに比し発生しにく
いことも考察された。
In addition, tests were carried out with various changes in the mixing ratio of materials and the size of blast furnace slag in the above example, but with the combination aimed at high strength, a maximum compressive strength of 960 kg/cm2 could be obtained.
In general, it is relatively easy to obtain a compressive strength of 600 to 900 kg/cm2, and along with this, the bending strength and tensile strength also increase, and it is possible to obtain lightweight, high-strength concrete of uniform quality with little variation. Furthermore, as a result of examining the strain on the compression side and the tension side in the bending test, a high stress ratio was obtained with a constant proportional limit stress ratio of about 0.67. Therefore, it was also considered that initial cracks are less likely to occur compared to conventional concrete.

上記したように想像以上の良果が得られたことは、減圧
度が略600mmHg程度であることと、粗骨材にもと
もと強度が高い高炉スラグを使用したからに他ならず、
高炉スラグの比表面積が極めて大であり、高炉スラグの
表面組織に圧入されたセメントが、無数の針状となって
高炉スラグに突きささり、コンクリートと一体化し、か
つ高炉スラグ事態が圧入セメントによって補強され、更
に高炉スラグ内に僅に残存する空気を除いてコンクリー
ト中に空■及び水■が少ないことに起固すると考えられ
る。
As mentioned above, the results that were better than expected were due to the degree of pressure reduction being approximately 600 mmHg and the use of blast furnace slag, which has high strength to begin with, as the coarse aggregate.
The specific surface area of blast furnace slag is extremely large, and the cement that is injected into the surface structure of the blast furnace slag becomes countless needles that pierce the blast furnace slag and become integrated with the concrete, and the blast furnace slag is reinforced by the injected cement. Furthermore, it is thought that solidification is caused by the fact that there is little air (2) and water (2) in the concrete, except for the small amount of air remaining in the blast furnace slag.

この発明で粗骨材に蛇紋岩や軽石或うは商品名メサライ
トを使用し、細骨材に高炉スラグを破砕した粉粒状高炉
スラグを使用してよいことは言う迄もない、粒径の小さ
い粉粒状高炉スラグを使用するときは、前記した減圧処
理によりセメントは粉粒状高炉スラグの深部まで圧入さ
れ、残存空気量は0または極めて微小となり、従来のコ
ンクリートに比し圧縮、引張、曲げ等の諸強度、及び■
密、強数、粘り強さ、非透水性、遮音性等にも優れた、
従来想像し得ないコンクリートを得ることができる。
It goes without saying that in this invention, serpentine, pumice, or mesalite (trade name) may be used as the coarse aggregate, and granular blast furnace slag obtained by crushing blast furnace slag may be used as the fine aggregate, which has a small particle size. When using granular blast furnace slag, cement is injected deep into the granular blast furnace slag through the above-mentioned depressurization process, and the amount of residual air becomes zero or extremely small, making it less susceptible to compression, tension, bending, etc. than conventional concrete. Various strengths, and ■
Excellent density, strength, tenacity, impermeability, sound insulation, etc.
It is possible to obtain concrete that was previously unimaginable.

この発明のコンクリートは詳記のように構成され、従来
のコンクリートに比し比重に比較して諸強度が大であり
、しかもバラツキが少なく防水性にも優れ、製造法も簡
単である等多々の効果を有するものである。
The concrete of this invention is constructed as described in detail, and has many strengths such as greater strength compared to conventional concrete in terms of specific gravity, less variation, excellent waterproofing, and a simple manufacturing method. It is effective.

特許出願人 中川 勝志Patent applicant Katsushi Nakagawa

Claims (6)

【特許請求の範囲】[Claims] (1)圧力差を利用して組織中にセメントが圧入された
多孔質骨材が均一に分散され埋設されていることを特徴
としるコンクリート。
(1) Concrete is characterized in that porous aggregate, in which cement is injected into the structure using a pressure difference, is uniformly dispersed and embedded.
(2)多孔質骨材が高炉スラグであることな特徴とする
特許請求の範囲第1項記載のコンクリート。
(2) The concrete according to claim 1, wherein the porous aggregate is blast furnace slag.
(3)多孔質骨材が高炉スラグでありかつ細骨材である
ことを特徴とする特許請求の範囲第1項記載のコンクリ
ート。
(3) The concrete according to claim 1, wherein the porous aggregate is blast furnace slag and fine aggregate.
(4)多孔質骨材が高炉スラグでありかつ粗骨材である
ことを特徴とする特許請求の範囲第1項記載のコンクリ
ート。
(4) The concrete according to claim 1, wherein the porous aggregate is blast furnace slag and coarse aggregate.
(5)多孔質骨材が高炉スラグでありかつ細骨材と粗骨
材とであることを特徴とする特許請求の範囲第1項記載
のコンクリート。
(5) The concrete according to claim 1, wherein the porous aggregate is blast furnace slag and comprises fine aggregate and coarse aggregate.
(6)圧力が略600mmHg程度に達するまで減圧下
で材料を混練し、暫時混練を続けた後後圧して多孔質骨
材の組織中にセメントが圧入されたものであることを特
徴とする、特許請求の範囲第1項、第3項、第4項、第
5項記載のコンクリート。
(6) The material is kneaded under reduced pressure until the pressure reaches approximately 600 mmHg, and after continued kneading for a while, post-pressure is applied to force cement into the structure of the porous aggregate. Concrete according to claims 1, 3, 4, and 5.
JP19684382A 1982-11-11 1982-11-11 Concrete Pending JPS58104057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19684382A JPS58104057A (en) 1982-11-11 1982-11-11 Concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19684382A JPS58104057A (en) 1982-11-11 1982-11-11 Concrete

Publications (1)

Publication Number Publication Date
JPS58104057A true JPS58104057A (en) 1983-06-21

Family

ID=16364580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19684382A Pending JPS58104057A (en) 1982-11-11 1982-11-11 Concrete

Country Status (1)

Country Link
JP (1) JPS58104057A (en)

Similar Documents

Publication Publication Date Title
JPH0448743B2 (en)
Hughes et al. Stress-strain curves for fibre reinforced concrete in compression
JPH0213882B2 (en)
Swamy et al. Mix design and properties of concrete made from PFA coarse aggregates and sand
Koh et al. Effect of re-vibration on the compressive strength and surface hardness of concrete
JP6924646B2 (en) Cement composition for immediate demolding method and manufacturing method of precast concrete molded product using it
Hobbs Strength of concrete under combined stress
JPS58104057A (en) Concrete
Parton et al. Polystyrene-bead concrete properties and mix design
JP2000247719A (en) Production of hardened body and hardened body composition
JP3067120B2 (en) Sound absorber and method of manufacturing the same
JP4716474B2 (en) Pile construction method using granulated blast furnace slag
JP3841472B2 (en) Porous inorganic molded product
US3499070A (en) Case hardening of concrete with fine vermiculite
JP3056430B2 (en) Porous concrete compact with connection hole and method for producing the same
JPH06157106A (en) Composite material consisting of cement and powdery vulcanized rubber
Ravindrarajah et al. Effect of binder material on the properties of lightweight polystyrene aggregate concrete
Lazar Fiber RC Compaction by Vibration and Surface Pressure
JP2859554B2 (en) Method for producing porous body using cement aggregate
JPH0567581B2 (en)
SU1458346A1 (en) Method of producing concrete mix using dust sand
JPH07276324A (en) Manufacture of high-strength concrete
JP2005154177A (en) Non-fired type solidified body and method of producing the same, and formed body using non-fired type solidified body and method of producing the same
JPH07266315A (en) Manufacture of high strength concrete
SU1719379A1 (en) Method of manufacture of concrete and reinforced concrete structures