JPH0567581B2 - - Google Patents

Info

Publication number
JPH0567581B2
JPH0567581B2 JP27603089A JP27603089A JPH0567581B2 JP H0567581 B2 JPH0567581 B2 JP H0567581B2 JP 27603089 A JP27603089 A JP 27603089A JP 27603089 A JP27603089 A JP 27603089A JP H0567581 B2 JPH0567581 B2 JP H0567581B2
Authority
JP
Japan
Prior art keywords
cement concrete
polymer
amount
aggregate
polymer cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27603089A
Other languages
Japanese (ja)
Other versions
JPH03141145A (en
Inventor
Yutaka Kurumi
Yasuo Okuyama
Kazuyuki Murakami
Kanjiro Ishizaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Chichibu Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chichibu Cement Co Ltd filed Critical Chichibu Cement Co Ltd
Priority to JP1276030A priority Critical patent/JPH03141145A/en
Publication of JPH03141145A publication Critical patent/JPH03141145A/en
Publication of JPH0567581B2 publication Critical patent/JPH0567581B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、ポリマーセメントコンクリート製品
及びその製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a polymer cement concrete product and a method for manufacturing the same.

【発明の背景】[Background of the invention]

いわゆるポリマーセメントコンクリートは、コ
ンクリート内部にポリマーが存在するが故に、通
常のコンクリートに比べて強度、耐水性及び耐薬
品性等の特性が優れていると言われている。 従つて、例えば埋設型枠として用いることが考
えられている。 しかしながら、ポリマーセメントコンクリート
は収縮歪(1000×10-6以上、普通のコンクリート
の乾燥収縮が600〜1000×10-6程度)が大きく、
これに対する対策が必要である。 すなわち、例えばセメント380〜500Kg/m3及び
水150〜180Kg/m3程度、その他ポリマーデイスパ
ージヨンを所望の特性に必要な量に調整したポリ
マーセメントコンクリート原料を混練した後、型
枠に流し込み、水中養生又は湿空養生等の後、気
中養生してポリマーセメントコンクリートは製造
される。 ところで、このようにして製造されたポリマー
セメントコンクリート製品には、貯蔵や使用環境
下において乾燥収縮が生じる。特に、乾燥が促進
される環境下に長期間置かれると反り等を生じた
り、あるいは使用状態において収縮変形が拘束さ
れる場合には、内部応力が発生し、製品の強度低
下を招くことにもなる。 従つて、製品の乾燥収縮変形を軽減することが
大事である。
So-called polymer cement concrete is said to have superior properties such as strength, water resistance, and chemical resistance compared to ordinary concrete because of the presence of polymers inside the concrete. Therefore, it is being considered to use it, for example, as a buried formwork. However, polymer cement concrete has a large shrinkage strain (more than 1000 × 10 -6 , the drying shrinkage of ordinary concrete is about 600 to 1000 × 10 -6 ),
Measures against this are necessary. That is, after kneading raw materials for polymer cement concrete, for example, 380 to 500 Kg/m 3 of cement, 150 to 180 Kg/m 3 of water, and other polymer dispersion adjusted to the amount necessary for desired properties, the mixture is poured into a formwork. After curing in water or in humid air, polymer cement concrete is manufactured by curing in air. Incidentally, the polymer cement concrete products manufactured in this manner undergo drying shrinkage during storage and usage environments. In particular, if the product is left in an environment that accelerates drying for a long period of time, warping may occur, or if shrinkage and deformation are restricted during use, internal stress may occur and reduce the strength of the product. Become. Therefore, it is important to reduce the drying shrinkage deformation of the product.

【発明の開示】[Disclosure of the invention]

本発明の目的は、ポリマーセメントコンクリー
トにおける乾燥収縮歪を改善することである。 この本発明の目的は、粗骨材及び細骨材による
骨材充填率が実質上最大となるよう配合された骨
材の空〓部に、結合材及びポリマーが介在してな
ることを特徴とするポリマーセメントコンクリー
ト製品によつて達成される。 又、加圧振動締め固めした際に粗骨材及び細骨
材による骨材充填率が実質上最大となるよう配合
された粗骨材及び細骨材と、粉体結合材と、水
と、ポリマーデイスパージヨンの混合物を型に入
れ、加圧振動締め固めすることを特徴とするポリ
マーセメントコンクリート製品の製造方法によつ
ても達成される。 すなわち、本発明者による研究開発が精力的に
行なわれた結果、乾燥収縮等による歪の防止は、
骨材(粗骨材及び細骨材)が変形拘束効果を呈す
る如く密に詰められておれば達成できることに気
付いたのである。 ここで、変形拘束効果を呈する如く密に詰める
とは、粗骨材と細骨材との混合物をポリマーセメ
ントコンクリート製品成形時と同一の条件で加圧
振動締め固めを行つた場合に、骨材の充填率が最
大となるよう粗骨材と細骨材とを配合した材料を
型枠に流し込み、加圧振動締め固めを行うことで
達成される。 尚、鋼繊維やカーボン繊維あるいは合成樹脂繊
維のような繊維を混入したポリマーセメントコン
クリート製品を製造する場合にあつては、該繊維
の混入率は該製品に要求される性能によつて定ま
る為、この繊維の混入率を所定のものとして、こ
の繊維の他に粗骨材と細骨材との混合物をコンク
リート製品成形時と同一の条件で加圧振動締め固
めを行つた場合に、骨材の充填率が最大となるよ
うに粗骨材と細骨材とを配合したものと結合材ペ
ーストとを混練した後、この材料を型枠に流し込
み、加圧振動締め固めを行うことで達成される。 又、コンクリートの乾燥収縮変形は結合材ペー
ストの部分で起きると考えられるから、単位水量
は出来るだけ少なくすることが好ましい。例え
ば、水粉体結合材比は20〜30%程度のものであ
る。 尚、ここで水粉体結合材比は(ポリマーデイス
パージヨン中の水量+混練時に加える水量)/
(セメント量+フライアツシユ量+シリカヒユー
ム量)で求められる値である。 そして、コンクリートの流動性を向上させるポ
リマーデイスパージヨンは固形分換算で結合材重
量の5〜10%程度用いることができる。 又、さらにコンクリート練り混ぜ時の流動性を
向上させる為、粒形の良い(ほぼ球形)フライア
ツシユや耐酸性向上を目的としてシリカヒユーム
等の活性シリカをセメントの一部として、セメン
ト重量の5〜20%程度用いることも良い。 そして、上記のような材料を所定の枠に混入
し、所定の凹凸(突出高さ0.8〜2cm程度で、一
辺が2〜5cm程度)を形成した加圧板を用い、
0.05〜0.2Kgf/cm2程度の圧力を加えて振動成形
することで、乾燥収縮歪みが改善されたポリマー
セメントコンクリート製品が得られる。 このようにして得たコンクリート製品は、即時
脱型コンクリート製品に近い状態である為、加圧
板を成形後すぐに取り去つても、加圧板によつて
コンクリート製品に形成された凹凸はその形を保
持している。 又、型枠の底板及び側板を付けたまま蒸気養生
等をすれば、即時脱型製品に近いコンクリート製
品でありながら、美しい仕上げ面のものが得られ
る。 尚、上記の加圧板の凹凸は、加圧振動成形時に
骨材を動きづらくすることによつてコンクリート
の締め固め生を向上させると共に、ポリマーセメ
ントコンクリート製品を埋設型枠として使用する
際に、加圧板の凹凸から転写された凸凹が現場打
設コンクリートとの付着性を高めることになる。
そして、この凹凸は、加圧振動成形後に加圧板を
取り除くだけで簡単に構成できるものである。 実施例 1 第1図a,bは本発明に係るポリマーセメント
コンクリート製品を得る為に用いる振動成形装置
の平面図及び側面図、第2図a,bは加圧板の底
面図及び側面図、第3図は上記の振動成形装置に
加圧板が組み合わされた概略図である。 各図中、1は振動台、2はバイブレータ機構で
あり、4個のバイブレータ機構が振動台1の下面
に設けられている。 3は加圧板であり、この加圧板3の下面表面に
は、突出高さ0.8〜2cm程度で、一辺が2〜5cm
程度の凹凸4が形成されている。 5は、振動台1上に配置された型枠である。 そして、セメント量310Kg/m3、水量75Kg/m3
フライアツシユ量62Kg/m3、ポリマーデイスパー
ジヨン量37.2Kg/m3、水粉体結合材比25%、最大
寸法15mm以下の粗骨材量971Kg/m3、細骨材量
1045Kg/m3の混合物を前記の型枠5内に充填し、
0.05〜0.2Kgf/cm2程度の圧力を加えて振動成形
すると、埋設型枠用のポリマーセメントコンクリ
ート体が得られる。 そして、このポリマーセメントコンクリート体
の収縮歪を調べると、これは著しく小さいもので
あつた。 実施例 2 実施例1における混合物の組成を、セメント量
350Kg/m3、水量83Kg/m3、シリカヒユーム量35
Kg/m3、フライアツシユ量35Kg/m3、ポリマーデ
イスパージヨン量70Kg/m3、水粉体結合材比28
%、最大寸法15mm以下の粗骨材量738Kg/m3、細
骨材量1099Kg/m3、鋼繊維78.5Kg/m3として同様
に行い、埋設型枠用のポリマーセメントコンクリ
ート体を得る。 そして、このポリマーセメントコンクリート体
の収縮歪を調べると、これは著しく小さいもので
あつた。 実施例 3 実施例1における混合物の組成を、セメント量
300Kg/m3、水量64Kg/m3、シリカヒユーム量60
Kg/m3、ポリマーデイスパージヨン60Kg/m3、水
粉体結合材比26%、最大寸法15mm以下の粗骨材
962Kg/m3、細骨材量1034Kg/m3として同様に行
い、埋設型枠用のポリマーセメントコンクリート
体を得る。 そして、このポリマーセメントコンクリート体
の収縮歪を調べると、これは著しく小さいもので
あつた。
The aim of the invention is to improve drying shrinkage distortion in polymer cement concrete. The object of the present invention is to provide a material in which a binder and a polymer are interposed in the voids of aggregates that are blended so that the aggregate filling rate of coarse aggregates and fine aggregates is substantially maximized. achieved by polymer cement concrete products that Further, coarse aggregate and fine aggregate, a powder binder, and water, which are blended so that the aggregate filling rate of the coarse aggregate and fine aggregate is substantially maximized when compacted by pressurized vibration. This is also achieved by a method for producing polymer cement concrete products, which is characterized in that a mixture of polymer dispersion is placed in a mold and subjected to pressure vibration compaction. In other words, as a result of vigorous research and development by the present inventor, prevention of distortion due to drying shrinkage, etc.
They realized that this could be achieved if the aggregates (coarse and fine aggregates) were packed closely together to provide a deformation restraining effect. Here, "packing densely so as to exhibit a deformation restraining effect" means that when a mixture of coarse aggregate and fine aggregate is subjected to pressurized vibration compaction under the same conditions as when forming polymer cement concrete products, the aggregate This is achieved by pouring a mixture of coarse aggregate and fine aggregate into a formwork to maximize the filling rate, and then performing pressurized vibration compaction. In addition, when manufacturing polymer cement concrete products containing fibers such as steel fibers, carbon fibers, or synthetic resin fibers, the mixing rate of the fibers is determined by the performance required of the product. When the mixture ratio of this fiber is set to a predetermined value and a mixture of coarse aggregate and fine aggregate in addition to this fiber is subjected to pressure vibration compaction under the same conditions as when forming concrete products, the aggregate This is achieved by kneading a mixture of coarse aggregate and fine aggregate with binder paste to maximize the filling rate, then pouring this material into a formwork and performing pressurized vibration compaction. . Furthermore, since drying shrinkage deformation of concrete is thought to occur in the binder paste portion, it is preferable to reduce the unit amount of water as much as possible. For example, the water/powder binder ratio is about 20 to 30%. Here, the water/powder binder ratio is (amount of water in the polymer dispersion + amount of water added during kneading)/
This value is determined by (amount of cement + amount of fly ash + amount of silica fume). Polymer dispersion, which improves the fluidity of concrete, can be used in an amount of about 5 to 10% of the weight of the binder in terms of solid content. In addition, in order to further improve the fluidity of concrete when mixing and mixing, active silica such as silica hume is added as part of the cement in an amount of 5 to 20% of the cement weight for the purpose of fly ash having a good particle shape (almost spherical) and improving acid resistance. It is also good to use it to a certain degree. Then, by mixing the above-mentioned materials into a predetermined frame and using a pressure plate with predetermined irregularities (protruding height of about 0.8 to 2 cm and sides of about 2 to 5 cm),
By applying a pressure of about 0.05 to 0.2 Kgf/cm 2 and performing vibration molding, a polymer cement concrete product with improved drying shrinkage distortion can be obtained. The concrete product obtained in this way is in a state close to that of an immediately demoldable concrete product, so even if the pressure plate is removed immediately after molding, the irregularities formed on the concrete product by the pressure plate will retain their shape. keeping. Furthermore, if steam curing or the like is performed with the bottom plate and side plates of the formwork attached, a concrete product that is close to an instant demolding product but with a beautiful finished surface can be obtained. The unevenness of the pressure plate mentioned above improves the compaction of concrete by making it difficult for the aggregate to move during pressurized vibration molding. The unevenness transferred from the unevenness of the pressure plate increases the adhesion with the concrete poured on site.
The unevenness can be easily formed by simply removing the pressure plate after pressure vibration molding. Example 1 Figures 1a and b are a plan view and a side view of a vibration forming apparatus used to obtain a polymer cement concrete product according to the present invention, Figures 2a and b are a bottom view and a side view of a pressure plate, and Figures 2a and 2b are a bottom view and a side view of a pressure plate. FIG. 3 is a schematic diagram of the above vibration molding device combined with a pressure plate. In each figure, 1 is a vibration table, 2 is a vibrator mechanism, and four vibrator mechanisms are provided on the lower surface of the vibration table 1. 3 is a pressure plate, and the lower surface of this pressure plate 3 has a protruding height of about 0.8 to 2 cm and a side of 2 to 5 cm.
A certain degree of unevenness 4 is formed. 5 is a formwork placed on the shaking table 1. And, the amount of cement is 310Kg/m 3 , the amount of water is 75Kg/m 3 ,
Fly ash amount 62Kg/m 3 , Polymer dispersion amount 37.2Kg/m 3 , Water-powder binder ratio 25%, Coarse aggregate amount with maximum dimension 15mm or less 971Kg/m 3 , Fine aggregate amount
1045Kg/m 3 of the mixture is filled into the mold 5,
By applying a pressure of about 0.05 to 0.2 Kgf/cm 2 and performing vibration molding, a polymer cement concrete body for buried formwork is obtained. When the shrinkage strain of this polymer cement concrete body was examined, it was found to be extremely small. Example 2 The composition of the mixture in Example 1 was changed to
350Kg/m 3 , water amount 83Kg/m 3 , silica hume amount 35
Kg/m 3 , fly ash amount 35Kg/m 3 , polymer dispersion amount 70Kg/m 3 , water/powder binder ratio 28
%, the amount of coarse aggregate with a maximum dimension of 15 mm or less is 738 Kg/m 3 , the amount of fine aggregate is 1099 Kg/m 3 , and the steel fiber is 78.5 Kg/m 3 to obtain a polymer cement concrete body for buried formwork. When the shrinkage strain of this polymer cement concrete body was examined, it was found to be extremely small. Example 3 The composition of the mixture in Example 1 was changed to
300Kg/m 3 , water amount 64Kg/m 3 , silica hume amount 60
Kg/m 3 , polymer dispersion 60Kg/m 3 , water/powder binder ratio 26%, coarse aggregate with maximum dimension of 15 mm or less
The same procedure was carried out with the amount of fine aggregate being 962Kg/m 3 and the amount of fine aggregate being 1034Kg/m 3 to obtain a polymer cement concrete body for buried formwork. When the shrinkage strain of this polymer cement concrete body was examined, it was found to be extremely small.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bは本発明に係るポリマーセメント
コンクリート製品を得る為に用いる振動成形装置
の平面図及び側面図、第2図a,bは加圧板の底
面図及び側面図、第3図は上記の振動成形装置に
加圧板が組み合わされた概略図である。 1……振動台、2……バイブレータ機構、3…
…加圧板、4……凹凸、5……型枠。
Figures 1a and b are a plan view and a side view of a vibration forming apparatus used to obtain a polymer cement concrete product according to the present invention, Figures 2a and b are a bottom view and a side view of a pressure plate, and Figure 3 is a It is a schematic diagram in which a pressure plate is combined with the above-mentioned vibration molding device. 1... Vibration table, 2... Vibrator mechanism, 3...
...Pressure plate, 4...Irregularities, 5...Formwork.

Claims (1)

【特許請求の範囲】 1 粗骨材及び細骨材による骨材充填率が実質上
最大となるよう配合された骨材の空〓部に、結合
材及びポリマーが介在してなることを特徴とする
ポリマーセメントコンクリート製品。 2 特許請求の範囲第1項記載のポリマーセメン
トコンクリート製品において、繊維がさらに充填
されてなるもの。 3 特許請求の範囲第1項記載のポリマーセメン
トコンクリート製品において、水結合材比が25〜
30%であるもの。 4 特許請求の範囲第1項記載のポリマーセメン
トコンクリート製品において、ポリマーデイスパ
ージヨンの添加量が固形分で結合材の5〜10%で
あるもの。 5 特許請求の範囲第1項記載のポリマーセメン
トコンクリート製品において、フライアツシユが
セメントの5〜20%含まれてなるもの。 6 特許請求の範囲第1項記載のポリマーセメン
トコンクリート製品において、活性シリカがセメ
ントの5〜20%含まれてなるもの。 7 加圧振動締め固めした際に粗骨材及び細骨材
による骨材充填率が実質上最大となるよう配合さ
れた粗骨材及び細骨材と、粉体結合材と、水と、
ポリマーデイスパージヨンの混合物を型に入れ、
加圧振動締め固めすることを特徴とするポリマー
セメントコンクリート製品の製造方法。
[Scope of Claims] 1. It is characterized in that a binder and a polymer are interposed in the voids of aggregates that are blended so that the aggregate filling rate of coarse aggregate and fine aggregate is substantially maximized. polymer cement concrete products. 2. A polymer cement concrete product according to claim 1, which is further filled with fibers. 3. In the polymer cement concrete product according to claim 1, the water binder ratio is 25 to 25.
What is 30%. 4. The polymer cement concrete product according to claim 1, in which the amount of polymer dispersion added is 5 to 10% of the binder in solid content. 5. The polymer cement concrete product according to claim 1, which contains fly ash in an amount of 5 to 20% of the cement. 6. A polymer cement concrete product according to claim 1, which contains activated silica in an amount of 5 to 20% of the cement. 7 Coarse aggregate and fine aggregate that are blended so that the aggregate filling rate of coarse aggregate and fine aggregate is substantially maximized when compacted by pressure vibration, a powder binder, and water;
Pour the polymer dispersion mixture into the mold;
A method for producing a polymer cement concrete product characterized by pressurized vibration compaction.
JP1276030A 1989-10-25 1989-10-25 Polymer cement concrete product and production thereof Granted JPH03141145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1276030A JPH03141145A (en) 1989-10-25 1989-10-25 Polymer cement concrete product and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1276030A JPH03141145A (en) 1989-10-25 1989-10-25 Polymer cement concrete product and production thereof

Publications (2)

Publication Number Publication Date
JPH03141145A JPH03141145A (en) 1991-06-17
JPH0567581B2 true JPH0567581B2 (en) 1993-09-27

Family

ID=17563817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1276030A Granted JPH03141145A (en) 1989-10-25 1989-10-25 Polymer cement concrete product and production thereof

Country Status (1)

Country Link
JP (1) JPH03141145A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4926387B2 (en) * 2004-07-29 2012-05-09 太平洋セメント株式会社 Cured polymer cement mortar
JP6748468B2 (en) * 2016-03-30 2020-09-02 太平洋マテリアル株式会社 Construction method of paving concrete and paving concrete
JP6824778B2 (en) * 2017-02-28 2021-02-03 太平洋マテリアル株式会社 Polymer cement concrete and its construction method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01244808A (en) * 1988-03-28 1989-09-29 Showa Shell Sekiyu Kk Manufacture of cement molded matter having high strength and precise structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01244808A (en) * 1988-03-28 1989-09-29 Showa Shell Sekiyu Kk Manufacture of cement molded matter having high strength and precise structure

Also Published As

Publication number Publication date
JPH03141145A (en) 1991-06-17

Similar Documents

Publication Publication Date Title
US3247294A (en) Concrete products and methods for making same
US8007697B2 (en) Method for manufacturing articles in the form of thin slabs of composite stone and resultant articles
JP6924646B2 (en) Cement composition for immediate demolding method and manufacturing method of precast concrete molded product using it
JPH0567581B2 (en)
JP2931768B2 (en) Method for producing inorganic molded plate
JPH03141174A (en) Polymer-impregnated concrete product and production thereof
JPH0780811A (en) Production of concrete or mortar for immediate removal after pressurization vibration molding
JPS647024B2 (en)
US3226242A (en) High strength cementitious products and a process for their production
JPH02141454A (en) Production of high-strength calcium silicate molded body
JP4521646B2 (en) Imitation brick manufacturing method
JP2004114539A (en) Method for manufacturing inorganic board
JP3088644B2 (en) Immediately deporous concrete molding and method for producing the same
JPH10151612A (en) Manufacture of composite type porous block
JPH0569785B2 (en)
JPH10100128A (en) Production of precast member
JP2007269591A (en) Method of producing concrete product, and concrete product
JP3723607B2 (en) Hollow molded body manufacturing apparatus and hollow molded body manufacturing method using the same
JP3852770B2 (en) Molding method for lightweight cellular concrete secondary products
JPH04201410A (en) Resin form for manufacturing concrete formed body and manufacture of formed body thereof
JP3526639B2 (en) Cement composition for dewatering press molding and method for producing cement molding using the same
JPH0225304A (en) Manufacture of light and thin panel
JP2004058307A (en) Method for manufacturing light-weight foam block
JPH0733492A (en) Hydraulic inorganic composition
SU399483A1 (en) METHOD OF MANUFACTURING DECORATIVE